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Abstract

 

Software is not just difficult to develop, but it is even more difficult to maintain in the face of changing require-
ments. The complexity of software evolution can, however, be significantly reduced if we manage to separate the
stable artifacts (the “components”) from their configuration (the “scripts”). We have proposed a simple, unify-
ing framework of forms, agents, and channels for modelling components and scripts, and we have developed an
experimental composition language, called Piccola, based on this framework, that supports the specification of
applications as flexible compositions of stable components. In this paper we show how Piccola can be used to
reduce the complexity of software evolution through the specification and use of an appropriate compositional
style, and we illustrate the approach through a non-trivial example of mixin layer composition. 
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1.  Introduction

 

As software engineers, we separate concerns in order to
reduce the complexity of designing, constructing and main-
taining large software systems. Some complexity is inherent
in the requirements of large software systems, but, we argue,

 

the worst forms of complexity arise from software evolution

 

.
Tangled code poses a problem when that code needs to be
modified or extended. This, however, will occur for any in-
teresting piece of software! As a consequence, we suggest
that the biggest gains are to be achieved by concentrating on

 

reducing the complexity of software change

 

. 

In fact, we see that the tools and techniques that achieve
the biggest gains in productivity address precisely this issue:
very high-level languages, software components, and fourth
generation development environments raise the level of ab-
straction by 

 

separating what is stable from what is not

 

, and
thereby make it easier to introduce changes. We propose,
therefore:

Applications = Components + Scripts

as a guiding principle to achieve flexible software. 

 

Com-
ponents

 

 wrap up provided (and required) services behind a
standard interface, and generally represent the 

 

stable

 

 parts
of applications. 

 

Scripts

 

 plug components together, and rep-
resent the 

 

flexible

 

 parts of applications. 

The scriptable components paradigm additionally as-
sumes that 

 

components have been designed to be plugged to-
gether

 

, according to a particular “compositional style”. A
compositional style defines components and how they can
be composed into larger units using connectors. Composi-
tion rules constrain valid compositions. (We use the term
“compositional style” here rather than the more familiar
term “architectural style” [24] for the simple reason that not
all compositions are at the level of architecture.) Further-
more, scripts may make use of special connectors to plug

components together, namely 

 

coordination abstractions

 

 to
mediate the connections between components, and 

 

glue ab-
stractions

 

 to mediate between components whose plugs do
not match [23].

To support this paradigm, we have developed Piccola, a
small language for specifying components, connectors and
scripts [1][4] corresponding to different compositional
styles. As such, the kinds of abstraction mechanisms re-
quired by Piccola are somewhat different from those needed
for a general-purpose language. In order to have the simplest
possible framework to define compositional styles, we
choose a small set of primitives that unify various concepts:

•

 

Forms

 

 embody 

 

structure

 

. Forms are immutable records
that can be polymorphically extended with additional
bindings (yielding a new form). Forms unify 

 

objects

 

,

 

keyword-based arguments

 

 and 

 

namespaces

 

. 

•

 

Agents

 

 embody 

 

behaviour

 

. Agents are concurrent, com-
municating entities whose behaviour is specified by a
script. Agents implement the connections between com-
ponents. Agents unify 

 

concurrency

 

 and 

 

composition

 

. 

•

 

Channels

 

 embody 

 

state

 

. Channels are the mailboxes
that agents use to communicate. They unify 

 

synchroni-
zation

 

 and 

 

communication

 

.

In section 2, we review the nature of software evolution,
and argue that software systems that evolve gracefully con-
form to well-defined compositional styles. Next, in section
3, we present Piccola, a composition language designed to
support a range of compositional styles. In section 4 we
present a more complex example from the literature, of 

 

mix-
in layers

 

 represented as a compositional style in Piccola. We
conclude in sections 5 and 6 with remarks about ongoing and
future work.
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2.  The Nature of Software Evolution

 

All successful software systems are doomed to either
change [16] or quickly become obsolete. The reasons these
systems are asked to change may vary, but the technical de-
tails of how changes are implemented tend to be based on a
battery of well-known techniques. Furthermore, systems
that evolve gracefully typically are designed according to a

 

compositional style

 

 that cleanly separates the 

 

stable

 

 soft-
ware entities (which we will call 

 

components

 

) from the more

 

flexible

 

 specification of their configuration (which we will
call 

 

scripts

 

). In such systems, evolution is ideally achieved
by either 

 

replacing

 

 components (i.e., 

 

intra-

 

component evo-
lution), or by 

 

reconfiguring

 

 them (i.e. 

 

inter-

 

component evo-
lution).

Of course, things are not always so neat, so it would be
helpful to have some language-based support that makes it
easier to build software systems that adhere to this separa-
tion into components and scripts. In this section we first re-
view some typical examples of evolving software and then
establish some requirements for supporting compositional
styles.

 

2.1  Evolution and separation of concerns

 

Let us consider some of the most common changes made
to evolving software systems, and see what factors influence
the ease with which the changes can be implemented:

•

 

Change in business logic.

 

 New functionality may be
added, existing functionality modified or reconfigured,
or new policies may be put into place.

•

 

Change in platform.

 

 The operating system, database,
user interface, standard libraries or even programming
language may change.

•

 

Change in clients.

 

 The system may need to offer its
services to new, or different kinds of clients, or may
need to be integrated with other new or existing sys-
tems.

When applying such modifications to existing software,
the change often cannot be localized. This leads to “tangled”
(i.e., strongly coupled) or “scattered” (i.e., weakly cohesive)
code. Evolving such code becomes more and more difficult.
The solution, very broadly, is to factor out the tangled as-
pects in such a way that they can be easily re-composed in a
more flexible way. Factoring out aspects can be done in a
large number of different ways, however. Let us consider a
few typical examples:

•

 

Multi-language support for user interfaces.

 

 Successful
software designed for a single target language may have
to be adapted to support different user languages. The
user dialogues are tangled with all of the user interface
code. 

Two typical approaches are to either (i) 

 

generate

 

 the UI
code, parameterized by the target language, or (ii) 

 

dele-
gate

 

 all dialogues to language-specific dialogue manag-
ers. The former technique is static, whereas the latter
supports dynamically swapping languages. In both cas-

es stable functionality is encapsulated behind an inter-
face that allows it to be easily reconfigured, whether
statically or dynamically. A new language can be sup-
ported by providing a new language component.

•

 

GUI look and feel.

 

 Multi-platform applications are of-
ten required to support the look and feel of the host plat-
form. The look and feel can be considered a 

 

policy

 

which must be separated from the GUI mechanisms de-
livered by an abstract interface. Depending on the im-
plementation technique, the policy may be statically or
dynamically specified. 

Factoring out the look and feel separates GUI elements
(frame, menus, modal dialogues etc.) from their con-
crete representation for a window manager. Here, the
GUI logic in term of frames, menus and dialogues is sta-
ble, but the concrete representation varies. The applica-
tion uses context dependent services to create frames,
add and specify menus items, or invoke user dialogues.
A separation defines a user interface model that defines
the core operations as platform services. 

•

 

Compiler extensions.

 

 Extensions to a programming lan-
guage or to the tools that support the language often en-
tail changes and extensions to the way in which syntac-
tic entities are represented. These changes may 

 

cross
cut

 

 different parts of the compiler (i.e., those that parse
and generate symbolic representations, and those that
process them). In such cases, inheritance and generics
are of limited help because they are purely static tech-
niques. 

Programming languages that most successfully support
new extensions typically do so by providing a stable
core implementation that can be extended by means of
a 

 

meta-object protocol

 

 (MOP) [12]. Either static (com-
pile-time) or run-time reflection allows the behaviour of
the language to be adapted.

•

 

Concurrency.

 

 A functioning sequential system cannot
always be easily converted to work in a concurrent con-
text. One solution is to wrap the whole system up as a
monitor, but sometimes more fine-grained concurrency
control is required.

Most programming languages, unfortunately are not ex-
pressive enough to allow synchronization or coordina-
tion abstractions to be separately specified from the
synchronized or coordinated entities. In Java, for exam-
ple, synchronization code is always tangled with com-
putational code. In order to wrap an existing Java class
with, for example, a readers/writers mutual exclusion
policy, one is forced to write a lot of boilerplate code.

 

Higher-order wrappers

 

, some form of 

 

reflection

 

 (intro-
spection, as provided by Java’s “reflection” package, is
typically not enough), or a 

 

meta-object protocol

 

 are
techniques that help to factor out such aspects. 

•

 

Heterogeneous systems policies.

 

 There is a long list of
aspects that arise in heterogeneous and distributed soft-
ware systems that must be factored out as 

 

policies

 

: per-
sistence, transactions and security are three common
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examples [13]. Depending on whether policies are rei-
fied as run-time entities or not, they may be either stat-
ically or dynamically reconfigured.

From these few examples, it should be clear that graceful
software evolution depends on the ability to cleanly separate
stable software components from the “scripts” that config-
ure them, i.e., the ability to factor application software ac-
cording to a particular compositional style. Aside from the
methodological issue of how to decide what is a good style
for a particular application domain, the ability to express
such a factoring at all depends on having the right abstrac-
tion mechanisms available in the host language.

 

2.2  Requirements for supporting compositional 
styles

 

Let us establish some of the fundamental requirements
necessary for expressing a range of different compositional
styles. Consider figure 1, which illustrates the structure of a
simplified application. The application consists of three
components and two connections. It uses some services pro-
vided by the platform. In a layered system, we can draw
these services into a layer below the application. The export-
ed or provided services can be used by the layer above,
which might be responsible for user interaction. The figure
suggests three possible hooks where changes can come in:
Changes in business logic correspond to extending the ap-
plication. We can implement them by adding or replacing
components or connections. Changes in platform can be ex-
pressed by inserting a new layer between the application and
the used services. Changes in clients can be captured by add-
ing a layer on top of the application. 

It is important to keep in mind that a component itself
may be a composition of (more low level) components. 

We establish the following requirements: 

1.

 

Platform dependencies must be explicit and config-
urable. 

 

This means that during evolution we can in-
sert a layer below the application and change the be-
haviour of the platform services. Observe that most
programming languages provide primitives which
cannot be adapted, e.g. the throws statement in Java
or constructor calls in C++. A common way to
achieve this requirement is to use factory methods
instead of class constructors in class based languag-
es like Java. 

2.

 

Connections between components must be explicit
and configurable.

 

 Providing connectors as syntactic

elements makes the configuration of an application
(or, at a higher level, its architecture [9][19][24]) ex-
plicit and therefore scriptable.

3.

 

General, higher-order abstraction must be provid-
ed. 

 

In order to define arbitrary connectors, it must be
possible to abstract virtually everything, including
interaction patterns. In most OO languages, on the
contrary, one cannot abstract the set of methods
without use of reflection. Scripting languages like
Perl and Python provide an 

 

eval

 

 function to evaluate
a string. This allows the programmer to do meta-
programming, but normally at the cost of any type
safety. 

4.

 

Compositions of components can also be encapsu-
lated as components. 

 

In this way, we can develop a
hierarchy of component types. 

5.

 

The object model must be simple and open. 

 

It must
be possible to use and implement different composi-
tional styles. A rich object model will lead to com-
plex feature interaction between built-in features
and those of the compositional styles (consider in-
teraction of inheritance and synchronization [15]).
Instead, we need to identify the “right” core con-
cepts to model composition in different ways.

In the next section, we will show how forms, agents, and
channels provide a clean and simple answer to these require-
ments. 

 

3.  Supporting Compositional Styles

 

Piccola is designed to be a 

 

composition language

 

, rather
than a general purpose programming language. Whereas
many existing languages are very good at implementing
software components, they tend not too offer very good ab-
stractions for plugging components together, or even for de-
scribing the nature of the plugs (i.e., connectors). Piccola is
built on top of a minimal computational model of 

 

agents

 

,

 

channels

 

 and 

 

forms

 

. The language provides higher-level and
higher-order abstractions on top of this foundation that
make it relatively easy to define various compositional
styles and scripts that conform to these styles. In this section
we give an overview of the layered architecture of Piccola it-
self, we present a brief example of mixins in Piccola to serve
as a introduction to the syntax and features of the language,
and we give an overview how Piccola supports different
compositional styles.

 

3.1  Piccola Layers

 

The Piccola framework is presented in table 1. At the low-
est level, components can be 

 

wired

 

 together using the con-
cepts of agents, channels and forms. An 

 

agent

 

 represents
behaviour (thus a component). Interaction between compo-
nents happens along 

 

channels

 

 (thus connectors). The values
exchanged between agents must have a rich enough struc-
ture to express objects and component interfaces. 

 

Forms

 

 are
extensible records, mapping from labels to other forms or
channels. The interface for a component is expressed by a

Figure 1   Hooks for changes

used platform services 

exported application services 

extend application 
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form which binds its connection points. This model is for-
mally described by the 

 

π

 

L

 

-calculus [18]. Projection is used
to look-up values bound by a label in a form. Form composi-
tion ensures that we can arbitrarily compose components
and identify the sub-parts by projection.

The next level (see table 1) defines the Piccola language.
Piccola hides the operators of the 

 

π

 

L

 

-calculus and models
everything in terms of 

 

forms

 

 and 

 

services

 

. Services are mod-
elled in the calculus by an encoding of call-by-value func-
tions in the 

 

π

 

-calculus [21]. In Piccola, 

 

everything is a form

 

,
including services. A service can be thought of as a form
with single “call” label, just as a function object in C++ is an
object with an 

 

operator()

 

 member function.

As we shall see, Piccola is a very small language, with a
minimal syntax and very few built-in features. Piccola in-
cludes a set of core libraries to support basic control struc-
tures, exception handling and a simple object model.

On top of the core libraries, one may define various com-
positional styles that abstract away from the low-level wir-
ing of the 

 

π

 

L

 

-calculus, and provide instead higher level
plugs, or connectors corresponding to a problem domain.

Finally, one may use these styles to plug together compo-
nents.

Piccola addresses the requirements listed in the previous
section as follows:

1.

 

Forms are used to represent the current context.

 

 A
form is a namespace holding the names of a set of
services. Platform dependencies can thus be explic-
itly represented and manipulated or overridden. Pic-
cola’s own basic services are similarly available.
For example, the operator to create a new channel is
accessible as a service 

 

newChannel

 

 in the initial root
context. Programmers can redefine 

 

newChannel

 

 if
necessary. 

2.

 

Connectors can be implemented by user defined in-
fix operators.

 

 For instance the form expression
“

 

A ** B

 

”, where 

 

A

 

 and 

 

B

 

 are forms, is interpreted as

 

A._**_(B)

 

 when 

 

A

 

 contains such an operator. The
projection 

 

A._**_

 

 is a service which is invoked with

 

B

 

. Otherwise, the definition of 

 

** is looked up in the
root context, and the expression corresponds to
root._**_(A)(B). The _**_ label binds a curried
function in the root context. 

3. Everything is a form, including abstractions over
forms. Consequently Piccola offers a high level of

abstraction power. It is important to note that also
both the static and dynamic contexts are accessible
as forms [3]. 

4. The result of a form expression is also a form. Since
forms represent components, and form expressions
compose components, the result of a composition is
also a form. Within a suitably defined compositional
style, this form will also be a component. 

5. Forms provide a primitive object model. Richer
models can be built on top of forms (such as that
provided in the core library). User-defined operators
encourage programmers to program in terms of
plugging components. 

3.2  Objects and Mixins in Piccola

The following example illustrates how objects and mix-
ins can be implemented in Piccola using forms, and also
serves as a brief introduction to the language and its features.
The following service newBlackboard specifies a factory
for blackboard objects:

newBlackboard():
’channel = newChannel()# creates a local channel
write = channel.send # exported write service
remove = channel.receive
read(): # defines the read service:
’X = remove() # remove contents X
’write(X) # write them back on the channel
X # and return them

newBlackboard is an abstraction which, when evaluated,
returns a form with bindings for write, remove and read.
These will represent the services provided by the new black-
board. Note that indentation is used to indicate the nesting
level of forms.

The binding for channel is only available locally within
the definition of newBlackboard since it is quoted. Instead
of being exported as part of the return value, the channel

binding only extends the local root context. Observe that
the binding write = channel.send is exported in addition
to being used within the body of read. 

Note that, whereas newBlackboard, write, remove and
read are all services (i.e., abstractions), channel is an ordi-
nary value.

We can factor out the definition of the read method and
put it into a mixin. The addRead service extends an argument
form B with a read service:

addRead(B):
B # return the form B ...
read(): # ... extended with the read service
’X = B.remove()
’B.write(X)
X

Observe that read uses the remove and write services
provided by the form B. We can now apply the addRead mix-
in to any form that provides at least remove and write serv-
ices:

Table 1: Piccola Layers

Applications components + scripts

Compositional 
styles

streams, events, GUI composition, 
...

Core libraries
basic coordination abstractions, 
basic object model

Piccola
services, operator syntax, name-
spaces, built-in types

πL-calculus agents, channels, forms
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ch = newChannel()
b = addRead(write = ch.send, remove = ch.receive)

The addRead mixin can also be applied to a form that pro-
vides more than just the required services:

eb = addRead # invoke addRead
write = channel.send
remove = channel.receive
asString(): “a Blackboard”

The final result will also provide the asString service.
Note that, in this case, the argument to addRead is a form de-
fined on multiple indented lines following the invocation.

3.3  Compositional Styles

We will now survey some of the typical compositional
styles and techniques that are used to make software more
flexible and adaptable, as we will see how Piccola supports
them. Note that these styles are not orthogonal, it is for in-
stance possible to see mixin layers as a kind of component
algebra, as we will illustrate in section 4. 

Component algebras. A component algebra is an algebra
in which the objects are components, and the operators are
connectors. Composing two or more components always
yields a new component. A script, then, is just an expression
that composes components, where each subexpression is
also a component [1]. A component algebra is typically
many-sorted, that is, several different kinds of components
will be supported. The best-known example of a component
algebra is pipes and filters. The components are sources, fil-
ters and sinks, and the principle operator is the pipe. A
source composed with a filter yields a source, and a filter
composed with a filter is again a filter. We claim that most
styles can be expressed as component algebras
[1][4][5][23].

In Piccola, component services are encapsulated as
forms. Different sorts of components are represented as
forms with different sets of labels. Connectors are user de-
fined operators realized either as abstractions available in
the local context, or as special services of a component. A
script composes forms, and yields a new form.

Higher-order wrappers. As we saw in section 2, many
kinds of extensions can be factored out as simple wrappers,
adding “before and after” behaviour. Since all values includ-
ing abstractions are forms in Piccola, abstractions are high-
er-order, making it easy to specify higher-order wrappers.
Furthermore, abstractions are monadic, always taking a sin-
gle form as an argument. This makes it possible to define ge-
neric wrappers that do not depend on the number of
arguments. Since namespaces are represented explicitly as
forms we can also modify the context for wrapped functions,
for instance to change the policy (see implicit policies be-
low). 

In functional programming languages such as Haskell,
the required services of a component are passed as argu-
ments or they can be packed into monads [29]. Monads are

used to encapsulate state within a purely functional pro-
gram. 

Glue abstractions. Many glue abstractions can be ex-
pressed as simple wrappers. Glue abstractions can wrap
known services or add new ones while leaving other undis-
turbed [17][22].

Mixins and metaobjects. Higher-order wrappers make it
possible to define mixins and other composition mecha-
nisms for building objects. Piccola provides only forms as
“primitive objects”, but one can define a variety of other ob-
ject models on top of forms [22]. One of Piccola’s few key-
words is def, used to define a fixpoint, but it is also possible
to delay binding of self, which makes object models with ex-
plicit metaobjects very attractive. Metaobjects enable run-
time reflection [12].

Mixin Layers. Whereas a single mixin changes the behav-
iour of a single class, a mixin layer changes the behaviour of
several classes. In design, we often implement a role with a
mixin. Thus a collaboration can be implemented by a mixin
layer. Applying mixin layers to a set of classes then adds a
collaboration to the application that consists of the classes
[8]. We have already seen how mixins are implemented as
higher-order wrappers in Piccola. However, in section 4, we
will present mixin layers in more detail. 

Coordination abstractions. Piccola provides primitives to
instantiate concurrent agents or to explicitly create new
channels within scripts. The formal semantics of Piccola is
in terms of a process calculus, so concurrency is built-in, not
added-on [17][22]. This makes it easy to define coordination
abstractions as abstractions over scripts. Furthermore, coor-
dination can be seen as a special case of scripting, and many
coordination styles can be naturally expressed as component
algebras [5].

Implicit policies. Forms are also used in Piccola to repre-
sent namespaces [3]. Whenever a script is evaluated, it has
access to two special namespaces, representing respectively
the root context and the dynamic context. The root context
defines the global environment, but can be specialized to de-
fine a “sandbox” for an untrusted agent, or to override or ex-
tend global services (like print). The dynamic context is the
environment provided by a client of an agent, and can be
used to define implicit policies. This mechanism can be
used, for example, to define an exception handling mecha-
nism for Piccola [1][3] (the handler is always passed in the
dynamic context). The same mechanisms are used more
generally to optionally override any kind of default policy.

Aspect-Oriented Programming. Aspects cross cut a sys-
tem and cannot be factored out using object-oriented design
techniques [11]. They are implemented by associating be-
haviour with certain events, for instance sending a message
to instances of different classes. Higher-order wrappers can
express precisely this information. They can decorate class-
es or object with specific behaviour. For instance, adding a
reader-writer policy to a non-synchronized object wraps the
writer methods and the reader methods uniformly [2]. 
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Default arguments. Since abstractions are monadic, taking
a single form as an argument, and forms can be polymorphi-
cally extended, it is straightforward to define default argu-
ments for services. (An agent just appends the received
argument to the defaults.) This allows the programmer to ex-
tend services with new options without breaking existing
clients.

4.  An example: Mixin layer composition

In this section, we give a concrete example of mixin layer
composition [27] implemented as a compositional style in
Piccola. Mixin layers are (in our view) a less well known and
non-trivial composition style. Implementing mixin layers
requires an object-oriented language that supports nested
classes and mixins. The language P++, for example, extends
C++ to support static and type-safe mixin layer composition
[25]. Implementing mixin layer composition in Piccola thus
serves to validate that Piccola is expressive enough to tackle
high-level composition abstractions. Finally, mixin layers
are a good candidate to illustrate component algebras, as
composed mixin layers are again mixin layers.

We present the graph traversal application proposed by
Holland [10]. This application defines different operations
on a undirected graph. VertexNumbering numbers the nodes
in a depth-first order. CycleChecking determines whether
the graph contains a cycle, and ConnectedRegions partitions
the nodes of the graph into connected regions.

Holland implemented the application based on a frame-
work. Later, Van Hilst et al. [28] reimplemented it using
roles and mixins. Smaragdakis finally used mixin layers to
implement the same application [26][27]. The three main
implementation classes are Graph, Vertex, and Workspace.
The graph class defines a container of vertices with the usual
graph properties. The nodes are stored as instances of the
class Vertex. The workspace class includes the specific part
of a traversal. For instance, the workspace object plays the
role WorkspaceNumber in the VertexNumbering application
to associate numbers to the nodes. This role specifies a slot
to store a current number and to assign and increment this
number each time a new node is visited during depth-first
traversal. We can implement such a role using a mixin. The
mixin adds the specific members and operations to its super-
class when composed. 

Similarly, a mixin adds the number slot to a vertex class.
In Piccola the mixin uses form extension to add a number
slot to any vertex:

addNumberSlot(V): # adds a slot to store the
V # number during traversal
number = newRefcell(0)

(A reference cell is essentially an initialized blackboard
extended with a non-destructive get service.)

It is now important to apply the addNumberSlot mixin to
a vertex class whenever we apply the vertexNumbering

mixin to a graph class. Otherwise, the numbering traversal
cannot store the numbers in the vertices. 

Smaragdakis and Batory use the GenVoca model [8] to
keep the different mixins applied to classes in sync. A Gen-
Voca component is a mixin layer. In essence, a mixin layer
encapsulates all the mixins necessary for a single collabora-
tion. For instance the mixin layer Number to implement the
VertexNumbering collaboration contains two mixins: one to
add the vertex numbering during traversal and one to add the
number to a vertex. The advantage of using mixin layers in-
stead of isolated mixins is obvious. Design or change ele-
ments in the application are encapsulated and implemented
in a single component. 

In Piccola, nested forms can collect all the mixins of one
layer. All we need is assign names to the individual mixins in
order to compose them correctly. The numberNodes layer is:

numberNodes =
asVertex(V):
V
number = newRefcell(0)

asGraph(G):
G
visit():
n = newCounter()
G.each(do(V): V.number.set(n.inc()))

The two mixins asVertex (which was addNumberSlot
above) and asGraph are expected to modify respectively a
vertex and graph class to add the numbering operation. We
do not need a special Workspace class, since we can, as in
Smalltalk, pass first-class blocks to an iterator. In Piccola,
we usually represent blocks as a form with a do service. The
vertices are numbered when we call visit on a graph. Ob-
serve that visit iterates over the vertices and sets the
number (V.number). However, it is guaranteed that
V.number will be present, since the asVertex mixin estab-
lishes exactly this. The method each for the graph is defined
in another layer (see below). 

Next, we need to implement a composition operator **

such that “A ** B” is a composite mixin layer, provided A

and B are mixin layers. Using higher-order wrappers, we can
implement ** as follows:

’Defaults = (asVertex(X):X, asGraph(X): X)
_**_(A)(B):
’A = (Defaults, A) # set defaults
’B = (Defaults, B)
asVertex(X): B.asVertex(A.asVertex(X))
asGraph(X): B.asGraph(A.asGraph(X))

The form Defaults defines default values for the asVer-

tex and asGraph services. (The defaults are simply the
identity function.) Next, we make use of polymorphic form
extension to concatenate the default bindings and those pro-
vided by A or B, respectively. Note that only if A or B provide
their own bindings for asVertex and asGraph will these
override the default values. (Later bindings override earlier
ones.) Observe that the result of A ** B will necessarily con-
tain the mixins asVertex and asGraph as expected.

The ** operator is hard-coded to compose only mixin
layers that define asVertex and asGraph services. It is also
possible to define a more generic connector that will iterate
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over all the services defined in two mixin layers, or even to
define a generator that will produce connector s to compose
specific sets of services.

A concrete application may now require that we need
numbering and a test to find cycles in our graphs. Thus we
can script two services to create new vertices and corre-
sponding graphs:

layers = graph ** dft ** numberNodes ** cycle
newGraph(): layers.asGraph()
asVertex(): layers.asVertex()
g = newGraph()
...

This application must define a graph g with methods vis-
it (from the numberNodes layer) and hasCycle (from the
layer cycle). The base layer graph defines basic graph oper-
ations to add vertices. The layer dft adds the method each
to the graph to visit all nodes by depth-first-traversal. Note
that the numberNodes layer depends on the each method in
the graph to work correctly. 

In summary, we have successfully separated the stable
parts (the mixins) from the evolving part (the composing ex-
pression, i.e. the script). Let us consider some possible
changes to our application:

We might want to apply a synchronization policy to the
graph. One possibility is to make all the methods of the
graph into a monitor. Since all the methods are services, we
can iterate all of them and wrap the methods. This is ex-
pressed by the layer exclusive:

layers = graph ** dft ** numberNodes ** cycle ** exclusive

We can change the depth-first traversal to a breadth-first
traversal by replacing a component:

layers = graph ** bft ** numberNodes ** cycle

Finally, we can adapt a layer which (by chance) does not
follow the naming conventions by writing some glue code:

myLayer = 
asGraph = legacyLayer.addFancyFeatureToGraph
asVertex = legacyLayer.addFancyFeatureToNode

In case there are many components that need to be adapt-
ed in the same way, we can abstract from the glue code to ob-
tain a general-purpose glue abstraction:

legacyAdaptor(legacyLayer):
asGraph = legacyLayer.addFancyFeatureToGraph
asVertex = legacyLayer.addFancyFeatureToNode

myLayer = legacyAdaptor(myLegacyLayer)

5.  Discussion

As explained elsewhere [4], Piccola lies somewhere be-
tween a scripting language, like Python or TCL, an architec-
tural description language (ADL), like Wright [6] or Rapide
[14], a coordination language, like Darwin [19] or Manifold
[7], and a glue language, like Smalltalk or C.

Scripting languages and glue languages tend not to have
any formal semantics, and do not especially address concur-
rency or coordination. Architectural description languages

are typically more formal, in order to support reasoning
about architectural styles, but they are mainly intended as
specification languages, not to be used as run-time configu-
ration languages. Coordination languages address concur-
rency and distribution, and they often have a formal basis as
well, but they tend to be weak in abstraction, making it diffi-
cult to define higher-level coordination abstraction, or to
deal with compositional issues not especially related to co-
ordination.

Piccola has borrowed ideas from many different sources.
Its innovation, we feel, lies mainly in the way it brings a few,
simple concepts together that, in combination, support the
paradigm, “Applications = Components + Scripts”.

A formal semantics in terms of process calculus exists,
but this is too low-level to support reasoning. We would like
to reason about applications at the level of their composi-
tion. That is, if we know that components conforming to a
particular compositional style have certain properties, then
valid compositions will also have certain interesting proper-
ties.

A type system has been developed for Piccola [17], but it
too is at the level of the process calculus. We would like to
reason about higher-level types in terms of components and
their composition. Ideally, we might like a type system that
can express not only required and provided services, but
even some more detailed dependencies [20].

Sometimes it is necessary to migrate from one composi-
tional style to another. An example may be the transition of
one component implementing some business rules in a batch
job. We now want to evolve the centralized batch processing
to pipe architecture to enhance parallelism. Such a change
will require to change all subcomponents to conform to the
new style. However, we believe that it should be possible to
automate this process, for instance by providing wrappers. 

Piccola is still an experimental language. There currently
exist implementations on three different platforms (Java,
Squeak and Delphi), each with its own syntax. A preferred
syntax is emerging, but there are still some open questions
concerning usability and expressiveness.

Piccola is available from the SCG web site, either as an
applet, or as downloadable Java or Squeak executables. The
implementations are stable and efficient enough to run non-
trivial examples (the JPiccola environment is scripted in Pic-
cola itself), but no large experiments have been undertaken
yet. Language bindings to Squeak and Java are currently ad
hoc. We are now experimenting with using Piccola as a bean
composition language, and expect this work to help in defin-
ing a standard mapping to Java and other languages.

Presently Piccola can communicate with remote ma-
chines only through the host language (Java or Squeak). We
are beginning to work on distributed Piccola, which will
support the specification of compositional styles for distrib-
uted applications.
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6.  Concluding remarks

In previous papers, we have presented the conceptual
framework of components, scripts and glue [23], the formal
underpinnings of Piccola in terms of the πL-calculus [4]
[18], and a tour of the Piccola language features [1]. We have
demonstrated how Piccola forms can model different no-
tions of explicit namespaces [3], we have shown how differ-
ent forms of coordination can be expressed as compositional
styles [5], and we have argued that aspect-oriented program-
ming can be expressed as feature mixins in Piccola [2].

In this paper we have argued that software systems can
evolve gracefully only if they are designed in such a way as
to cleanly separate stable and flexible aspects into compo-
nents and scripts. Furthermore, this separation can only be
achieved if the right abstraction mechanisms are available in
the host language. Piccola is designed to be a composition
language, good at expressing different kinds of composi-
tional styles, each of which may be suitable for composing
components for different application domains.

We are still experimenting with applications of Piccola.
Although we believe that Piccola provides the right abstrac-
tions needed to express applications as flexible composi-
tions of software components, we still have to prove that
these techniques can succeed in separating concerns for
complex domains where other approaches have failed.
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