
Software Evolution as
the Key to Productivity?

Oscar Nierstrasz

University of Bern, Switzerland
oscar.nierstrasz@acm.org

www.iam.unibe.ch/~oscar

Abstract. Despite the existence of a seemingly continuous stream of
new technologies and methods, software productivity remains univer-
sally unimpressive. We argue that, as long as industry remains focused
on short-term goals, and maintains a technology-centric view of soft-
ware development, no progress will be made. A clear symptom of this
problem is the fact that the metaphors we apply to software develop-
ment are largely obsolete. Instead of thinking about software as we do
about bridges, buildings or hardware components, we should encourage
a view of software as a living and evolving entity that is developed and
maintained by people. We begin with some assertions that are intended
as food for thought. We continue by reviewing what we consider to be
some of the key difficulties with software development today. We con-
clude with a few recommendations for research into software practices
that take evolution into account.

1 Food for Thought ...

– Software “engineering” is only a metaphor.
– Software “architecture” is only a metaphor.
– Software “components” are only a metaphor.
– The most cost-intensive phase of any successful software project is “mainte-

nance”.
– What is termed “maintenance” consists in practice of continuous develop-

ment and software evolution.
– Poor software quality is the greatest impediment to software evolution.
– Formal methods have a strictly limited impact on software quality in general.
– Constant refactoring is a prerequisite for effective software evolution.
– Aggressive testing is a prerequisite for refactoring.
– Standardized architectures and interfaces are a prerequisite to effective com-

ponent reuse.
– A good software architect must be a good abstract thinker.

? In Radical Innovations of Software and Systems Engineering in the Future, A. Knapp,
M. Wirsing and S. Balsamo (Eds.), LNCS, vol. 2941, Springer-Verlag, 2004, pp. 274-
282.



2 Oscar Nierstrasz

– Comparatively few programmers are good abstract thinkers.
– Software reuse can only have a limited impact on a small portion of the

software lifecycle.
– Software reuse does not come for free.
– Object-oriented programming offers a means to model complex domains.
– It is hard to develop models that can be easily adapted over time.
– Objects are not components.
– Object-oriented designs expose a class hierarchy, not a run-time architecture.
– Raising the level of abstraction is the only way to produce more in the same

amount of time.
– Scripting languages are the most effective rapid application development

tools known today.
– Scripting languages are good for “programming in the small”, not “program-

ming in the large”.
– Yesterday’s large programs are today’s small programs.
– Different people are motivated by very different things.
– Hardly anybody is motivated by money above all else.
– Technologists are often motivated by technology.
– Technology has only minimal impact on the success of a software project.
– Effective communication is the single greatest factor contributing to the

success of software projects.
– Short and frequent iterations are a prerequisite for effective communication.
– You can lead a horse to water but you can’t make it drink.

2 Software Evolution and Productivity

Despite the appearance of innumerable new software development techniques,
tools and methods over the past couple of decades, there is a general percep-
tion that software productivity has not actually improved as a result of these
innovations.

Why is this?
First of all, let us consider what we mean by software productivity. From an

Engineering perspective, we usually consider that productivity = units ÷ effort
[10]. Units of software can be notoriously difficult to measure, but, without
belaboring the point, let us argue that

productivity =
functionality⊕ quality

effort

where ⊕ is some kind of “addition” over functionality and quality. The desired
functionality and quality are specified as Software Requirements, and the prod-
uct is manifested in terms of Software Artefacts. Requirements being the input
to our development process, productivity should just depend on the quality of
the Requirements specifications, the methods and tools we use, and our own
programming skill.



Software Evolution as the Key to Productivity 3

evolution =
∆requirements

time
productivity =

functionality⊕ quality
effort

Requirements

Artefacts

evolution = ∆artefacts
time

Fig. 1. Software evolution and productivity

At this point, however, we must not forget that “Software Engineering” is just
a metaphor, in particular, one that says that “software is like a physical prod-
uct”. Object-Oriented Programming, Component-Based Software Development
(CBSD), and Software Architecture are other popular metaphors that suggest
different ways of thinking about software. At the same time, however, metaphors
can be dangerous if one forgets that they are just metaphors.

Software Engineering itself may well be one of these dangerous metaphors.
There are many ways in which software is not like a typical Engineering prod-
uct. For example, software is not subject to physical constraints. Many software
application domains are also highly unstable due to the high rate of innovation.
The most striking of these differences, however, are perhaps those highlighted
by the following laws of software evolution [13]:

– The Law of Continuing Change: A program that is used in a real-world
environment must change, or become progressively less useful in that envi-
ronment.

– The Law of Increasing Complexity: As a program evolves, it becomes more
complex, and extra resources are needed to preserve and simplify its struc-
ture.

This tells us that the Requirements are not the only input to our devel-
opment process, but that legacy Artefacts also constitute an important input.
Furthermore, as the Artefacts evolve, Requirements will also evolve in a never-
ending cycle (see figure 1), and, as complexity increases, quality will degrade
and productivity will decrease.

Oddly, most software development methods seem to assume that a new ap-
plication is being developed rather than that some existing software base is being
extended or modified, whereas in practice the latter is almost always the case.
Most of the real problems with software development, in fact, have to do with



4 Oscar Nierstrasz

software evolution: How can we construct software systems that can be grace-
fully adapted to changing requirements over time? If we consider most of the
other perceived problems (poor quality, lack of reuse, and so on), they are largely
subsumed by the problem of software evolution.

If we consider the typical lifecycle of a successful software product, we quickly
see that most of the costs are associated with its life after deployment [3, 14].
Furthermore, what is often misnamed “maintenance” actually consists mainly
of addition of new functionality, i.e., continuous development, or simply soft-
ware evolution [3, 14]. This suggests that the impact of evolution of productivity
cannot be merely incidental or occasional, but fundamental to software produc-
tivity. Attempts to improve productivity that do not take this into account are
therefore doomed to failure!

If software evolution is really the key issue in developing successful software
systems, why is it almost universally ignored in proposals of new methods and
techniques for software development?

2.1 What’s Wrong with OOP?

In the 1980s, object-oriented programming was widely considered to offer so-
lutions to a wide range of software woes. In the 1990s, by the time that OOP
became mainstream, it was clear that it was not a silver bullet. Worse, the
learning curve with OOP is much steeper than with conventional procedural
programming [15], reuse with OOP is much harder to achieve than with simple
libraries of procedures, and all the problems with legacy applications recur with
OOP except that they have an object-oriented flavour [9].

Implicit Architecture. Whereas procedural source code reflects procedural design
quite well, object-oriented code does not normally reflect the run-time OO ar-
chitecture. That means that it is typically much harder to read and understand
a well-designed object-oriented program than it is to understand a well-designed
procedural one because the source code exposes a class hierarchy, not the set of
objects that provide the run-time behaviour. In order to understand the run-time
behaviour, one needs to know which objects will be instantiated and how they
relate to one another. Due to polymorphism, however, this information can be
very hard to extract. This steep learning curve can make it hard to understand
and evolve an object-oriented application.

Implicit Reuse Contracts. Although OOP offers very expressive mechanisms for
software reuse, these mechanisms can be hard to understand and use correctly.
An object-oriented framework consists of a class hierarchy that must be sub-
classed and extended to instantiate an application. Frameworks make use of
many common idioms and design patterns, and the rules for correctly subclass-
ing the framework classes typically entail reuse contracts [20] that may only be
implicit in the code. Not only are OO frameworks hard to develop, but they
entail a steep learning curve to use them.



Software Evolution as the Key to Productivity 5

Missing Sockets and Plugs. OO frameworks tend to be based on “white box
reuse”, i.e., requiring knowledge of implementation details. Black box (component-
based) reuse is more attractive since it makes the reuse contracts explicit as
plugs (plug ’n play). Current OO analysis and design methods, however, encour-
age designers and developers to model domain objects in a way that leads to
rich interfaces that are not plug compatible. This means that OOA/OOD as it
is practiced today conflicts with the principles of CBSD.

Refactoring. Although it is well-established that the quality of OO software de-
pends on a culture of refactoring and reengineering [9], it is still hardly standard
practice.

Although OOP has demonstrated some benefits for productivity through
reuse of libraries and frameworks, object-oriented methods alone do not espe-
cially address software evolution, so their impact on productivity is necessarily
limited.

2.2 Are Components the Solution?

Although “object” is not yet a four-letter word, “component” seems to be the
current buzz. But components, like objects, have also been around since the
sixties [16].

Szyperski defines a software component as “a unit of independent deploy-
ment, a unit of third-party composition, [that] has no persistent state” [21].
Clearly this definition can fit many different kinds of software entity. Whether
we call it a “component” or a library or a framework or an application generator
or a 4G environment or a programming language does not really matter. In each
case, the key idea is to factor out everything that is known and stable and put
it into a box, thereby raising the level of abstraction. In each case, components
may be composed by means of a graphical or textual specification that plugs
together compatible parts.

The idea of building applications by “simply plugging together components”
is very attractive, and certainly has some merit. But what is often forgotten is
that components do not come from thin air. The cost of developing “reusable”
components is significantly higher than that of building isolated applications [3,
15]. Repositories of existing software elements help no more than do catalogues
of the contents of junkyards (unless you are a junkyard artist). CBSD can only
be successful when the process of developing components proceeds in parallel
with the process of developing applications based on components, and the cost
of developing components is amortized by the gains in productivity in developing
and maintaining the resulting applications [11, 17].

So what is the added value of CBSD? Certainly more rapid development is a
gain in productivity since components will only have to be developed once. But
the cost of developing and maintaining components can be higher than that of
developing applications that are not component-based. Certainly higher software
quality can be achieved by reusing components that have been thoroughly tested
across a range of applications. But this presupposes a significant investment in



6 Oscar Nierstrasz

ensuring the quality of the components, and presupposes a robust infrastruc-
ture for composing them. Only such a compositional infrastructure can enable
“independent deployment”.

If the biggest cost in the lifecycle of applications is evolution, we should ask
ourselves if CBSD can help reduce maintenance costs. A component-based appli-
cation clearly separates what is stable from what is not. Increased productivity
during software evolution means that new functionality can be more easily in-
tegrated, and existing functionality can be more easily adapted. However this is
not achieved by components alone. We know and understand components, but
what is hard to manage is flexibility.

So, although CBSD addresses software evolution to a greater degree than
does OOP, mainly by facilitating certain kinds of change, it fails to address the
hardest problems. The metaphor of “component-based software development”
puts the word “component” in the pole position, but this is misleading. The real
added value comes from how components are composed, so perhaps we should
start to think more about composition-based software development.

2.3 What about Formal Methods? Testing? ...

Software quality pays off during deployment and evolution. Correctness, reliabil-
ity, efficiency, usability, maintainability, portability, and other software qualities
have an impact either on the cost of deployment or the cost of development and
evolution of a piece of software. Costs, on the other hand, are entailed while
achieving and in maintaining that quality. When is it worth paying for that
quality? Whenever a piece of software is expected to live beyond an iteration or
two of its lifecycle, the investment in its quality can be amortized over its future
lifetime.

Formal methods clearly have their place in software development. However,
many critical aspects of software quality are inherently impossible to formalize
(for example, whether the user requirements have been adequately captured)[4].
Aside from certain well-understood domains, the cost of formally specifying re-
quirements is not only exorbitant, but the cost of proving the correctness of
an implementation may be unacceptably high. Furthermore, although there are
some well-documented counter-examples [12], such as the application of model-
checking tools, formal specifications and proofs typically do not scale well to large
systems, and are rarely robust in the face of evolutionary changes. This suggests
that formal methods most likely have their place in ensuring the robustness and
correctness of individual, functional software components, but not necessarily
assemblages of components, or non-functional aspects of software systems.

Testing has the clear disadvantage that it can never be used to demonstrate
the absence of software defects [7]. Despite its obvious shortcomings, however,
aggressive testing during development and evolution can have a dramatic im-
provement in software quality and software productivity [2]. Furthermore, tests,
particularly automated unit tests, can be highly robust in the face of change.
The investment in the development of test cases therefore rapidly pays itself
off. Considering that software needs to be tested and debugged in any case, the



Software Evolution as the Key to Productivity 7

investment in developing reusable test cases can be paid off even in a single it-
eration of the software lifecycle. It is therefore astonishing that industry largely
continues to consider it to be a completely separate activity from development,
and many developers consider it to be an unnecessary luxury.

There are innumerable other techniques and methods that may or may not
have an impact on software productivity. Code reviews, coding standards, CASE
tools, CRC cards, and so on, affect software quality in various ways, but each
may or may not have a positive effect on productivity in the long run. We suggest
that any technique should be evaluated in the context of software evolution over
a large number of iterations. A technique that is not cost-effective over time and
robust in the face of changes cannot help software productivity in the long run,
or can do so only in a very limited context.

2.4 Peopleware and Agile Processes

Methods, tools and processes all have their place, but it is important to recall
that (i) productivity of software developers varies enormously, independently of
tools or techniques applied, and (ii) the most important factor contributing to the
success of a software project is typically the motivation of the team. Models and
standards like CMM [18] and ISO 9000 [19], can be useful to assess the maturity
of the process within an organization, but this need not bear any relation to the
productivity of its development teams. Teams with immature processes may be
highly productive, and organizations with mature processes may be moribund.
Optimizing processes with negative and positive feedback are surely a Good
Thing, but this is not necessarily the key to higher productivity.

In the Silver Anniversary edition of The Psychology of Computer Program-
ming, Weinberg notes:

In the first edition to this book, I predicted, “... attention to the sub-
ject of personality should make substantial contributions to increased
programmer performance — whether that attention is paid by a psy-
chological researcher, a manager, or the programmer himself” (p. 158).
Even though I knew next to nothing about personality at the time, this
turned out to be one of my most successful predictions. [22]

Since that time, numerous authors have pointed out that technology has only
a limited effect on software productivity [3, 6, 8, 11]. Not only can there be a huge
difference in productivity between individual developers (variously claimed to be
10:1 or even 50:1), but factors such as team communication and motivation have
repeatedly been shown to far outweigh any technological factor in the success
of projects. Alistair Cockburn, for example, reflecting on 20 years of experience
with various projects notes that:

– Almost any methodology can be made to work on some project.
– Any methodology can manage to fail on some project.
– Heavy processes can be successful.



8 Oscar Nierstrasz

– Light processes are more often successful, and more importantly, the
people on those projects credit the success to the lightness of the
methodology. [5]

DeMarco and Lister give many reasons for these phenomena in their book
Peopleware, which can be summed up as:

The major problems of our work are not so much technological as
sociological in nature. [8]

If we can accept the idea that there can be no purely technological silver
bullet [3], then we must conclude that our only hope is to pay more attention
to sociological issues in the software process. The “Manifesto for Agile Software
Development” adopts this point of view by proposing that we should value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan [1]

Although there appears to be no claim in this manifesto that agile processes
will improve productivity in the long run, it is clear that, as a metaphor, agile
software development gives change a central role, and downplays purely techno-
logical tactics. This, we feel, is an important step in the right direction.

3 Research

We have argued that software evolution is the most important factor to influence
productivity in any software development project. This leads us to the following
observations:

1. Software evolution is unavoidable, both before and after deployment. Ignor-
ing its influence will kill productivity.

2. Raising the level of abstraction is the only way to produce more in the same
amount of time.

3. Agile processes take into account that software is a living thing, whose life
source comes from the interactions of the people who use it and develop it.

We conclude that further research is urgently needed in the following areas:

– Refactoring, reengineering and round-trip engineering,
– Migrations towards component frameworks and software product lines,
– Testing strategies to support continuous development,
– Agile processes,
– Composition languages and infrastructures,
– Architecture-driven software development.

Weinberg’s Psychology of Computer Programming was written over 30 years
ago, but we have been slow to pick up on its lessons. Cockburn puts his case
well:



Software Evolution as the Key to Productivity 9

His characterizations and recommendations, based upon project in-
terviews in the 1960’s, are still accurate and significant 30 years later.
That validates the stability and importance of these sorts of issues. It
is about time we studied these issues as a core to the field of Software
Engineering and stopped rediscovering their importance every 30 years.
[5]

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Tools and Techniques for Decomposing and Com-
posing Software” (SNF Project No. 2000-067855.02, Oct. 2002 - Sept. 2004).

Thanks to Roel Wuyts. Markus Gaelli and the anonymous reviewers for var-
ious suggestions and corrections.

References

1. Manifesto for agile software development. http://agilemanifesto.org.
2. Kent Beck. Extreme Programming Explained: Embrace Change. Addison Wesley,

2000.
3. Frederick P. Brooks. The Mythical Man-Month. Addison Wesley, Reading, Mass.,

1975.
4. Frederick P. Brooks. No silver bullet. IEEE Computer, 20(4):10–19, April 1987.
5. Alistair Cockburn. Characterizing people as non-linear, first-order components in

software development. In 4th International Multiconference on Systemics, Cyber-
netics, and Informatics, Orlando, FL, 1999.

6. Alistair Cockburn. Agile Software Development. Addison Wesley, 2002.
7. Ole-Johan Dahl, Edsgar W. Dijkstra, and C.A.R. Hoare. Structured Programming.

Academic Press, 1972.
8. Tom DeMarco and Timothy Lister. Peopleware, Productive Projects and Teams.

Dorset House, 2nd edition, 1999.
9. Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented Reengi-

neering Patterns. Morgan Kaufmann, 2002.
10. Norman Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous and

Practical Approach. International Thomson Computer Press, London, UK, second
edition, 1996.

11. Adele Goldberg and Kenneth S. Rubin. Succeeding With Objects: Decision Frame-
works for Project Management. Addison Wesley, Reading, Mass., 1995.

12. Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, Sept.
1990.

13. M. M. Lehman and L. Belady. Program Evolution – Processes of Software Change.
London Academic Press, 1985.

14. Bennet P. Lientz and E. Burton Swanson. Software Maintenance Management.
Addison Wesley, 1980.

15. Tom Love. Object Lessons – Lessons Learned in Object-Oriented Development
Projects. SIGS Books, New York, 1993.

16. M. Douglas McIlroy. Mass produced software components. In P. Naur and B. Ran-
dell, editors, Software Engineering, pages 138–150. NATO Science Committee, Jan-
uary 1969.



10 Oscar Nierstrasz

17. Oscar Nierstrasz and Dennis Tsichritzis, editors. Object-Oriented Software Com-
position. Prentice-Hall, 1995.

18. Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis, editors.
The Capability Maturity Model: Guidelines for Improving the Software Process.
Addison Wesley, 1994.

19. Charles H. Schmauch. ISO 9000 for Software Developers. ASQC Quality Press,
1995.

20. Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt. Reuse contracts:
Managing the evolution of reusable assets. In Proceedings of OOPSLA ’96 Con-
ference, pages 268–285. ACM Press, 1996.

21. Clemens A. Szyperski. Component Software. Addison Wesley, 1998.
22. Gerald M. Weinberg. The Psychology of Computer Programming. Dorset House,

silver anniversary edition edition, 1998.


