
Object-oriented Reengineering Patterns
An Overview?

Oscar Nierstrasz1, Stéphane Ducasse2, and Serge Demeyer3

1 Software Composition Group, University of Bern, Switzerland.
2 Laboratoire d’Informatique, Systèmes, Traitement de l’Information

et de la Connaissance, Université de Savoie, France.
3 Lab On REengineering, University of Antwerp, Belgium.

Abstract. Successful software systems must be prepared to evolve or
they will die. Although object-oriented software systems are built to
last, over time they degrade as much as any legacy software system. As
a consequence, one must invest in reengineering efforts to keep further
development costs down. Even though software systems and their busi-
ness contexts may differ in countless ways, the techniques one uses to
understand, analyze and transform these systems tend to be very sim-
ilar. As a consequence, one may identify various reengineering patterns
that capture best practice in reverse- and re-engineering object-oriented
legacy systems. We present a brief outline of a large collection of these
patterns that have been mined over several years of experience with
object-oriented legacy systems, and we indicate how some of these pat-
terns can be supported by appropriate tools.

1 Introduction

A legacy software system is a system that you have inherited and is valuable to
you. Successful (i.e., valuable) software systems typically evolve over a number of
years as requirements evolve and business needs change. This leads to the well-
documented phenomenon that such systems become more complex over time,
and become progressively harder to maintain, unless special measures are taken
to simplify their architecture and design [13].

Numerous problems manifest themselves as a legacy system begins to turn
into a burden. First of all, knowledge about the system deteriorates. Documen-
tation is often missing or obsolete. The original developers or users may have
left the project. As a consequence, inside knowledge about the system may be
missing. Automated tests that document how the system functions are rarely
available.

Second, the process for implementing changes ceases to be effective. Simple
changes take too long. A continuous stream of bug fixes is common. Maintenance
dependencies make it difficult to implement changes or to separate products.

? c©Springer Verlag, 2005. Invited paper, Proceedings of GPCE 2005, Michael Lowry
Robert Glück (Ed.), LNCS 3676, 2005, pp. 1-9.



2 O. Nierstrasz, S. Ducasse, S. Demeyer

Finally, the code itself will exhibit various disagreeable symptoms. Large
amounts of duplicated code are common, as are other “code smells” such as
violations of encapsulation, large, procedural classes, and explicit type checks.

Concretely, the code will manifest architectural problems such as improper
layering and lack of modularity, as well as design problems such as misuse of
inheritance, missing inheritance and misplaced operations. Excessive build times
are also a common sign of architectural decay.

Since the bulk of a (successful) software system’s life cycle is known to reside
in maintenance, and “maintenance” is known to consist largely in the introduc-
tion of new functionality [14], identifying and resolving these problems becomes
critical for the survival of legacy systems.

a z

xxx

yyy
Yyy

Xxx

z

Requirements

Code

Designs

model capture and analysis

problem assessment

migration

Fig. 1. The Reengineering life cycle.

To this end, it is useful to distinguish reverse engineering from reengineer-
ing of software systems [2]. By “reverse engineering”, we mean the process of
analyzing a software system in order to expose its structure and design at a
higher level of abstraction, i.e., the process of extracting various models from
the concrete software system. By “reengineering” we refer to the process of trans-
forming the system to a new one that implements essentially the same functional
requirements, but also enables further development.

The process of reverse- and re-engineering consists of numerous activities,
including architecture and design recovery, test generation, problem detection,
and various high and low-level refactorings. In Figure 1 we see an ideal depiction
of the reverse- and re-engineering life cycle [3, 10].

Although the motivations for reengineering a legacy system may vary consid-
erably according to the business needs of the organization, the actual technical
steps taken tend to be very similar. As a consequence, it is possible to identify
a number of generally useful process patterns that one may apply while reverse-
and re-engineering a legacy system. We provide a brief overview of these patterns



Object-oriented Reengineering Patterns — An Overview 3

in Section 2. By the same token, there exist various tools that can help support
the reengineering process. In Section 3 we present a brief outline of some of the
tools we have developed and applied to various legacy systems.

2 Reengineering Patterns

The term “pattern” used in the context of software usually evokes the notion of
“design patterns” — recurring solutions to design problems. Reengineering pat-
terns are not design patterns, but rather process patterns — recurring solutions
to problems that arise during the process of reverse- and re-engineering.

We distinguish patterns from “rules” or “guidelines” because each pattern
must be interpreted in a given context. Patterns are not applied blindly, but en-
tail tradeoffs. Just as one would never deliberately implement a software system
applying all of the GOF patterns [7], one should not blindly apply reengineering
patterns without considering all the consequences.

We were able to mine a large number of reengineering patterns during the
course of Famoos, a European project4 whose goal was to support the evolution
of first-generation object-oriented software towards object-oriented frameworks.
Famoos focussed on methods and tools to analyse and detect design problems
in object-oriented legacy systems, and to migrate these systems towards more
flexible architectures. The main results of Famoos are summarized in the Fam-
oos Handbook [4] and in the book “Object-Oriented Reengineering Patterns”
[3].

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute Responsibilities

Transform Conditionals
to Polymorphism

Fig. 2. Reengineering pattern clusters.

In Figure 2 we see how various clusters of reengineering patterns can be
mapped to our ideal reengineering life cycle. Each name represents a collection
of process patterns that can be applied at a particular stage during the reengi-
neering of a legacy system.

4 ESPRIT Project 21975: “Framework-based Approach for Mastering Object-Oriented
Software Evolution”. www.iam.unibe.ch/∼scg/Archive/famoos



4 O. Nierstrasz, S. Ducasse, S. Demeyer

Setting Direction contains several patterns to help you determine where to
focus your re- engineering efforts, and make sure you stay on track. First Contact
consists of a set of patterns that may be useful when you encounter a legacy
system for the first time. Initial Understanding helps you to develop a first simple
model of a legacy system, mainly in the form of class diagrams. Detailed Model
Capture helps you to develop a more detailed model of a particular component of
the system. Tests: Your Life Insurance focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengineering
effort. Migration Strategies help you keep a system running while it is being
reengineered, and increase the chances that the new system will be accepted
by its users. Detecting Duplicated Code can help you identify locations where
code may have been copied and pasted, or merged from different versions of the
software. Redistribute Responsibilities helps you discover and reengineer classes
with too many responsibilities. Transform Conditionals to Polymorphism will
help you to redistribute responsibilities when an object-oriented design has been
compromised over time.

Since a detailed description of the patterns is clearly out of the scope of a
short paper, let us just briefly consider a single pattern cluster. First Contact
consists of patterns that can be useful when first encountering a legacy system.
There are various forces at play, which one must be conscious of. In particular,
legacy systems tend to be large and complex, so it will be difficult to get an
overview of the system. Time is short, so it is important to gather quality infor-
mation quickly. Furthermore, first impressions are dangerous, so it is important
not to rely on a single source of information.

One has various resources at hand: the source code, the running system, the
users, the maintainers, documentation, the source code repository, the changes
log, the list of bug requests, the test cases, and so on. Even if some of these are
missing or unreliable, one must take care to not reject anything out of hand.

In Figure 3 we see a map of the patterns in this cluster, and how they relate to
each other. As with each pattern cluster, patterns support each other to resolve
the forces at play. The First Contact cluster resolves the forces by balancing
what you learn from the users and maintainers with what you learn from the
source code.

In Figure 4 we see a capsule summary of one of the better-known patterns of
this cluster. The name is typically an action to be performed, that expresses the
key idea of the pattern. Not every pattern is always relevant in every context,
so one must be clear about the intent of each pattern, the problem it solves, the
key idea of the solution, and the tradeoffs entailed. In this particular pattern,
the context of a demo is used as a device to help the user to focus on concrete
rather than abstract qualities of the application, while communicating typical
use cases and scenarios to the engineer. Each pattern may also include hints,
variants, examples, rationale, related patterns, and an indication of what to do
next. Known uses are very important, since only established best practices can
truly be considered “patterns”.



Object-oriented Reengineering Patterns — An Overview 5

Verify what 
you hear

Talk 
about it

talk with 
developers

System experts
talk with 

end users

Chat with the 
Maintainers

Interview 
During Demo

Software system

read it
read 

about it

compile it

Read all the Code 
in One Hour

Skim the 
Documentation

Do a Mock 
Installation

Fig. 3. First Contact.

Name Interview During Demo

Intent Obtain an initial feeling for the appreciated functionality of a software
system by seeing a demo and interviewing the person giving the demo.

Problem How can you get an idea of the typical usage scenarios and the main
features of a software system?

Solution Observe the system in operation by seeing a demo and interviewing
the person who is demonstrating. Note that the interviewing part is at
least as enlightening as the demo.

Hints The user who is giving the demo is crucial to the outcome of this pattern
so take care when selecting the person. Therefore, do the demonstration
several times with different persons giving the demo.

Tradeoffs Pro: Focuses on valued features.
Con: Provides anecdotal evidence only.
Difficulties: Requires interviewing experience.

Example (Description of a typical interview ...)

Rationale Because users must start from a working system, they will adopt a pos-
itive attitude in explaining what works. The interviewer can ask precise
questions, get precise answers, thus digging out the expert knowledge
about the system’s usage.

Known Uses Commonly used for evaluating user-interfaces.

Related
Patterns

See Customer Interaction Patterns [17]

What Next Carry out several attempts of Interview During Demo with different
kinds of stakeholders. Perform these attempts before, after or interwo-
ven with Read all the Code in One Hour and Skim the Documentation.
Afterwards, consider to Chat with the Maintainers to verify some of
your findings.

Fig. 4. A pattern in a nutshell.



6 O. Nierstrasz, S. Ducasse, S. Demeyer

3 Reengineering Tools and Techniques

It is easy to put too much faith into tools. For this reason the reengineering
patterns put more emphasis on process than tools. (As a popular saying puts it:
“A fool with a tool is still a fool.”)

Nevertheless, certain activities can be streamlined with the help of carefully
chosen tools. In particular, the process of reverse engineering can be aided by
tools that build models from source code. Note that it is not a question of gener-
ating UML diagrams from source code. (10’000 class diagrams do not necessarily
aid program comprehension more than 1’000’000 lines of source code.)

One the other hand, during Initial Understanding, a key pattern is Study the
Exceptional Entities. Very often it is the software entities that are very large,
very small, most tightly coupled, inherit the most, inherit the least, etc., that tell
one the most about how a software system works. It may be that these outliers
are indicative of design problems, but this need not be the case.

CodeCrawler is a tool that presents simple visualizations of software en-
tities based on direct metrics [12]. A polymetric view, is a two-dimensional vi-
sualization of nodes (as entities) and edges (as relationships) that maps various
metric values to attributes of the nodes and edges. For example, different metrics
can be mapped to the size, position and color of a node, or to the thickness and
color of the edge.

Polymetric views can be generated for different purposes: coarse-grained
views to assess global system properties, fine-grained views to assess proper-
ties of individual software artifacts, and evolutionary views to assess properties
over time.

Figure 5 shows a System Complexity View which is coarse grained view [11].
The figure shows the hierarchies of CodeCrawler itself. Each node represents
a class, and each edge represents an inheritance relationship. The height of a
node represents the number of methods, the width represents the number of
attributes and the (greyscale) color represents the number of lines of code. A
System Complexity View can help one to quickly identify many kinds of out-
liers. For example, tall, isolated, dark nodes have many methods, many lines of
code, and few attributes, and they may be signs of procedural classes with long,
algorithmic methods.

CodeCrawler is built on top of Moose, a reengineering environment that
offers a common infrastructure for various reverse- and re-engineering tools [5,
15]. At the core of Moose is a common meta-model for representing software
systems in a language-independent way. Around this core are provided various
services that are available to the different tools. These services include met-
rics evaluation and visualization, a repository for storing multiple models, a
meta-meta model for tailoring the Moose meta-model, and a generic GUI for
browsing, querying and grouping.

Some other tools that have been developed either in the context of Famoos,
or subsequently as clients of Moose, include:
– Duploc— detects duplicated code in large software systems in a language-

independent way [6, 16].



Object-oriented Reengineering Patterns — An Overview 7

Legend:

Class

NOM

NOA

LOC

Inheritance

Fig. 5. A System Complexity view of CodeCrawler.

– ConAn— applies formal concept analysis to detect implicit contracts in
object-oriented software [1].

– Van— analyzes version histories of software systems to uncover trends [8].
– TraceScraper— analyzes run-time traces of instrumented software to cor-

relate features with software artifacts [9].

4 Conclusions

Given the premise that “the only constant is change”, any interesting software
system must evolve to stay interesting. As a consequence, however, we must
invest in reengineering if the architecture and design of the system is to stay
abreast of the changing requirements. Even though every system is different, we
can identify various useful reengineering patterns that ease the process of under-
standing a complex legacy system, identifying its problems, and transforming it
to a more flexible design.

The patterns we have documented include only those for which we have
personally witnessed success. The Famoos reengineering patterns therefore rep-
resent only a starting point, and not a definitive work. What is important is
that each pattern document best practice as experienced by experts in the field,
as opposed to new research ideas that have not yet been proven in industrial
contexts. There is clearly much research that can be done to investigate, for
example, the synergy between tools and reengineering patterns, but one must
not confuse the two.

We hope that the value of reengineering patterns, and more generally process
patterns, will increasingly be recognized and encouraged as an effective means
to improve the state of the art and disseminate best practice.



8 O. Nierstrasz, S. Ducasse, S. Demeyer

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “RECAST: Evolution of Object-Oriented Applica-
tions” (SNF Project No. 620-066077, Sept. 2002 - Aug. 2006). Thanks are due
to Laura Ponisio for suggesting several improvements in the text.

References

1. Gabriela Arévalo. High Level Views in Object Oriented Systems using Formal
Concept Analysis. PhD thesis, University of Berne, January 2005.

2. Elliot J. Chikofsky and James H. Cross, II. Reverse Engineering and Design Re-
covery: A Taxonomy. In Robert S. Arnold, editor, Software Reengineering, pages
54–58. IEEE Computer Society Press, 1992.

3. Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

4. Stéphane Ducasse and Serge Demeyer, editors. The FAMOOS Object-Oriented
Reengineering Handbook. University of Bern, October 1999.

5. Stéphane Ducasse, Tudor Gı̂rba, Michele Lanza, and Serge Demeyer. Moose: a
collaborative and extensible reengineering Environment. In Tools for Software
Maintenance and Reengineering, RCOST / Software Technology Series, pages 55
– 71. Franco Angeli, 2005.

6. Stéphane Ducasse, Oscar Nierstrasz, and Matthias Rieger. On the effectiveness
of clone detection by string matching. International Journal on Software Mainte-
nance: Research and Practice, 2005. To appear.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, Reading, Mass.,
1995.

8. Tudor Gı̂rba, Stéphane Ducasse, and Michele Lanza. Yesterday’s weather: Guiding
early reverse engineering efforts by summarizing the evolution of changes. In Pro-
ceedings of ICSM ’04 (International Conference on Software Maintenance), pages
40–49. IEEE Computer Society Press, 2004.

9. Orla Greevy and Stéphane Ducasse. Correlating features and code using a compact
two-sided trace analysis approach. In Proceedings of CSMR 2005 (9th European
Conference on Software Maintenance and Reengineering. IEEE Computer Society
Press, 2005.

10. R. Kazman, S.G. Woods, and S.J. Carriére. Requirements for integrating software
architecture and reengineering models: Corum ii. In Proceedings of WCRE ’98,
pages 154–163. IEEE Computer Society, 1998. ISBN: 0-8186-89-67-6.

11. Michele Lanza and Stéphane Ducasse. Polymetric views — a lightweight visual
approach to reverse engineering. IEEE Transactions on Software Engineering,
29(9):782–795, September 2003.

12. Michele Lanza and Stéphane Ducasse. Codecrawler — an extensible and language
independent 2d and 3d software visualization tool. In Tools for Software Main-
tenance and Reengineering, RCOST / Software Technology Series, pages 74 – 94.
Franco Angeli, 2005.

13. Manny M. Lehman and Les Belady. Program Evolution – Processes of Software
Change. London Academic Press, 1985.



Object-oriented Reengineering Patterns — An Overview 9

14. Bennett Lientz and Burton Swanson. Software Maintenance Management. Addison
Wesley, Boston, MA, 1980.

15. Oscar Nierstrasz, Stéphane Ducasse, and Tudor Girba. The story of Moose: an
agile reengineering environment. In Proceedings of ESEC/FSE 2005. LNCS, 2005.
Invited paper. To appear.

16. Matthias Rieger. Effective Clone Detection Without Language Barriers. PhD
thesis, University of Berne, June 2005.

17. Linda Rising. Customer interaction patterns. In Neil Harrison, Brian Foote, and
Hans Rohnert, editors, Pattern Languages of Program Design 4, pages 585–609.
Addison Wesley, 2000.


