

Agents Everywhere, All the Time

1

Oscar Nierstrasz, Jean-Guy Schneider, Franz Achermann

Software Composition Group, IAM, Universität Bern
Neubrückstrasse 10, CH-3012 Berne, Switzerland
Tel: +41 (31) 631.4618. Fax: +41 (31) 631.3965.

{oscar,schneidr,acherman}@iam.unibe.ch

.

www.iam.unibe.ch/~scg

.

1. ECOOP 2000 Workshops #5 (Component-Oriented Programming) and #22 (Pervasive Component Systems).

Abstract

Moore’s Law is pushing us inevitably towards a world of
pervasive, wireless, spontaneously networked computing
devices. Whatever these devices do, they will have to talk to
and negotiate with one another, and so software agents will
have to represent them. Whereas conventional services on
intranets will continue to be distributed using established
middleware standards, internet services are being built on
top of http, wap or other protocols, and exchange informa-
tion in HTML, XML, and just about anything that can be
wrapped as a MIME type or streamed. This situation leads
us to three software problems: (i) How can we simplify the
task of programming these agents? (i.e., Java is not enough),
(ii) How can agents interact and interoperate in an open,
evolving network environment? (i.e., XML is not enough),
(iii) How can we reason about the services that agents pro-
vide and use? (i.e., IDL is not enough). We discuss these
questions in the context of our work on Piccola, a small com-
position language, and outline ongoing and further re-
search.

1. Why Agents?

Plummeting hardware costs, advances in miniaturization,
durability, reliability, network technology, and battery life
are enabling a world of pervasive computing. Although no
one can reliably foresee even a fraction of the new applica-
tions for this technology, it is already clear that more and
more computing power will appear in wireless, mobile de-
vices, and that these devices will have to spontaneously in-
teract in constantly changing environments.

As a consequence, we can expect to see the computing
world divide into two rather different environments. The
first is the conventional world of databases, servers, applica-
tions, and statically networked computers. Software servic-
es and components will continue to be implemented with
conventional technology, and software systems will be com-
posed as they are today. The second world will be a wireless

one of spontaneous networking and constantly changing in-
ternet services. The clients of these services will include not
only humans, but also other software systems, as service
providers strive to reach the broadest customer base possi-
ble. These worlds will increasingly require agents to

• represent both human and software customers and pro-
viders (e.g., meta search engines),

• wrap legacy software systems (e.g., database systems),

• represent roaming devices in changing environments
(e.g., mobile phones),

• encapsulate coordination protocols (e.g., Jini [4]),

• coordinate other agents (e.g., distributed agenda man-
agement).

We will not worry too much about developing a precise
definition of software “agents”, or even about comparisons
with older definitions, except to say that they are software
programs that can act autonomously on behalf of a human,
an organization, or another software or hardware system
[11]. We do not require that agents be mobile or intelligent.
On the other hand, we are interested in the characteristics
that these agents will exhibit:

• agents represent and wrap services for potentially re-
mote hardware or software systems,

• agents coordinate and manage multiple incoming or
outgoing requests,

• agents must adapt to changing network environments,

• agents may need to negotiate quality-of-service or other
non-functional properties with other agents.

The rest of this paper is organized as follows: in section 2,
we introduce important aspects related to the composition of
distributed agents. In section 3, the need for a data model
suitable for inter-agent communication and collaboration is
discussed. In section 4, we propose notions to support rea-
soning about agent systems in order to build reliable applica-
tions. Finally, in section 5, we summarize the main
observations and present directions for future research.

mailto:oscar@iam.unibe.ch,schneidr@iam.unibe.ch,acherman@iam.unibe.ch
http://www.iam.unibe.ch/~scg

2. Composing Agents

Programming concurrent and distributed applications is
not easy, so there is no reason to expect that programming
agents will be. We can expect, however, to take advantage of
some characteristics of agents to simplify the task.

As we have seen, we can expect agents to be mainly con-
cerned with wrapping, composing, and coordinating exist-
ing services, not with implementing new basic services.
Therefore, a language or tool for implementing agents
should concentrate on supporting high-level abstractions
that will simplify these tasks.

Java has been touted as the language of the internet, and it
provides many features that make it easier to develop inter-
net applications. Nevertheless, Java is still just a convention-
al programming language, better suited to implementing
components than to composing them [8]. Furthermore, Java
is not well-suited to defining abstractions which are not ob-
jects (such as coordination abstractions, generic wrappers,
and synchronization policies).

We have argued elsewhere that component-based soft-
ware development can be summarized as “Applications =
Components + Scripts” [1][3][14]. In this view, convention-
al programming languages will be used to implement basic
services and components, but a

composition language

 will
be more suitable for the task of composing, or “scripting”
components. Furthermore, a composition language must
pay special attention to the problems of “glue” (i.e., over-
coming compositional mismatch), coordination (i.e., coor-
dinating concurrent and distributed components and
requests), and expressing various architectural styles.

This last point is actually the key both to composing soft-
ware components and to composing agents. An “architectur-
al style” [16] formalizes the components, connectors and
composition rules for an application domain. In essence, an
architectural style allows you to raise the level of abstraction
from low-level “wiring” of component interfaces to compo-
sition using domain specific abstractions. Pipes and filters
are the classical example, but there are countless other do-
mains where architectural styles can help to raise compo-
nent composition to a more declarative level [5]. Consider,
for example, low-level wiring of events and actions as op-
posed to graphical composition of GUI widgets or rule-
based specifications of trigger conditions and actions.

Piccola is an experimental composition language that is
suitable to specify systems as compositions of agents. It is a
small language based on the notions of immutable

forms,

which encapsulate data and services,

agents,

 which encap-
sulate behaviour, and

channels,

 which are the media that
agents use to communicate forms. The formal semantics of
Piccola is based on the

π

L

-calculus, a process calculus in

which agents communicate forms (extensible records) rath-
er than tuples [10]. Forms are not only used exchange data in
agent communications, but also to model environments, ex-
tensible interfaces, components, and objects [15].

We have already demonstrated that Piccola is well-suited
to expressing various architectural styles [1], and that its
simple, uniform model allows it to be used to express vari-
ous composition and coordination abstractions, such as syn-
chronization policies, that are clumsy or impossible to
express in conventional object-oriented languages.

We plan future experiments to use Piccola for visualizing
agent systems and to build a composition environment on
top of Piccola. Furthermore, we are in the process of extend-
ing the run-time system to cope with real distributed appli-
cations.

3. Communicating with other Agents

Although Piccola is nice for wrapping, gluing, and com-
posing components in a closed environment, it still lacks the
reflective features that would be needed to use it to program
agents that could function effectively in a completely open,
spontaneously networked environment. We are currently in-
vestigating which lightweight reflective mechanisms are
needed to solve this problem.

In closed environments today, component interfaces are
typically specified with IDL or Java, and clients communi-
cate with them through CORBA, COM, or RMI. Internet
services, on the other hand, are specified as HTML forms,
return HTML, XML, or various MIME types, and clients
communicate with them through http, ftp, wap, or any of a
variety of other protocols.

It is clear that the world is moving towards XML as a me-
dium for exchanging models between software systems, so
we can expect that interoperable internet services will have
to talk XML. But XML is more syntax than semantics, and it
is not a full-fledged data model supporting a query language
and data manipulation language. With XML, we risk return-
ing to the days of hierarchical and network data models with
procedural navigation through databases rather than declar-
ative expression of views of data.

It is a fairly straightforward exercise to map XML to any
kind of object model, and the forms exchanged by Piccola
agents are no exception. Therefore, we imagine Piccola
agents communicating with external services by means of
XML. However, to query, manipulate, explore, and negoti-
ate with the outside world, agents would need a declarative
form data model.

Such a data model might resemble the relational model,
with data being stored in bags of forms rather than sets of tu-
ples (it is possible to adapt the operators of the relational al-

gebra to such a data model). The fundamental difference,
however, is that the relational model is founded on a

closed
world assumption,

whereas a data model for communicating
agents must be based on open systems. Agents must be pre-
pared to deal with new services and models for which they
have not been preprogrammed. Therefore, a form data mod-
el must support some simple reflective features that allow
agents to explore the schema to which a model conforms, or,
better yet, to easily wrap models to conform to different
schemas.

We are now exploring the definition of such a form data
model, and experimenting with simple mechanisms to que-
ry, view, adapt, and transform form-based models.

4. Reasoning about Agent Composition

It is notoriously difficult to reason about software, and
reasoning about open, concurrent, distributed agent soft-
ware will not be any easier. The need for reasoning, however,
will be even more acute, since agents will not be able to act
autonomously if they cannot give and receive specific serv-
ice guarantees.

Reasoning today is often limited to simple static type
checking, but even this level of guarantee cannot be easily
reconciled with an open agent world, since static type-
checking requires advance knowledge of interfaces, and
type inference typically requires global knowledge.

We can expect to move to a world in which “types” ex-
press other kinds of contracts than simple interface signa-
tures, and the checks will be performed as much at run-time
as at composition time. Therefore, we can see the need for:

Interfaces.

Agents, like the components they represent,
will provide and require interfaces, but run-time query-
ing will become more important. Furthermore, interfac-
es will have to be versioned and assigned unique iden-
tifiers (similar to the global unique identifiers of COM
[13], but perhaps these identifiers will be URLs), and
wrapping services may be required to automatically
adapt otherwise incompatible interfaces.

Quality of service.

Some simple forms of quality-of-serv-
ice negotiation are already commonplace in the domain
of internet multimedia streaming. As ever wider ranges
of devices and software agents become internet-aware,
we can expect not only bandwidth and latency, but also
other aspects of services, such as hard or soft real-time
constraints, or platform dependencies, will become ne-
gotiable depending on the capabilities available to the
client.

Protocols.

Many kinds of services require clients to obey a
simple kind of protocol, but flat interfaces tell us noth-
ing about non-uniform service availability [12]. Many

kinds of services require an initialization or authoriza-
tion protocol to be completed before other actions may
be performed. Furthermore, transaction services require
a commit or abort from the client. Although we can ex-
pect most protocols to be quite simple and fall into eas-
ily recognizable classes, they must still be explicitly
documented, statically checked, and dynamically vali-
dated.

Security & Authorization.

Much has been made of “sand-
box” techniques to protect servers from hostile agents,
but what about protecting the agents themselves?
Agents for roaming devices may easily find themselves
in hostile environments. Rather than relying on ad hoc
run-time methods to protect agents and their clients, it
should be possible to decorate agent implementation
code with explicit security assertions. Similar to proto-
cols, a combination of static and run-time checks would
be performed. It is unlikely that a single, internet-wide
security model would be appropriate, since security re-
quirements are known to vary considerably for different
application domains. Therefore, agents must be able to
adapt their security requirements to the capabilities pro-
vided by the environments they find themselves in.

Aliasing.

In a certain sense, agents

are

 aliases. Any situa-
tion where aliases cause problems in conventional soft-
ware systems (deadlock detection, garbage collection,
etc.) will certainly arise in agent systems as well. Tech-
niques like

islands

 [6] could well be reinterpreted from
the perspective of agents. Again, we can expect that ex-
plicit assertions will help to limit and reason about
aliasing.

Many important forms of reasoning can be reduced to
the question “Can I get there from here?” Not only rea-
soning about aliasing, but also about security rights and
capabilities or deadlock detection or prevention often
takes this form. One can imagine an agent language
with generic support for reasoning about reachability,
which can then be adapted to specific problem domains.

Cost and Ownership.

Reasoning about linear capabilities
and ownership is typically not directly supported by
programming languages, but must be programmed in an
idiomatic way [9]. Agents, however, will often be re-
sponsible for various kinds of finite resources (not just
money and credit, but also time, computing resources,
and other physical and virtual resources), and must be
able to reliably manage these resources, possibly in the
presence of unreliable networks. Again, explicit asser-
tions about transfer of ownership of linear capabilities
would be of immense help if supported by static and dy-
namic enforcement procedures [7].

This list is not intended to be exhaustive, but rather to il-
lustrate the need for “type systems” that allow us to express
contracts required and provided by agents that go beyond
simple interface signatures. These type systems should al-
low us to statically check the sanity of our agents, but will
typically also require some run-time support to validate that
advertised contracts are actually respected.

5. The Upshot

We claim that one of the key challenges in developing
component-based systems of the future will

not

 be program-
ming of individual components, but rather programming the
agents that represent, wrap, coordinate, and compose them.
The other key challenge, not discussed here, is how to

mi-
grate

 existing systems to component-based frameworks.

We argue that the challenge of agent coordination must
be addressed by new programming paradigms, and we pro-
pose “Applications = Components + Scripts” as such a para-
digm. Furthermore, we offer Piccola, a small composition
language, as an effort in that direction.

We are continuing to experiment with Piccola, by using it
as a medium for expressing compositional styles for various
application domains [2]. Furthermore, we are experiment-
ing with the development of a

form data model

 that will en-
able agents in open networks to exchange, query,
manipulate, and adapt models expressed using interchange
standards like XML. Finally, we are investigating ways for
reasoning about the

contracts

 that agents require and pro-
vide on behalf of their clients.

Acknowledgements

We would like to all members of the Software Composi-
tion Group for their support of this work, especially Markus
Lumpe for helpful comments on an earlier draft. This work
has been supported by the Swiss National Science Founda-
tion under Project No. 20-53711.98, “A framework ap-
proach to composing heterogeneous applications”, and the
Swiss Federal Office for Education and Science under
Project BBW Nr 96.00335-1, within the Esprit Working
Group 24512: “COORDINA: Coordination Models and
Languages.”

References

[1] Franz Achermann and Oscar Nierstrasz, “Applications =
Components + Scripts — A tour of Piccola,”

Software Ar-
chitectures and Component Technology

, Mehmet Aksit
(Ed.), Kluwer, 2000, to appear.

[2] Franz Achermann and Oscar Nierstrasz, “Explicit Name-
spaces,” Proceedings of JMLC 2000, 2000, to appear.

[3] Franz Achermann, Markus Lumpe, Jean-Guy Schneider and
Oscar Nierstrasz, “Piccola - a Small Composition Lan-
guage,”

Formal Methods for Distributed Processing, an Ob-
ject Oriented Approach

, Howard Bowman and John Der-
rick. (Eds.), Cambridge University Press., 2000, to appear.

[4] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim
Waldo and Ann Wollrath,

The Jini Specification

, Addison-
Wesley, 1999.

[5] Len Bass, Paul Clements and Rick Kazman,

Software Archi-
tecture in Practice

, Addison-
Wesley, 1998

[6] John Hogg, “Islands: Aliasing Protection in Object-Oriented
Languages,”

Proceedings OOPSLA ’91, ACM SIGPLAN
Notices

, volume 26, number 11, November 1991, pp. 271-
285.

[7] Naoki Kobayashi, Benjamin C. Pierce and David N. Turner,
“Linearity and the

π

-Calculus”,

Proceedings of Principles of
Programming Languages (POPL’96)

, ACM Press, 1996.

[8] Danny B. Lange and Mitsuru Oshima, “Mobile Agents with
Java: The Aglet API,”

World Wide Web Journal

, 1998.

[9] Doug Lea,

Concurrent Programming in Java — Design
principles and Patterns

, Addison-Wesley, The Java Series,
1996.

[10] Markus Lumpe, “A Pi-Calculus Based Approach to Soft-
ware Composition,” Ph.D. thesis, University of Bern, Insti-
tute of Computer Science and Applied Mathematics, Janu-
ary 1999.

[11] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci,
B. Friedman, K. Kosaka, D. Lange, K. Ono, M. Oshima, C.
Tham, S. Virdhagriswaran and J. White, “MASIF, The
OMG Mobile Agent System Interoperability Facility,”

Pro-
ceedings of Mobile Agents ’98

, 1998.

[12] Oscar Nierstrasz, “Regular Types for Active Objects,”

Ob-
ject-Oriented Software Composition

, O. Nierstrasz and D.
Tsichritzis (Eds.), pp. 99-121, Prentice Hall, 1995.

[13] Dale Rogerson,

Inside COM: Microsoft’s Component Ob-
ject Model

, Microsoft Press, 1997.

[14] Jean-Guy Schneider and Oscar Nierstrasz, “Components,
Scripts and Glue,”

Software Architectures — Advances and
Applications

, Leonor Barroca, Jon Hall and Patrick Hall
(Eds.), pp. 13-25, Springer, 1999.

[15] Jean-Guy Schneider, “Components, Scripts, and Glue: A
conceptual framework for software composition,” Ph.D.
thesis, University of Bern, Institute of Computer Science
and Applied Mathematics, October 1999.

[16] Mary Shaw and David Garlan,

Software Architecture: Per-
spectives on an Emerging Discipline

, Prentice-Hall, 1996.

	Agents Everywhere, All the Time
	1. Why Agents?
	2. Composing Agents
	3. Communicating with other Agents
	4. Reasoning about Agent Composition
	5. The Upshot

