Improving the Precision of Type Inference Algorithms with
Lightweight Heuristics

Publication Summary

Nevena Milojkovié

University of Bern

Bern, Switzerland
nevena@inf.unibe.ch

Abstract

Dynamically-typed languages allow faster
software development by not posing the type
constraints. Static type information facilitates
program comprehension and software main-
tenance. Type inference algorithms attempt
to reconstruct the type information from the
code, yet they suffer from the problem of
false positives or false negatives. The use of
complex type inference algorithms is question-
able during the development phase, due to
their performance costs. Instead, we propose
lightweight heuristics to improve simple type
inference algorithms and, at the same time,
preserve their swiftness.

1 Introduction

Static type information is irreplaceable when it comes
to program comprehension and software mainte-
nance [HKR 14, SH14|. Not only does software main-
tenance require less time in statically-typed languages,
but already static type information without static type
checking has a positive impact on program compre-
hension [SH14]. While in statically-typed languages
a developer may use available static type information
to reason about software [SMDV0§], in dynamically-
typed languages she is often forced to exercise the code
to test type hypotheses [KBR14]. On the other hand,
dynamically-typed languages offer developers more ex-

Copyright ©) by the paper’s authors.
private and academic purposes.

Copying permitted for

Proceedings of the Seminar Series on Advanced Techniques and
Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

pressiveness during the development phase [MHR*12]
and, consequently, reduce development time [Hanl0].

In order to bring together the two worlds, numerous
type inference techniques have been developed in the
last several decades. Some of them employ solely stat-
ically collected information, while the others depend
on the program execution. Some of them depend on
typing the whole program, while the others analyse an
isolated expression. Program execution offers precise
type information, but it gives only the narrow scope
of all the possibilities [PTP07]. Static analysis is an
NP-hard problem [Sus97, Lan92], hence it suffers from
false positives or negatives, i.e., it indicates as a result
something that cannot happen at run-time, or misses
some results.

These algorithms need to be fast, in order not to
break the development flow. However, it is intuitive
that algorithms that employ more information and
perform flow analysis are expected to be more pre-
cise. Hence, in order to be usable by a developer they
need to trade precision for speed.

We argue that lightweight heuristics may be em-
ployed to improve the accuracy of control-flow and
data-flow insensitive type inference algorithms, that is,
to mitigate the number of false positives or negatives,
without a significant loss of speed. These heuristics
are founded on the information that is easily acces-
sible from the source code either statically or at run
time. By performing lightweight code analysis, we be-
lieve that it is possible to augment the precision of a
simple type inference algorithm, while preserving its
simplicity and swiftness. Hence, they would remain
fast and practical during coding tasks, without break-
ing work flow.

We have used two simple type inference algorithms
as basic algorithms: RoelTyper [PMWO09] and the
Cartesian Product Algorithm (CPA) [Age95], on top of
which we have implemented four lightweight heuristics.

Two heuristics employ static class usage frequency in-
formation [MN16], one heuristic employs the informa-
tion from inline caches [MBGN16], and one uses type
hints in method argument names [MGN17]. They are
all described in Section 2. We discuss open questions
in Section 3.

2 Lightweight heuristics

The simplest approach to infer types for a variable is
to track down the assignments and set of messages sent
to the variable, without any flow analysis [PMWO09].
The reconstructed types for a variable are represented
by the union of the types assigned to the variable and
the types that understand all the messages sent to the
variable. It is very fast, but it provides precise results
for a bit less then a 60% of variables. Its main obsta-
cles are polymorphism and cross-hierarchy polymor-
phism usage. When the interface of a variable consists
of popular selectors, implemented in multiple indepen-
dent hierarchies, this approach suffers from false posi-
tives, i.e., classes that understand the interface of the
variable, but do not represent its run-time type.

Instead of complicating the design of the algorithm,
as it would increase the time needed for the analysis,
we propose ordering of the resulting classes. As each
of the classes inferred as possible types for a variable
is more or less likely to be correct, we explore possible
heuristics for their sorting. Naturally, an object that
exists at run time needs to be created at some point
during program execution. This can be achieved in
any of the following ways:

1. invoking a constructor

2. invoking a (factory) method that plays the role of
a constructor, but is not a constructor per se

3. via reflection

Our hypothesis is that the more frequently the class
is instantiated in the code, the more likely it will repre-
sent a type of a variable at run time. Since this can be
done in three different ways, we propose three heuris-
tics implemented on top of RoelTyper to mitigate the
number of false positives.

On the other hand, in the presence of reflection, or
dynamic class loading [LSST 15|, static type inference
algorithms miss certain types, hence they lose type
information. This means that they suffer from the
problem of false negatives, i.e., they omit from the re-
sults the classes that represent a variable type at run
time. We propose the fourth heuristic built on top
of CPA. The Cartesian Product Algorithm attempts
to reconstruct the type flow through the assignments
and method calls, and it infers the return type of the
method based on the Cartesian product of the argu-
ment types. The heuristic uses type hints encoded

in the method argument names to improve the algo-
rithm’s precision in the presence of reflection.

We measured the time needed to provide a type
feedback to assess whether these heuristics are fast
enough to be used for program comprehension. The
introduced overhead is less than 5% in case of Roel-
Typer and about 10% in case of CPA, which we deem
acceptable. The following subsections present three
heuristics for ordering classes, and the heuristic used
to recover missed types, respectively.

2.1 Heuristic based on the class instantiation
frequency

Regardless of how complicated the control flow of a
piece of software is, all the instances to which the vari-
able may be bound at run time must be created some-
where in the code. The usual way is to invoke a con-
structor of the desired class, leading us to suppose that
the more frequently the class is instantiated through-
out the code, the more likely it is that it will represent
a variable type at run time. Hence, we propose or-
dering the inferred classes for a variable based on the
frequency of constructor calls for a class. We have im-
plemented a prototype for Pharo Smalltalk! and used
it to evaluate the approach. The heuristic showed a
more than twofold improvement when compared with
the basic approach.

2.2 Heuristic based on the class name occur-
rence frequency

While an instance of a class may be created by explic-
itly invoking a constructor of the desired class, it may
also be created by the use of a factory method. Some
languages do not pose restrictions on constructor nam-
ing, thus it may be difficult to statically track all con-
structor invocations. Any method may play the role
of a constructor. These factory methods may directly
invoke a constructor and, in this case, it is easy to iden-
tify them. But, they may also invoke some other fac-
tory method that will, in return, invoke a constructor
and, in this case, more precise static analysis should be
performed in order to avoid false positives. Also, if a
factory method contains a message send self basicNew,
it is costly, if at all possible, to statically determine
whether an object of the corresponding class, or any
of its subclasses will be created.

We propose also to explore a heuristic of ordering
possible types for a variable based on the frequency of
class name occurrence in source code, rather than on
the class instantiation frequency. We have used for the
evaluation the implemented prototype. Interestingly,
this heuristic showed slightly better results than the
previous one.

lhttp://www.pharo.org

http://www.pharo.org

2.3 Heuristic based on the class frequency
from inline caches

Recent studies show that reflective features are
quite frequently used in dynamically-typed lan-
guages [HH09, RLBV10, CRTR13]. Due to dynamic
class loading or high use of reflection, static analysis
can miss the use of certain types [LSST15]. This im-
poses difficulties for static analysis, as sometimes it
cannot be known at compile time which class will be
instantiated or even created.

In the presence of dynamic binding, many virtual
machines for dynamic languages employ Just-in-Time
compilers to speed up the execution [HCU91]. These
compilers use inline caches, which locally store the
information about methods previously executed for
a message send. Beside method information, these
caches also contain the information about the type of
the receiver for a message send.

We hypothesise that the class usage frequency as a
type of the receiver at run-time, read from the inline
caches, may serve as a reliable proxy for the likelihood
of a variable being of a certain type. This information
can be used to order statically-inferred types. As run-
time information is easily accessible from the virtual
machine, no instrumentation is required.

The evaluation showed results very similar to those
of the heuristics based on purely static information.

2.4 Heuristic based on the type hints from
method argument names

In the presence of reflection, or dynamic class load-
ing, static type inference algorithms may under-
approximate possible types for a variable.

On the other hand, in order to partially compen-
sate for the lack of static type information, a common
idiom in dynamically-typed languages is to provide a
type annotation for method arguments [Bec97, Zan13,
Bol10]. These annotations are mainly intended to im-
prove program comprehension, but they are also used
as an input for some development tools, e.g., code com-
pletion, in order to improve the results.

We hypothesise that these annotations from method
argument names may be employed to improve the pre-
cision of a type inference in cases where the type of the
variable cannot be statically inferred by traditional ap-
proaches. We propose a heuristic to augment a type
inference algorithm whose precision significantly de-
pends on the correctly inferred types for method ar-
guments [Age95].

We have implemented a prototype used for evalua-
tion. The obtained results show that the augmented
algorithm outperforms the basic one significantly.

3 Future work and open questions

We chose RoelTyper and CPA, as they represent sim-
ple and swift type inference algorithms. While we
find them representative for the field, there is an open
question whether augmenting other type inference al-
gorithms would yield different results.

Our idea was to start with the easiest heuristics to
calculate, in order to retain the speed of the underlying
algorithms. Our choice of the heuristics fell on the
four heuristics we have presented, as they are simple
enough not to complicate the type inference process.
For instance, the heuristic that we employed on top of
CPA provides results in only 10% overhead, and the
other three heuristic introduce an overhead of at most
5%.

We list here some possible directions of research:

e We considered all classes from the Smalltalk li-
braries as available for type inference, i.e., that
any of the classes may represent a type of a
variable. Not every one of these library classes
is reachable (through the call graph) from the
project under analysis. A first step would be
to construct the conservative call graph starting
from the analysed project, and restrict a set of
types only to actually reachable classes. One of
the problems in the call graph construction comes
from the use of reflective and dynamic features.

e The Smalltalk community heavily uses type pred-
icates [CRTT14], whose usual name consists of
the present tense of the verb “to be” plus the
camel case notation of the expected type name,
e.g.,isCircle. Extraction of the expected class
name from the predicates may reveal the popu-
lar classes. Each class may be given a score based
on its popularity, and these scores may be used
for class ordering.

e Reflective features are also commonly used in
many dynamically-typed languages, especially dy-
namic method invocation [CRTR13], and for some
of these features it is possible to statically de-
termine the exact name of the invoked method,
e.g.,0bject.perform("size") where the message size is
sent to the object. By extracting these string val-
ues, one may assume that object is supposed to be
some kind of collection. This may improve the
results in any of the type inference algorithms.

e Developers may encode type information into the
comments and documentation, hence their anal-
ysis in the search of class names may reveal the
popular classes. For example, one of the method
comments in Glamour? states: “Answers a string

?http://www.smalltalkhub.com/#!/“Moose/Glamour

http://www.smalltalkhub.com/#!/~Moose/Glamour

explaining shortcut.” Its analysis would reveal the
use of String type.

e In the case of false positives, classes may also be
sorted based on their distance from the classes
that contain the analysed variable. For exam-
ple, possible types that belong to the same pack-
age may be prioritised, next would be the group
of classes from the same project, but a different
package, and at the end the remaining classes.

e Each class (e.g., A) may contain a score of every
other class (e.g., B) that is used inside it. That
is, if there is an explicit mention of class name B
within the class A, or if B represents a type of
the variable defined by the class A. This could
represent the closeness of the two classes.

In the end, we believe that it is important to explore
various heuristics, especially those that accommodate
language idioms, in order to improve static type anal-
ysis, without introducing significant overhead.

Acknowledgements

We gratefully acknowledge the financial support of
the Swiss National Science Foundation for the project
“Agile Software Analysis” (SNSF project No. 200020-
162352, Jan 1, 2016 - Dec. 30, 2018).

References

[Age95] Ole Agesen. The Cartesian product al-
gorithm. In W. Olthoff, editor, Proceed-
ings ECOOP ’95, volume 952 of LNCS,
pages 2-26, Aarhus, Denmark, August
1995. Springer-Verlag.

[Bec97] Kent Beck. Smalltalk Best Practice Pat-
terns. Prentice-Hall, 1997.

[Bol10] M. Bolin. Closure: The Definitive Guide:
Google Tools to Add Power to Your
JavaScript. O'Reilly Media, 2010.

[CRT*14] Oscar Callati, Romain Robbes, Eric Tan-
ter, David Réthlisberger, and Alexan-
dre Bergel. On the use of type pred-
icates in object-oriented software: The
case of Smalltalk. In Proceedings of the
10th ACM Dynamic Languages Sympo-
sium (DLS 201/4), pages 135-146, Port-
land, OR, USA, 2014. ACM Press.

[CRTR13] Oscar Callati, Romain Robbes, Eric Tan-
ter, and David Rothlisberger. How (and
why) developers use the dynamic features
of programming languages: the case of

[Han10]

[HCU91]

[HHO09]

[HKR*14]

[KBR14]

[Lan92]

[LSS*15]

[MBGN16]

Smalltalk. Empirical Software Engineer-
g, 2013.

Stefan Hanenberg. An experiment about
static and dynamic type systems: Doubts
about the positive impact of static type
systems on development time. SIGPLAN
Not., 45(10):22-35, October 2010.

Urs Holzle, Craig Chambers, and David
Ungar. Ecoop’91l european conference
on object-oriented programming: Geneva,
switzerland, july 15-19, 1991 proceedings.
In Proceedings of the European Conference
on Object-Oriented Programming, pages
21-38, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg.

Alex Holkner and James Harland. Eval-
uating the dynamic behaviour of Python
applications. In Proceedings of the Thirty-
Second Australasian Conference on Com-
puter Science-Volume 91, pages 19-28.
Australian Computer Society, Inc., 2009.

Stefan Hanenberg, Sebastian Klein-
schmager, Romain Robbes, Eric Tanter,
and Andreas Stefik. An empirical study
on the impact of static typing on soft-
ware maintainability. Empirical Software
Engineering, 19(5):1335-1382, 2014.

Juraj Kubelka, Alexandre Bergel, and Ro-
main Robbes. Asking and answering ques-
tions during a programming change task in
the Pharo language. In Proceedings of the
5th Workshop on FEvaluation and Usabil-
ity of Programming Languages and Tools,
PLATEAU 14, pages 1-11, New York,
NY, USA, 2014. ACM.

William Landi. Undecidability of static
analysis. ACM Lett. Program. Lang. Syst.,
1(4):323-337, December 1992.

Benjamin Livshits, Manu Sridharan, Yan-
nis Smaragdakis, Ondfej Lhoték, J. Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z.
Guyer, Uday P. Khedker, Anders Mgller,
and Dimitrios Vardoulakis. In defense of
soundiness: A manifesto. Commun. ACM,
58(2):44-46, January 2015.

Nevena Milojkovi¢, Clément Béra, Mo-
hammad Ghafari, and Oscar Nierstrasz.
Inferring types by mining class usage fre-
quency from inline caches. In Proceedings
of International Workshop on Smalltalk

[MGN17]

[MHR*+12]

[MN16]

[PMW09]

[PTPO7]

[RLBV10]

[SH14]

[SMDV08]

Technologies (IWST 2016), pages 6:1—
6:11, 2016.

Nevena Milojkovié, Mohammad Ghafari,
and Oscar Nierstrasz. Exploiting type
hints in method argument names to im-
prove lightweight type inference. In 25th
IEEE International Conference on Pro-
gram Comprehension, 2017.

Clemens Mayer, Stefan Hanenberg, Ro-
main Robbes, Eric Tanter, and Andreas
Stefik. An empirical study of the influence
of static type systems on the usability of
undocumented software. SIGPLAN Not.,
47(10):683-702, October 2012.

Nevena Milojkovi¢ and Oscar Nierstrasz.
Exploring cheap type inference heuris-
tics in dynamically typed languages. In
Proceedings of the 2016 ACM Interna-
tional Symposium on New Ideas, New
Paradigms, and Reflections on Program-
ming and Software, Onward! 2016, pages
43-56, New York, NY, USA, 2016. ACM.

Frédéric Pluquet, Antoine Marot, and
Roel Wuyts. Fast type reconstruction
for dynamically typed programming lan-
guages. In DLS ’09: Proceedings of the 5th
Symposium on Dynamic languages, pages
69-78, New York, NY, USA, 2009. ACM.

Guillaume Pothier, Eric Tanter, and José
Piquer. Scalable omniscient debugging.
Proceedings of the 22nd Annual SCM
SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Ap-
plications (OOPSLA’07), 42(10):535-552,
2007.

Gregor Richards, Sylvain Lebresne, Brian
Burg, and Jan Vitek. An analysis of the
dynamic behavior of JavaScript programs.
SIGPLAN Not., 45(6):1-12, June 2010.

Samuel Spiza and Stefan Hanenberg. Type
names without static type checking al-
ready improve the usability of APIs (as
long as the type names are correct): An
empirical study. In Proceedings of the 15th
International Conference on Modularity,
MODULARITY ’14, pages 99-108, New
York, NY, USA, 2014. ACM.

Jonathan Sillito, Gail C. Murphy, and
Kris De Volder. Asking and answering
questions during a programming change

[Sus97]

[Zan13]

task. IEEE Trans. Softw. Eng., 34:434—
451, July 2008.

Horwitz Susan. Precise flow-insensitive
may-alias analysis is NP-hard. ACM
Trans. Program. Lang. Syst., 19(1):1-6,
January 1997.

Matt Zandstra. PHP Objects, Patterns,
and Practice. Apress, Berkely, CA, USA,
4th edition, 2013.

