
Adding Traits to (Statically Typed) Languages

Oscar Nierstrasz, Stéphane Ducasse, Stefan Reichhart and Nathanael Schärli

Institut für Informatik und Angewandte Mathematik
University of Bern, Switzerland

IAM-05-006

December 1, 2005

Abstract

Traits offer a fine-grained mechanism for composing classes in object-oriented languages from
reusable components, while avoiding the fragility problems introduced by multiple inheritance
and mixins. Although traits were developed in the context of dynamically typed languages,
they would also offer clear benefits for statically typed languages like Java and C#. This
report summarizes the issues raised when integrating traits into such languages. We examine
traits in the context of the statically typed languages Featherweight Java, C# and C++.

CR Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language
Constructs and Features—Inheritance

1 Introduction

Traits were introduced [16, 17] as a simple programming language mechanism for incremen-
tally composing classes from small, reusable components, while avoiding problems of fragility
in the class hierarchy that arise with approaches based on mixins or multiple inheritance.
Traits are essentially sets of methods, divorced from any instance variables or a superclass.
Composite traits may be composed from subtraits using the trait composition operators.

Initial experiences using traits in Smalltalk to refactor complex class hierarchies have
been very promising [1], and the question naturally arises, how can we apply traits to other
languages. This question is especially interesting if we consider statically-typed languages
like Java and C# because adding traits to such a language requires integrating them into its
static type system.

Besides the question of what is the relationship between traits and types, such an inte-
gration also raises the question of how to type trait methods. Unlike their dynamically typed
counterparts, statically typed languages require the programmer to define a static type for
the arguments and the return value of each trait method. But how is it possible to do this
in a way that keeps the trait generic enough to be applied to many different classes, some of
which may not be known at compile time? Does it require an extension of the underlying
type system?

While the questions related to static typing are very interesting, there are also many other
issues and trade-offs that arise when traits are added to another language. For example, it is
usually easier to implement traits by compiling them away, but this also means that they are
not represented in the code that actually gets executed, which makes it harder to use features
such as debuggers and runtime reflection. Also, depending on the implementation strategy,
there may or may not be a duplication of the executable code corresponding to traits.

The goal of this paper is to provide the reader with a road map of issues and possible
strategies related to the integration of traits into (statically typed) languages. While some of
these strategies are based on formal models and are quite general, others are more pragmatic
and language-specific. We also present the strategies taken by existing implementation of
traits and adaptations of traits, and we analyze how they address the important issues.

The rest of this paper is structured as follows: In Section 2, we give a brief introduction of
traits and present an example. In Section 3, we give an overview of different issues that arise
when traits are added to programming languages. In Section 4, we present a formal model
for a flattening-based strategy of adding traits to a statically typed programming language.
While this model is very simple and generic, it omits many of the more sophisticated issues
related to the integration of traits into a static type system. In Section 5, we therefore
sketch how two extensions of this model can lead to reasonable design choices for these issues.
In Section 6, we examine how this formal model can be applied to the language C#, and
present our implementation. In Section 7, we investigate how traits can be simulated in C++
using templates and (virtual) multiple inheritance, and we discuss the consequences of such
a strategy. In Section 8, we present our original implementation of traits in the Smalltalk
dialect Squeak and evaluate it against the identified issues. In Section 9, we present and
analyze the strategies taken by existing implementation of traits and adaptations of traits.

1

TColor
red
green
~=
=
hash

rgb
rgb:

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

Circle
initialize
=
hash
rgb
rgb:
center
center:
radius
radius:
drawOn:

X

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

TColor
red
green
~=
=
hash

rgb
rgb:

Figure 1: Class Circle is composed from traits TCircle, TColor and TDrawing.

2

2 Traits in a Nutshell

Traits [17] are essentially groups of methods that serve as building blocks for classes and
are primitive units of code reuse. As such, they allow one to factor out common behavior
and form an intermediate level of abstraction between single methods and complete classes.
A trait consists of provided methods that implement its behavior, and of required methods
that parameterize the provided behavior. Traits do not specify any instance variables, and
the methods provided by traits never directly access instance variables. Instead, required
methods can be mapped to state when the trait is used by a class.

With traits, the behavior of a class is specified as the composition of traits and some glue
methods that are implemented at the level of the class. These glue methods connect the traits
together and can serve as accessor for the necessary state. The semantics of such a class is
defined by the following three rules:

• Class methods take precedence over trait methods. This allows the glue methods defined
in the class to override equally named methods provided by the traits.

• Flattening property. A trait method which is not overridden by a client class has the
same semantics as the same method implemented directly in that class.

• Composition order is irrelevant. All the traits have the same precedence, and hence
conflicting trait methods must be explicitly disambiguated.

Because the composition order is irrelevant, a conflict arises if we combine two or more
traits that provide identically named methods that do not originate from the same trait.
Traits enforce explicit resolution of conflicts by implementing a glue method at the level of
the class that overrides the conflicting methods, or by method exclusion, which allows one
to exclude the conflicting method from all but one trait. In addition traits support method
aliasing. The programmer can introduce an additional name for a method provided by a trait
to obtain access to a method that would otherwise be unreachable, for example, because it
has been overridden.

Example: Geometric Objects. Suppose we want to represent a graphical object such as
a circle or square that is drawn on a canvas. Such a graphical object can be decomposed into
three reusable aspects — its geometry, its color and the way that it is drawn on a canvas.

Figure 1 shows this for the case of a Circle class composed from traits TCircle, TColor and
TDrawing:

• TCircle defines the geometry of a circle: it requires the methods center, center:, radius, and
radius: and provides methods such as bounds, hash, and =.

• TDrawing requires the methods drawOn: bounds and provides the methods draw, refresh,
and refreshOn:.

• TColor requires the methods rgb, rgb: and provides all kind of methods manipulating
colors. We only show the methods hash and = as they will conflict with others at
composition time.

3

The class Circle specifies three instance variables center, radius, and rgb and their respective
accessor methods. It is composed from the three traits TDrawing, TCircle, and TColor. As there
is a conflict for the methods hash and = between the traits TCircle and TColor, we must alias
those methods in both traits to be able to access them in the methods hash and = of the class
Circle resolving the conflicts.

3 Issues

As we have pointed out in the previous section, traits obey the flattening property. This
means that a program written with traits can be translated into a semantically equivalent
program without traits by inlining all the traits in the classes where they are used.

As a consequence, there is a very simple and generic strategy for adding traits to a language
L, which consists of the following two steps.

1. Create a language LT that differs from L only in that it has an extended syntax that
allows on to define and use traits.

2. Write a translator that takes a program written in LT and then inlines all the traits to
yield a semantically equivalent trait-less program in the base language L.

This strategy has several advantages: it is very simple and generic, it preserves the seman-
tics (because of the flattening property), and it does not require any changes to the compilers
(and potential virtual machines) for the language L. However, it also means that traits are
treated as syntactic sugar and completely disappear during the translation, which leads to
several problems.

Besides the fact that the translation duplicates the code of each trait in all the classes
where it is used, it also leads to inconsistencies between the source code (written in LT) and
the code that actually gets executed at runtime. As a consequence, one can for example not
use runtime reflection to reason about traits, and if reflection is used to reason about classes,
the absence of traits may lead to a result that is different than what one would expect. A
similar effect also occurs when debugging a program.

Even more issues arise when this strategy is applied to a statically typed language. This
is because in this case, one also has to think about how to integrate traits into the static type
system to get an adequate expressiveness in the new langauge LT .

In the rest of this section, we give an overview of important issues that arise when traits
are added to a language and outline design decisions that could be used to address them.

3.1 Representing Traits in the Language

For a smooth and complete integration, traits should be represented in the language. Ideally,
representations of traits should exist at both compile-time and runtime. This has several
reasons.

• Compilation. Having a compile-time entity for traits is the basis for being able to
compile traits separately, i.e., independently of the classes where they are used. This
not only a allows on to detect errors in traits at an early stage (and independent of
potential errors in the classes where a trait is used), but it is also the basis for sharing
the trait code among multiple classes.

4

If traits cannot be compiled separately from the classes where they are used, it should
at least be possible for a programmer to easily see whether a certain compile-time error
is caused in a class or a trait that is used by the class being compiled.

• Debugging. Traits should be represented in the debugger, so that a programmer can
easily map code being executed to the actual source code (written with traits).

• Runtime reflection. Many programming language support a form of runtime reflection
that allows one to reflect and sometimes even manipulate the program being executed.
If traits are added to a language, it is important that they are correctly represented
in the reflective infrastructure of the language, so that one can for example ask which
methods are provided by a certain trait or which traits are used by a certain class.

While the advantages of representing traits in the language are quite general, the question
of how to achieve such representations strongly depends on the type of programming language,
and there are a wide variety of design decisions.

On one hand, traits are similar to (abstract) classes, and so it looks like a good idea to
take advantage of this similarity and represent traits in a similar way. In languages featuring
multiple inheritance and templates or other macro facilities (such as C++), it may even
be possible to represent traits as special classes, that can then be arranged in inheritance
hierarchies that exhibit the composition semantics known from traits.

In statically typed languages, another important issue is the relationship between traits
and types. In most of these languages, every class also defines a type, and so one could argue
that also every trait should define a type. Because a class can use multiple traits, this would
add a form of multiple subtyping to the language. However, many of the recent languages
also support interfaces (as promoted by Java), which define types as well and are specifically
used for multiple subtyping. Since traits also bear a similarity to interfaces, this poses the
question whether it is actually necessary to have all these different but also similar forms of
types.

3.2 Typing Trait Methods

Another issue that arises when traits are implemented in a statically typed language is that
it may not always be clear how their methods should be typed so that they can be reused
across multiple classes.

As an illustration, consider the trait TLinkable that bundles together the behavior of an
element in a linked list and is used in classes such as Link and Process 1. This trait provides,
amongst others, the methods includes:, checkAndSetNext: and reverse. While includes: checks
whether the argument link is included in the linked list starting at the receiver, the method
checkAndSetNext: sets the next field of the receiver to the link that is passed as an argument,
but only if this does not cause a cycle. Finally, the method reverse reverses the linked list.
Figure 2 shows the implementation of this trait in Smalltalk.

Because Smalltalk is dynamically typed, the trait TLinkable can be immediately used in
the class Link, the class Process, and any other class that is linkable. The only condition is
that these classes provide the two required methods getNext and setNext:, which get and set
the next element of the list.

1Smalltalk processes are links so that the scheduler can keep them in linked lists.

5

Trait named: #TLinkable

includes: other
| tail |
self == other ifTrue: [↑ true].
tail := self getNext.
tail ifNil: [↑ false].
↑ tail includes: other

checkAndSetNext: other
(other includes: self) ifTrue: [↑ false].
self setNext: other.
↑ true.

reverse
| result list temp |
result := nil.
list := self.
[list notNil] whileTrue: [

temp := list getNext.
list setNext: result.
result := list.
list := temp.

].
↑ result.

getNext
self requirement

setNext: other
self requirement

Figure 2: The trait TLinkable in the dynamically typed language Smalltalk

6

Now assume that we would like to write the same trait in a statically typed language such
as Java and C#. This immediately raises the question of what static type should be used for
the arguments, the return values, and the temporary variables of the methods defined in the
trait TLinkable so that this trait can be used for both Link and Process as well as any other
class that is linkable.

Types of Arguments. Regarding the argument type of includes:, a reasonable answer
would be that the chosen type should allow every linkable object to be passed as an argument.
In a language where every trait also defines its own type and trait composition establishes
a subtype relationship, one might for example use the type TLinkable as the argument type.
Alternatively, in a language where traits do not define types, one could use as an argument
type a separate interface ILinkable, that would then need to be implemented by all linkable
classes.

Types of Return Values. When it comes to the other types, things are more problematic.
As an example, consider the return type of the methods reverse and getNext. Assuming that
TLinkable is used only for homogeneous lists, the methods reverse and getNext should return
an instance of whatever class they are called on. In particular, this means that an instance
of Link (Process) should be returned when these methods are called on a Link (Process).

What makes this situation difficult is that the return types of these methods are in fact
parametric; i.e., they depend on the class to which the trait TLinkable is finally applied.
Therefore, using an interface such as ILinkable as the return type does not solve our problem
because it would only allow a common subset of all the methods in Link and Process to be
called on the return values.

The same problem also applies to the argument of the methods setNext: and checkAnd-
SetNext: as well as to the temporary variables used in the method reverse. If we for example
declared the type of these temporary variables to be ILinkable, the type of the list elements
would be changed when the list is reversed.

The problem could be addressed using parametric polymorphism as provided by the gener-
ics mechanism available in C# and Java 1.5 (or later), because it allows us to write the trait
TLinkable with a type parameter that is then used for the return values, the arguments, and
the temporary variables of these methods.

Another approach would be to address this problem by reifying the class that actually
uses the trait. This means that the language would get extended with a construct to refer
to the class where a trait will eventually be used. Using this construct, one could write the
trait TLinkable without the explicit use of generics, which leads to a simpler and more concise
solution.

Overloading. Having typed methods in traits also means that, depending on the semantics
of the underlying language, we might need to deal with method overloading. For example, trait
composition can generate cases of ambiguous overloading (i.e., when the static type system
cannot uniquely determine which method to dispatch), which needs to be distinguished from
method conflicts. Another complication is that in presence of overloading, plain method
names are not enough to uniquely identify a method. In case of aliases, this for example
poses the question whether the new method signature must be identical to the old one.

7

3.3 Adapting the Compilation and Execution Mechanisms

The most fundamental issue for adding traits to a language is the question of how to adapt
the compilation and execution mechanisms of the language so that code written with traits
is correctly executed. Ideally, these mechanisms should be adapted so that they satisfy the
following two properties.

• Small Programs. Traits should not only allow one to reuse source code, but also to
reuse executable code. This means that a program should contain the executable code
for each trait only once; all classes (and traits) using a certain trait should refer to the
exact same code.

• High Execution Performance. When traits are added to a language, it should have no
(negative) effects on execution speed. This means that a program written with trait
should be executed (at least) as fast as the corresponding flattened program that does
not contain any traits.

In reality it is not only hard to achieve both of these properties together, but it may also
require a significant engineering effort. As an example, assume that we want to add traits
to a language that gets executed on a virtual machine. Using the simple flattening based
strategy outlined at the beginning of this section, one only has to extend the compiler so that
it first inlines all the traits. This has the advantage that no changes to the virtual machine
are necessary, and that the execution performance is essentially the same as before. However,
it also means that the executable code of each trait is duplicated in all classes where it is
used.

Alternatively, one could modify the compiler and the virtual machine so that traits are
compiled separately and the method lookup algorithm does not only take the inheritance
hierarchy but also traits hierarchies into account. However, this requires more engineering
work and is likely to result in slower execution speed. Furthermore, it means that code with
traits cannot be executed on earlier virtual machines.

4 A Flattening-based Calculus for Traits

In the previous section, we have outlined how flattening can be used as a simple and generic
strategy for adding traits to a programming language. In this section, we formalize this
strategy. For simplicity, we do not use a real programming language as the basis; instead we
use FJ, which is a minimal core calculus for the Java programming language [8]. Because FJ
omits many of the more specific issues such as concurrency and reflection, this model is quite
general and also applies to the core of similar languages such as C#.

Given the base language FJ, the definition of the extended language FTJ consists of two
steps. First, we define the syntax of FTJ, which is an extension of the FJ syntax with the
necessary constructs for defining and using traits. Second, we define the semantics of FTJ
by specifying a flattening function that translates any FTJ program to an FJ program.

4.1 Featherweight Trait Java (FTJ)

Figure 3 shows the syntax of FTJ, which is borrowed from Liquori and Spiwack, who defined
a calculus that is a conservative extension of FJ with minimal syntactic and semantic changes

8

CL ::= class C C C uses TA {C f;K M} Classes
TL ::= trait T uses TA {M} Traits
TA ::= T | TA with {m@n} | TA minus {m} Trait expressions
K ::= C(C f) {super(f);this.f=f;} Constructors
M ::= C m(C x) {↑e;} Methods
e ::= x | e.f | e.m(e) | new C(e) | (C)e Expressions

Figure 3: FTJ Syntax.

to accommodate traits [10]. The only differences with the syntax of FJ are the modification
of class definitions to include a sequence of used traits TA, and the addition of syntax for trait
definitions (TL) and trait expressions (TA). As in FJ, the notation C denotes a possible empty
sequence of elements C (with or without commas, as appropriate; • represents the empty
sequence.) For the sake of conciseness we abbreviate the keywords extends to the symbol C
and the keyword return to the symbol ↑.

Traits cannot specify any instance variables (f), and the methods provided by traits never
directly access instance variables. Instead, required methods are mapped to state when the
trait is used by a class.

With traits, the behavior of a class is specified as the composition of traits and some glue
methods (M) that are implemented at the level of the class (CL) or the composite trait (TL).
These glue methods connect the traits together and can serve as accessor for the necessary
state.

The operational semantics of FTJ specifies a modified method lookup algorithm that
ensures that methods of a class C take precedence over methods provided by any of the used
traits TA. Similarly, methods of a named trait T take precedence over methods provided by
subtraits TA used by T.

Because the composition order is irrelevant, a conflict arises if we combine two or more
traits that provide identically named methods that do not originate from the same trait. TA
is a composition of traits Ti, possibly giving rise to conflicts. Conflicts may be resolved by
overriding them with glue methods M in the class using TA, or by excluding the conflicting
methods. TA minus {m} removes the method named m from the trait expression TA.

In addition traits allow method aliasing. The programmer can introduce an additional
name for a method provided by a trait to obtain access to a method that would otherwise be
unreachable because it has been overridden. TA with {m@n} defines m to be an alias for the
existing method named n. (Note that the aliasing syntax of FTJ (m@n) puts the new name n
after the existing method name m, whereas the aliasing operator (→) expects its arguments
in the reverse order.)

4.2 Flattening FTJ

We have previously developed a simple set-theoretic model of traits [15]. The goals of this
model were to define the trait composition operators, to give an operational account of method
lookup (particularly self- and super-sends), and to develop a notion of equivalence for
traits. The model further makes precise the notion of method conflicts arising during trait
composition, and the notion that a class constructed using traits can always be flattened into

9

lookup(m, M) def=
{

M if M = C m(C x) {↑e;} ∈ M
⊥ otherwise (1)

extract(X, M) def=
∧
m∈X

lookup(m, M) (2)

mNames(M) def= {m | lookup(m, M) 6= ⊥} (3)

trait T uses TA {M}

local(T) = M

trait T uses TA {M}

subtraits(T) = TA
(4)

M− m
def= M\lookup(m, M) (5)

M1 B M2
def= M1, (M2\extract(mNames(M1), M2)) (6)

M[n→m] def=

 (M\lookup(n, M)), conflict(n) if lookup(n, M) 6= ⊥
M, C n(C x){↑e;} else if C m(C x){↑e;} ∈ M
M otherwise

(7)

mBodies(M1, M2)
def= extract(mNames(M1)\mNames(M2), M1) (8)

broken(M1, M2)
def= (mNames(M1) ∩mNames(M2))\mNames(M1 ∩ M2) (9)

M1 + M2
def= mBodies(M1, M2),mBodies(M2, M1), (M1 ∩ M2),∧

{conflict(m) | m ∈ broken(M1, M2)} (10)

where conflict(m) = Object m() {↑⊥; }

Figure 4: Composition operators for FTJ

one that does not use traits.
The trait model defines method dictionaries as mappings from method signatures to

method bodies. A trait is just a method dictionary in which some method names may be
bound instead to >, representing a conflict. Traits may be constructed using the operators +
(composition), − (exclusion), B (overriding) and [→] (aliasing). The key point is that traits
are always composed using the composition operator +, which is associative and commutative
[6], hence insensitive to the order in which traits are composed. Conflicts are resolved by the
composing class by overriding or excluding the conflicts [17]. We shall use this framework for
flattening FTJ.

The flattening property simply states that we can always evaluate the trait composition
operators occurring within a class definition to obtain an equivalent class whose method
dictionary does not refer to traits — that is, the traits can be compiled away. In order to
flatten FTJ programs, we must interpret the parts of the FTJ syntax that represent method
dictionaries and traits, and we must define the trait composition operators for those syntactic
entities. The translation from FTJ to FJ will simply evaluate the composition operators.

Figure 4 presents the trait composition operators interpreted in the context of FTJ. These
operators are used to define the flattening function [[·]] which translates an FTJ class to an

10

[[class C C D uses TA {C f;K M}]] def= class C C D {C f;K M B [[TA]]} (11)

[[TA]] def=
∑

TAi∈TA

[[TAi]] (12)

[[T]] def= local(T) B [[subtraits(T)]] (13)

[[TA with m@n]] def= [[TA]][n→m] (14)

[[TA minus m]] def= [[TA]]− m (15)

Figure 5: Flattening FTJ to FJ

FJ class in Figure 5.
We interpret a sequence of methods M as representing a method dictionary, and sequence

of trait expressions TA as representing a trait composition
∑

i TAi

In order to define the composition operators, we first need a couple of auxiliary functions.
lookup(m, M) (1) returns the declaration of method m in M, if present. ⊥ represents an undefined
method. extract(X, M) (2) returns the subsequence of M containing the definitions of the
methods named in X (where

∧
builds a sequence from its operands — if X is empty, then

extract returns •, the empty sequence). mNames(M) (3) returns the set of method names of
methods declared in M. We will also make use of local(T) and subtraits(T) (4), which return,
respectively, the methods and the subtraits of a named trait T.

The exclusion operator (5) simply removes2 the definition of m from the method dictionary
M. Overriding (6) removes from M2 those methods already defined in M1, and concatenates
what remains to M1. Aliasing (7) simply concatenates an existing method definition for m
under the new name n. If, however, the “new” name n is already bound in M, then a conflict
is generated instead. (If m is absent, then we can just ignore the alias, so that any references
to n will generate errors.) Note that we have chosen here to represent a conflict by the method
body {↑⊥;}. The flattening function will therefore yield a valid FJ program if and only
if all conflicts are resolved. (An alternative approach could be to generate FJ code that is
syntactically valid, but contains a type error, such as a call to a non-existent method.)

Trait composition is slightly more complicated to define. We first define the auxiliary
functions mBodies and broken. mBodies(M1, M2) (8) represents the method declarations in
M1 that do not conflict with any methods declared in M2. M1 ∩ M2 represents the method
declarations that are (syntactically) identical in M1 and M2 (once again abusing set notation
to represent intersection of the method dictionaries). These methods also do not pose any
conflicts. broken(M1, M2) (9) represents the set of names of methods with non-identical decla-
rations in both M1 and M2. These represent actual conflicts. Finally, the composition of M1

and M2 (10) concatenates the non-conflicting and conflicting method declarations.
Now we are ready to define the translation function [[·]] (Figure 5). A flattened class is

2Note that we also adopt the convention initiated by Igarashi et al. [8] of using set-based notation for
operators over sequences: M = C m(C x) ... ∈ M means that the method declaration M occurs in M, whereas
M\M stands for the sequence M with M removed. M1, M2 is the concatenation of the sequences M1 and M2. This
abuse of notation is justified since the order in which the elements occur in M is irrelevant.

11

one in which its locally defined methods override the (flattened) methods of the used traits
(11). Flattening a sequence of FTJ traits or a trait expression always yields a (possibly
empty) sequence of FJ methods. A sequence of traits (12) translates to the composition of
the translation of its parts. The local methods of a named trait (13) override the composition
of its subtraits. Aliasing (14) and exclusion (15) are directly interpreted by the aliasing and
exclusion operators.

5 Extending the Traits Calculus with Interfaces and Generics

Although FTJ shows how we can add traits to a simple language like FJ, it does not address
any of the issues that we outlined in Section 3. Because FJ is not a real language and does
not model features such as concurrency and reflection, it is clearly not an adequate basis to
investigate how one could deal with issues related to compilation, reflection, or debugging.

In addition, FJ has only a very limited type system, which means that many of the type
related issues discussed in Section 3.2 are also not addressed by FTJ, mainly because FJ
does not deal with them either.

In this section we sketch how simple extensions to FJ and FTJ, combined with flattening
of traits for these extended languages can lead us to reasonable design choices for these issues.

5.1 Traits and Types

As should be evident from the syntax of FTJ alone, traits in FTJ do not define types. And
because FJ and FTJ do not model interfaces, this means that only class names may be used
to specify the signature of a method. While this simplifies the theoretical foundation of these
models, it poses serious practical problems because it makes it hard or impossible to write
traits that can be used across multiple classes.

As an example, consider the trait TLinkable shown in Figure 2. Since in FJ and FTJ,
only classes are types, it would not be possible to write this trait in FTJ in a way that is
general enough so that it can be reasonably used for multiple classes such as Link and Process.

The method includes:, for example, conceptually takes as its argument an object of any
class that uses the trait TLinkable (e.g., Link and Process). But unfortunately, FTJ does not
allow us to express this since trait names are not valid types. The only thing that we can do
is to use as the argument type either Link or Process, but this also means that the trait can
only be reasonably used in the chosen class, and it therefore defeats the purpose of putting
the includes: method into a reusable trait in the first place!

One way to avoid this problem would be to extend FTJ so that traits, like classes, also
define types. In the above example, this means that the trait TLinkable will also define a
corresponding type with the same name that can then be used to define the type of the
argument in the signature of the method includes:. However, in order for this to work, we
also need to extend the definition of subtyping in FTJ so that each class that uses the trait
TLinkable is a subtype of the type that is implicitly defined by this trait. And since we want to
flatten FTJ programs to FJ, this means that we need to add this form of multiple subtyping
also to FJ.

Since we need to extend FJ with a form of multiple subtyping anyway, an alternative
approach would be to introduce the notion of interfaces into the calculus. This means that
as in Java and C#, each interface defines an FJ type, and classes as well as traits can be
declared to be subtypes of numerous interface types. Even though traits themselves cannot

12

CL ::= class C C C implements I {S f;K M} Classes
ID ::= interface I C I {SG} Interfaces
S ::= C | I Types
SG ::= S m(S) Method signatures
K ::= C(S f) {super(f);this.f=f;} Constructors
M ::= S m(S x) {↑e;} Methods
ID ::= interface I C I {SG} Interfaces
e ::= x | e.f | e.m(e) | new C(e) | (S)e Expressions

Figure 6: FJI Syntax.

be used as types, this allows us to solve the identified problem because we can declare a
corresponding interface for each trait that should be used as a type. In our example, this
means that we declare an interface ILinkable containing the same method signatures as the
trait TLinkable, and that we then declare all “linkable classes” (in particular all classes that
use the trait TLinkable) as subtypes of ILinkable.

While both approaches, introducing interfaces or using traits as types, require adding
multiple subtyping to the calculi, there are important conceptual differences between these
two approaches. At the first glance, the approach of treating each trait as a type may
seem more convenient in practice, but the presence of exclusions and aliases add a certain
complexity to the subtype relation.

Furthermore, making each trait be a type blurs the important conceptual distinction
between implementation and interfaces, which leads to several problems in the context of a
nominal type system.

• It does not address the fact that in the same way as subclassing does not necessarily
imply subtyping [4], a trait may be composed from another trait without conceptually
being a subtype of it.

• There may be classes that accidentally conform to the type associated with a certain
trait such as TLinkable, but they do not actually use this trait because they follow a
different implementation strategy.

• If there are multiple traits providing different implementations of the same conceptual
interface, we end up with multiple identical types.

To avoid these problems we will use an approach where traits do not define types, and we
use interfaces instead. This is this approach that has been followed by Denier and Cointe in
their implementation of traits with AspectJ [5].

5.2 FJI and FTJI

We will first extend FJ with interfaces, obtaining Featherweight Java with Interfaces
(FJI). Then we define Featherweight-Trait Java with Interfaces (FTJI) as an ex-
tension of FTJ.

The calculus FJI is rather trivial to define. Figure 6 shows the syntax of FJI. The seman-
tics of FJI is almost identical to that of FJ. The rules for Small-step operational semantics

13

S<:S

class C C D implements I {S f;K M}

C<:D ∀i.C<:Ii

S<:S′ S′<:S′′

S<:S′′

interface I C I {SG}

∀i.I<:Ii

Figure 7: FJI Subtyping.

CL ::= class C C C uses TA implements I {S f;K M} Classes
TL ::= trait T uses TA implements I {M} Traits

TA is as in Figure 3 and ID, S, SG, K, M, ID, and e are as in Figure 6.

Figure 8: FTJI Syntax.

and Congruence are unchanged. The rules for Field lookup, Method body lookup, Expression
typing and Class typing require only trivial changes to reflect the new syntax for classes
and types. Finally, the rules for Subtyping, Method type lookup and Method typing require
straightforward extensions to accommodate the fact that interface definitions introduce new
types. As an example, we show the new subtyping rules for FJI in Figure 7.

We show a possible syntax for FTJI in Figure 8. Most of it is as before in FTJ and FJI,
with the difference that classes and traits can now both use traits and implement interfaces.

What does this imply for flattening? The answer is given in Figure 9, which shows the
new flattening function. We flatten classes as before, expanding the methods of all used traits.
The flattened classes additionally implement all the interfaces that are implemented by any
of the used traits. Note that these interfaces are not affected by aliases and exclusions; i.e.,
the flattened classes always implement the interfaces exactly as they occur in the used traits.
This is important because aliases and exclusions are used to glue together the implementa-
tions provided by multiple traits, and because we decided for a strict separation between
implementation and types, this should therefore have no effects on the types.

In FTJI, we can now create an interface ILinkable that contains declarations for all the
necessary methods of the linkable type and is then used as the argument type of methods such
as includes: in the trait TLinkable. In addition, we have to declare all linkable classes to be a
subtype of ILinkable. One way of doing this is to explicitly implement the ILinkable interface
in all these classes. Alternatively, one could implement the interface ILinkable directly in the
trait TLinkable, which means that all classes using this trait will be a subtype of ILinkable
without having to explicitly declare it.

5.3 FGJ and FTGJ

While multiple subtyping allows us to define the signature of the method includes so that it
is not specific to a single class, FTJ still suffers from a lack of expressiveness when it comes
to defining reusable trait methods. As we have pointed out in Section 3.2, this is because the

14

[[class C C D uses TA
implements I {S f;K M}]]

def=
class C C D
implements I interfaces(TA)
{S f;K M B [[TA]]}

(16)

interfaces(TA) def=
∧
i

interfaces(TAi) (17)

interfaces(T) def= I interfaces(TA) (18)
where trait T uses TA implements I {M}

interfaces(TA with {m@n}) def= interfaces(TA)

interfaces(TA minus {m}) def= interfaces(TA)
(19)

The translation of TA is the same as in Figure 5.

Figure 9: A possible flattening of FTJI to FJI

return types of methods such as reverse and getNext are in fact parametric; i.e., they depend
on the class to which the trait TLinkable is finally applied.

Therefore, using an interface such as ILinkable as the return type does not solve our
problem because it would only allow the subset of methods specified in ILinkable — rather
than the set of all public methods — to be called on the return values. For similar reasons,
using an interface for the argument of the methods setNext: and checkAndSetNext: as well as
for to the temporary variables used in the method reverse is not an appropriate solution.

This problem can be addressed by extending FTJ with a generics mechanism such as that
of Generic Java (GJ) [3], recently introduced in Java 1.5. Using generics, we can write the
trait TLinkable with a type parameter that is then used for the return values, the arguments,
and the temporary variables of these methods. And whenever the trait TLinkable is applied
to a class such as Link and Process, we can then pass the type associated with this class as
the concrete parameter (see Section 6 for the corresponding code using C# generics).

In their paper about FJ, Igarashi et al. also present the calculus Featherweight
Generic Java (FGJ) [7], an extension of FJ that models Java with generics. Following
the augmentation from FJ to FGJ, we now define the new calculus FTGJ, which is an ex-
tension of FTJ with generics. We then show how FTGJ can be mapped to FGJ by defining
an extended version of the flattening function from FTJ to FJ shown in Figure 5.

The syntax of FTGJ is shown in Figure 10. The metavariable X ranges over type variables,
S ranges over types, and N ranges over nonvariable types (types other than type variables).
As in FGJ, we write X as a shorthand for X1, . . . Xn (and similarly for S and N), and assume
sequences of type variables contain no duplicate names. We also allow C<>, T<>, and m<> to
be abbreviated as C, T, and m, respectively.

The syntactic extension from FTJ to FTGJ is now analogous to the syntactic extension
from FJ to FGJ. In particular, class definitions, trait definitions, and method definitions
include generic type parameters.

Once the FTGJ syntax is defined, we can now define the flattening-based translation

15

CL ::= class C<X C N> C N {S f;K M TA} Classes
TL ::= trait T<X C N> is {M;TA} Traits
TA ::= T<S> | TA with {m@m} | TA minus {m} Trait expressions
K ::= C(S f) {super(f);this.f=f;} Constructors
M ::= <X C N> S m(S x) {↑e;} Methods
e ::= x | e.f | e.m<S>(e) | new N(e) | (N)e Expressions
S ::= X | N Types
N ::= C<S> Nonvariable types

Figure 10: FTGJ Syntax.

[[class C<X C N> C N {S f;K M TA}]] def= class C<X C N> C N {S f;K M B [[TA]]} (20)

[[TA]] def=
∑

TAi∈TA

[[TAi]] (21)

[[T<S>]] def= local(T, S) B [[subtraits(T, S)]] (22)

[[TA with m@n]] def= [[TA]][n→m] (23)

[[TA minus m]] def= [[TA]]− m (24)

Figure 11: Flattening FTGJ to FGJ

16

lookup(m, M) def=
{

M if M = <X C N> S m(S x) {↑e;} ∈ M
⊥ otherwise (25)

trait T<X C N> is {M;TA}

local(T, S) = [S/X]M subtraits(T, S) = [S/X]TA
(26)

M[n→m] def=

 (M\lookup(n, M)), conflict(n) if lookup(n, M) 6= ⊥
M, <X C N> S n(S x) {↑e;} if <X C N> S m(S x) {↑e;} ∈ M
M otherwise

(27)

where conflict(m) = Object m() {↑⊥;}

Figure 12: Adapted composition operators for FTGJ

from FTGJ to FGJ. This translation is shown in Figure 11. Before we go through the details
of the definitions, it is important to note that this translation does not perform any type
checks. Consequently, this translation produces an FGJ program for any FTGJ program; the
generated FGJ program may however be invalid due to inconsistent use of types3. Because
traits are compiled away in the translation, this means in particular that the bounds of
the type parameters of traits are not taken into account. This has the effect that all type
parameters in trait definitions are actually unbound; a native type system for FTGJ, however,
would use these bounds to perform type-checking of generic traits.

A comparison to the translation from FTJ to FJ (see Figure 5) shows that only the cases
(20) and (22) are changed. While (20) reflects the extended class definition syntax of FTGJ,
the change in (22) was necessary because a trait T that occurs in TA now takes a sequence S of
concrete type parameters. This sequence is then passed as a second argument to an extended
form of composition operators local and subtraits.

Figure 12 defines these two operators together with all the other composition operators
from Figure 4 that needed to be adapted. The most interesting case is (26), where we extend
the rule defining local and subtraits so that they take two arguments T and S, and then
replace the formal parameters in T and its subtraits with S before they return, respectively,
the methods and the subtraits of T. As in FGJ, replacing the formal type parameters is done
using a simultaneous substitution. The other two definitions (25) and (27) are the same as
in Figure 4, except that we use the method syntax of FTGJ instead of FTJ.

6 Applying the Flattening Approach to C#

Here, we examine how the theoretical results developed above can be applied to C#. A
prototype implementation has been realized as a Bachelors project [14].

The code for the example of Figure 1 with this approach is shown in Figure 13. Note
3This means that our translation has a character similar to that of C++ templates, which are only type-

checked after being instantiated.

17

trait TLinkable<T> implements ILinkable
{

public boolean includes(ILinkable other) {
if (this == other) return true;
T tail = list.getNext();
if (tail == null) return false;
return tail.includes(other);

}

public boolean checkAndSetNext(T other) {
if (other.includes(this)) return false;
setNext(other);
return true;

}

public T reverse() {
T result = null;
T list = this;
while (list != null) {

T temp = list.getNext();
list.setNext(result);
result = list;
list = temp;

}
return result;

}

public abstract T getNext();
public abstract void setNext(T other);

}

class Link uses TLinkable<Link> {
. . .

}

class Process uses TLinkable<Process> {
. . .

}

Figure 13: The generic trait TLinkable used in the classes Link and Process

18

B

DC T2

T1A

F

G T1T2

E

Figure 14: Classes: A-G; Traits: T1, T2. A possible overriding is visualized by dashed lines.

that it uses the Java 1.5 syntax extended with the keywords trait and uses, which are used
respectively to declare a trait and to apply a trait.

6.1 Differences between Calculus and Real Language

Although adding traits to FJ is relatively simple, it is another matter to apply traits to a
real language like C#. Many language specific aspects have to be taken into account when
introducing traits to the language. Some differences and problems are shown in the following
paragraphs. More details and some possible solutions have been demonstrated and worked
out in a prototype implementation [14].

6.1.1 Modifiers

As is the case for many other statically typed languages, C# defines a couple of modifiers
to further control and specify access to state and behavior. However, certain modifiers and
maybe even the concept of modifiers don’t sit well with traits and cause some problems.

Inheritance (overriding/hiding) Suppose we have a class hierarchy as shown in Fig-
ure 14. While this poses no problem in typed languages without explicit inheritance modifiers
(e.g. Java), it is problematic in C# as it requires the inheritance modifiers virtual, overriding
and new. However the explicit behavior expressed by these modifiers cannot be be fully used
when using traits. The reason is that methods cannot be declared overriding and override-able
at the same time.

As an example, Trait T1 in the right hierarchy in Figure 14 might implement a method
explicitly declared overriding. However this trait cannot be used like that in the left hier-
archy as T1 doesn’t override anything there, therefore requires either no modifier or virtual.
Applying overriding would cause compilation errors. We could simply overcome this issue by
declaring all T1’s methods virtual. However this changes both implementation’s behavior or
requirements.

Declaring all trait methods to be virtual by default would be a simple solution but it
bypasses the explicit modifier concept of C#. As traits are not supposed to interfere with the
existing language or change the implementation’s behavior this is not a satisfying solution.

19

Accessibility Similar to inheritance modifiers is the problem raised by accessibility, based
on the explicit modifiers public, private, protected, internal and protected internal. Again,
assume a class/trait constellation as shown in Figure 14. Not all behavior a trait provides is
supposed to be declared by the same modifiers, e.g. public. On the contrary other modifiers
might also be appropriate. Furthermore, overriding trait methods must reuse the original
modifier as accessibility cannot change when overriding methods of super-classes. While
these are no issues for using traits it is problematic and inconvenient for the developer as
he must not only keep track about the right modifiers within the class hierarchy but also
about the ones of all used traits and trait compositions. Therefore maintenance effort and
complexity increases for modifiers.

6.1.2 Typing Traits

There are many different kinds of types and type situations we need to take care of when
introducing traits to a statically typed object oriented language. The following abstract code
example shows some typical typing situations. Notice, the type Tx must not necessarily be
the same type for all type situations.

trait TSequenceable {
public Treturn Reverse() {

Ttemporary,return reversedList = new Tinstantiation();
...
return reversedList;

}
public void Concat(Targument c1, Targument c2) {...}

}

Using concrete types (Section 5.1) or interfaces (Section 5.2) for traits is very simple.
However writing generic and reusable code is difficult, in most cases even impossible. This
could lead to further code or trait duplication. The application of such traits is therefore
rather limited and not reasonable in general. Furthermore the limited reusability and its
consequences might contradict the concept of traits.

Introducing type parameters (Section 5.3) to traits as shown in the example of Figure 13
helps us to code more generic, flexible and reusable traits. However, the parameters can be
used to address multiple type situations. Maybe it is even necessary to introduce multiple
parameters to address all of them as one parameter might not cover all type situations at
once. That way we could use traits like templates. However this introduces some complexity
as the developers has to keep track of the way the type parameters are used within the trait’s
implementation.

As an example, in Figure 13 the type parameter is used everywhere the same way but
only to address the type of the class the trait is attached to (“self-reference”). We could also
use the type parameter to address any other type or type situation.

A problem happens when classes using parameterized traits have generic type parameters
on their own as it might be the case in C#. Using type parameters as a “self-reference” like
in Figure 13 is still possible and would cause the following lines to be coded.

trait TLinkable<T> { ...}

20

class Link<T> uses TLinkable<Link<T>> {... }

This is a rather complicated way to reference the class the trait is applied to. The reason
is the generic class Link <T> cannot simply be addressed by Link like in Figure 13 as that
would reference a completely different class. Besides, in this example it is not possible to use
the generic type parameter of the class within the trait — which might be necessary in some
cases. Nevertheless, like this we could use the same traits for generic and for non-generic
classes in an uniform way.

If we need “access” to the generic type parameters of the class within the trait, we could
define an additional parameter for the trait. However this is not a very clean an uniform
solution causing confusion about the application of parameters. On the other hand, we could
also define a trait to expect a generic class as type parameter.

trait TLinkable<S<T>> { ...}
class Link<T> uses TLinkable<Link<T>> {... }

However this introduces even more complexity about declaration. Besides the reuse of
such traits would be limited again and they couldn’t been used by non-generic classes.

Another possible solution is to have parameterized traits having a placeholder to enable
a “self-reference”. In that case, we suggest to use the identifier of the trait or a keyword like
selftype.

trait TSequenceable<T> {
public TSequenceable Reverse() { ... return TSequenceable; }
public void Concat(TSequenceable c1, TSequenceable c2) {...}

}

Like this we are able to use a “self-reference” (but this is not mandatory) and also reuse
the generic type parameters of a generic class. This leads to a uniform application of the
type parameters for generic applications. However someone might also “abuse” the type
parameter to refer to any other type, using the trait like a template. Although this promotes
high flexibility the resulting trait model is a bit confusing as types and type parameters might
be used in many ways. Furthermore traits might not be shared among generic and non-generic
classes either.

6.2 Implementation

The C# language and compilers are rather complex and the application of the calculus to
C# causes some troubles (as described in the previous section). Therefore we decided to do
the implementation of traits in C# as a pre-processor based on an inline expansion without
modifying the language or any compiler. This way the resulting extension in C#, called
C#T, is a very simple implementation and stays flexible and open to changes, easily. As
a prerequisite we implemented a trait-aware but heavily simplified and stripped-down C#
parser.

21

6.2.1 Traits and trait composition

To enable traits in regular C# classes, we first added a uses-declaration to the class body to
reference traits and to provide aliasing (→) and exclusion (ˆ) for conflict resolution as shown
in the following example.

class Circle : IShape {
uses {

TColor { equals(IColor) → colorEquals(IColor); ˆequals; };
TCircle;

}
}

Although this solution doesn’t follow typical syntax declaration rules of statically typed
languages, it is simple and suits well any typed language. Especially as it doesn’t cause any
further “overload” of type declarations as this is often the case in such languages.

As an example, assume the generic class Link from Figure 13 having generic parameters,
maybe some constraints on these. Besides it might extend a class or implement interfaces,
using multiple traits with aliasing or exclusion. The resulting type declaration would be
rather hard to “decipher”.

class Link<T> extends AbstractLink implements iLink
uses TLinkable<Link<T>> { reverse() → reverseLink; ... } ... { ... }

Furthermore traits are defined exactly the same like classes, using a newly introduced
unique keyword trait instead of class. A trait might contain a uses-declaration to enable trait
composition as well as a requires-declaration to specify requirements towards the class. The
body of a trait is a set of regular non-abstract methods and operators (we regard an operator
as a special method).

trait TCircle {
uses { TShape; }
requires { double radius(); }

. . .
}

}

Traits can be put into namespaces (like classes) and be placed each into a separate file. A
file can even hold multiple traits. However, a file must not contain traits and classes (or any
other types) at the same time. The syntax for enabling generics is the same as for classes in
C# using <...>.

6.2.2 Flattening Traits using inline expansion

As the uses-declaration is designed as a member of the class and not as part of the class’
declaration, the inline process only needs to substitute the uses-declaration by the method
definitions retrieved from the referenced and flattened traits.

The flattening/inline expansion of traits is realized as a direct recursion on the traits
and their uses-declaration, propagating methods and requirements from one level to the next
higher one. The process terminates when all traits have been flattened into the class.

A debugger pops-up in case of unsolved trait conflicts, unfulfilled requirements or any
other conflict that might be detected during the process. Although the debugger capabilities

22

are limited it gives some information where and why errors occurred. After a successful
preprocessing the resulted source code contains the trait-methods and a comment on each.
These sources can be compiled using any existing C# compiler. There is no debugging support
on traits for the compilation process.

6.2.3 Adaptations for the C#T prototype

Beside enabling plain traits, we decided to add some language-specific aspects to the proto-
type and adapt these to traits. Some of them are optional, others are necessary to achieve a
reasonable implementation.

First of all, the prototype does not only allow classes to use traits but also structs and other
C# types. It supports generic and non-generic types. The same for traits. Besides, libraries
can be used by traits (in the same way they’re used by regular types) and get automatically
propagated to types. Furthermore, traits might implement interfaces (Section 5.2), causing
the class implementing these interfaces.

However, the prototype does not yet implement an applicable or satisfying solution to
the modifier and typing issues mentioned in Section 6.1. For simplicity, type parameters in
parameterized traits (generic traits) always refer to the generic type parameters of a generic
type and cannot be used for other types. That means, using traits like templates is not pos-
sible in the current implementation.

To make the prototype usable despite some issues, we implemented some simple compiler
checks to “guarantee” the preprocessing results in compilable code. More details about the
implementation are discussed in [14].

6.3 Evaluation

Implementing traits in a statically typed object oriented language like C# is conceptually
simple. However the realization proves to be rather problematic as solutions are either am-
biguous, non-uniform or rather complex contradicting the concept and simplicity of traits.

Especially typing traits and introducing generics to traits is not trivial. Type parameters
enable flexible traits and code reuse. However they also cause difficulties in finding a uniform
but simple model for generic and non-generic use. Mostly, simple solutions are not flexible
enough and vice versa. Anyway using type parameters increases implementation complexity
which somehow contradicts the concept of traits.

There are also issues about modifiers, a common concept for statically typed languages.
Accessibility modifiers must be used in an uniform way (e.g. public only) as they would
cause a higher complexity in the implementation. However this might not fit the concept of
accessibility in statically typed object-oriented languages.

Furthermore, overriding and hiding are explicit in C#. Without introducing higher com-
plexity and effort in implementation or declaration, this would cause the developer to declare
all methods to be virtual.

As the theory cannot help in finding a satisfying solution, further research has to be done
to address the typing and modifiers issues. The prototype implementation now gives us a
good and easy tool in trying out various strategies and solutions as well as evaluating these

23

class SyncA : public A
{

public:
virtual int read() {

acquireLock();
result = A::read();
releaseLock();
return result;

};
virtual void write(int n) {

acquireLock();
A::write(n);
releaseLock();

};

protected:
virtual void acquireLock() {

// acquire lock
};
virtual void releaseLock() {

// release lock
};

};

Figure 15: The class SyncA in C++

against real applicability. However, some compromises might be needed to enable traits in
statically typed object-oriented languages.

7 Implementing Traits in C++ using MI and Templates

The language C++ [20] is quite unique regarding its composition mechanisms: it features
native support for multiple inheritance and also supports mixins by means of classes with a
parameterized superclass (i.e., templates). In this section, we first give a brief overview of
these composition mechanisms. Then we analyze whether and how it would be possible to
express traits and trait composition in C++ as a combination of these two mechanisms.

7.1 Multiple Inheritance in C++

As suggested by its name, C++ multiple inheritance allows a class to inherit from more than
one (direct) superclass. As with traits, the C++ multiple inheritance operation is symmetric,
which means that all the (direct) superclasses of a class have the same precedence and conflicts
have to be resolved explicitly.

A distinctive feature of multiple inheritance in C++ is that the programmer has a certain
amount of control over a diamond situation. If a base class (that is, a superclass) is declared
to be virtual, the base class is shared and attributes are inherited only once4.

4In his description of C++ [20], Stroustrup uses the term “mixin” for a class that overrides methods of a

24

class SyncReadWrite
{

public:
virtual int read() {

acquireLock();
result = directRead();
releaseLock();
return result;

};
virtual void write(int n) {

acquireLock();
directWrite(n);
releaseLock();

};

protected:
virtual void acquireLock() {

// acquire lock
};
virtual void releaseLock() {

// release lock
};

virtual int directRead() = 0;
virtual void directWrite(int n) = 0;

};

Figure 16: The class SyncReadWrite implemented with two abstract methods

While this provides help for avoiding conflicts and ambiguities in a diamond situation,
it does not help us to solve the problem of factoring out generic wrappers [17, 15]. This
means that with C++ multiple inheritance, it is difficult to factor out wrapper methods (i.e.,
methods that extend other methods with additional functionality) as reusable classes.

As an example, assume that a class A implements two methods read and write that provide
unsynchronized access to some data. If it becomes necessary to synchronize access, we can
create a class SyncA that inherits from A and wraps the methods read and write. That is,
SyncA defines new read and write methods that call the inherited methods under control of a
lock. Figure 15 shows the implementation of SyncA in C++.

Now suppose that class A is part of a framework that also contains another class B with
read and write methods, and that we want to use the same technique to create a synchronized
version of B. Naturally, we would like to factor out the synchronization code so that it can
be reused in both SyncA and SyncB.

With multiple inheritance, sharing code among different classes means (directly or indi-
rectly) inheriting from a common superclass that contains the code to be shared. Therefore,
if we want to share the synchronization code in SyncA to create another synchronized subclass
SyncB of B, we need to factor this code into a new class SyncReadWrite and then make it the

virtual base class. This definition of “mixin” differs from that used in this paper and in most of the research
literature.

25

class SyncA : public A, SyncReadWrite class SyncB : public B, SyncReadWrite
{ {

public: public:
virtual int read() { virtual int read()

return SyncReadWrite::read(); return SyncReadWrite::read();
}; };
virtual void write(int n) { virtual void write(int n) {

SyncReadWrite::write(n); SyncReadWrite::write(n);
}; };

protected: protected:
virtual int directRead() { virtual int directRead() {

return A::read(); return B::read();
}; };
virtual void directWrite(n) { virtual int directWrite(n) {

A::write(n); B::write(n);
}; };

}; };

Figure 17: Code duplication in the classes SyncA and SyncB

superclass of both SyncA and SyncB.
Unfortunately, multiple inheritance alone is not expressive enough to do this. The problem

is that the calls to the superclass versions of read and write are statically bound and can refer
only to a superclass of SyncReadWrite. Therefore, the class SyncReadWrite cannot explicitly
call the unsynchronized versions of the methods read and write provided by its subclasses A
and B.

As a workaround, one would have to modify the methods read and write in SyncReadWrite
so that the explicit calls to the superclass methods are replaced by calls to abstract methods
directRead and directWrite (Figure 16), which will then be implemented by the subclasses
SyncA and SyncB (Figure 17). This solution is still far from satisfactory, since it requires du-
plication of four glue methods in each subclass. Furthermore, avoiding name clashes between
the synchronized and unsynchronized versions of the read and write methods makes this ap-
proach rather clumsy, and one has to make sure that the unsynchronized methods directRead
are not publicly available in SyncA and SyncB.

7.2 Template-based Mixins in C++

Unlike the generics mechanisms of most other languages such as Java and C#, the C++
template mechanism allows the programmer to write classes with generic superclasses. As
shown by VanHilst and Notkin [21, 22] as well as Smaragdakis and Batory [18, 19], this
enables the programmer to express a mixin as a class with a generic superclass. Thus, the
C++ programmer can avoid the limitation of multiple inheritance with regard to wrappers
by using mixins instead.

In the previous example, this means that the synchronization code can be written as a
generic class MSyncReadWrite. This generic class can then be used to create the classes SyncA
and SyncB by applying it to the superclasses A and B, respectively. The corresponding code

26

template <class Super>
class MSyncReadWrite : public Super {

public:
virtual int read() {

acquireLock();
result = Super::read();
releaseLock();
return result;

};
virtual void write(int n) {

acquireLock();
Super::Write(n);
releaseLock();

};

protected:
virtual void acquireLock() {

// acquire lock
};
virtual void releaseLock() {

// release lock
};

};

class SyncA : public MSyncReadWrite<A> {};

class SyncB : public MSyncReadWrite {};

Figure 18: Synchronization expressed as a mixin

27

template <class Super>
class MLogOpenClose : public Super {

public:
virtual void open() {

Super::open();
log(”Opened”);

};
virtual void close() {

Super::close();
log(”Closed”);

};
virtual void reset() {

// reset logger
};

protected:
virtual void log(char* s) {

// write to log
};

};

class MyDocument : public MSyncReadWrite<MLogOpenClose<Document>> {};

Figure 19: The class MyDocument built from two mixins

is shown in Figure 18.
Apart from the fact that C++ mixins are explicitly written as generic classes, this ap-

proach is identical to ordinary mixins []. Therefore, it is not surprising that it solves our prob-
lem without any code duplication, but also suffers from the linearization problems pointed
out previously as soon as multiple mixins are composed.

As an example, assume that we want to combine the mixin MSyncReadWrite with another
wrapper mixin MLogOpenClose to create a new class MyDocument, which differs from its
superclass Document in that it synchronizes all the calls to the methods read and write, and
logs all the calls to the methods open and close. Unfortunately, this requires the programmer
to choose an order for the two mixins. In the code shown in Figure 19, we decided to apply
the mixin MSyncReadWrite last, which means that it overrides all the features of the other
mixin MLogOpenClose. This is not a problem as long as the two mixins do not implement
conflicting features. But it does make the whole hierarchy fragile with respect to changes: if
the mixin MSyncReadWrite is changed so that it also provides a method reset, then this new
method will implicitly override the implementation provided by MLogOpenClose and hence
break our class MyDocument.

7.3 Traits in C++

Traits resulted from the attempt to design a composition mechanism that combines the ben-
eficial properties of both multiple inheritance and mixins. Since both these mechanisms are
supported in C++, this poses the interesting question whether it is possible to express traits
and trait compositon in C++ by combining multiple inheritance with templates.

28

Document

MLogOpenClose<Document>

MSyncReadWrite<MLogOpenClose<Document>>

MyDocument

Figure 20: Using C++ templates to simulate mixin composition

Document

TLogOpenClose<Document> TSyncReadWrite<Document>

MyDocument

virtual virtual

Figure 21: Using C++ templates and virtual base classes to simulate trait composition

It turns out that this is indeed possible. The trick is that instead of expressing the reusable
entities as generic classes and composing them into a linear inheritance hierarchy by template
instantiation as suggested by VanHilst and Notkin [21, 22] as well as by Smaragdakis and
Batory [18, 19], we express them as classes with a virtual generic base class and then compose
them into a parallel hierarchy using multiple inheritance.

The conceptual difference between these two approaches is illustrated in Figures 20 and 21.
Figure 20 shows how the class MyDocument is derived from the class Document by a nested
instantiation of the templates MLogOpenClose and MSyncReadWrite, which leads to a linear
hierarchy. In contrast, Figure 21 shows how MyDocument is built from two templates TLo-
gOpenClose and TSyncReadWrite, which are both applied to the class Document and are then
composed using multiple inheritance.

The implementation of the template-based traits TSyncReadWrite and TLogOpenClose is
shown in Figure 22. Since the method bodies are omitted in the figure, it is important to note
that the methods in TSyncReadWrite are identical to the ones in the mixin MSyncReadWrite
(Figure 18). In fact, the only difference between C++ mixins and the corresponding traits is
that the traits declare their generic base classes to be virtual.

Declaring the base class to be virtual is crucial as it would otherwise not be possible
to correctly compose the traits using multiple inheritance. This is because composing these
two traits means instantiating them with the same base class Document and then combin-
ing them using multiple inheritance. According to the semantics of virtual base classes [20],

29

template <class Super>
class TLogOpenClose : virtual public Super {

public:
virtual void open() { . . . };
virtual void close() { . . . };
virtual void reset() { . . . };

protected:
virtual void log(String s) { . . . };

};

template <class Super>
class TSyncReadWrite : virtual public Super {

public:
virtual int read() { . . . };
virtual void write(int n) { . . . };
protected:
virtual void acquireLock() { . . . };
virtual void releaseLock() { . . . };

};

class MyDocument : public TLogOpenClose<Document>,
public TReadWriteSync<Document> {

. . . // glue methods
};

Figure 22: Implementing MyDocument as the composition of two “C++ traits”

30

the resulting diamond situation has the key properties known from traits: the common base
class Document is inherited only once, and methods in the traits TLogOpenClose and TSyn-
cReadWrite override methods inherited from the common base class Document, while they are
overridden by methods in the common subclass MyDocument. Furthermore, methods that
are implemented by both traits TLogOpenClose and TSyncReadWrite result in a conflict that
needs to be resolved in the subclass MyDocument.

C++ allows one to express composite traits by nesting the templates that represent traits.
As an example, we can write a new trait TLogAndSync as a template class that is parameter-
ized by super and inherits from the virtual base classes TLogOpenClose and TReadWriteSync,
which are both instantiated with the new parameter super.

template <class Super>
class TLogAndSync : virtual public TLogOpenClose<Super>,

virtual public TReadWriteSync<Super> {};

A difference between traits and their C++ approximation is the fact that C++ supports
only one of the three composition operators of traits: it can express trait sum (+) but not
alias (→) or exclusion (−). Whereas aliases can be simulated by disciplined use of the scope
modifier ::, this is not the case for exclusion. This means that instead of excluding one or
more conflicting methods from a composition, C++ requires the programmer to resolve every
conflict by overriding the conflicting methods. While this may result in the same runtime
behavior, it is not equivalent from a compositional point of view. When using exclusion,
the introduction of a new conflicting method always leads to a conflict that requires explicit
resolution, for example by excluding the new method. This is not the case for overriding in
C++, where a newly occurring conflict is implicitly overridden by the old conflict resolution
code.

7.4 Evaluation

Implementation Characteristics. Generalizing the above findings, we can say that C++
allows one to express trait-like composition by using a combination of nested templates and
multiple inheritance with virtual base classes. But what does this kind of trait implementation
mean for the issues we outlined in Section 3?

Since traits are represented as template classes with a virtual, parameterized superclass,
they essentially have the same properties as all other template classes in C++. Since C++
does not have binary run-time extensibility, traits can’t be distributed and linked as a library.
The source code of traits must be present at compile time in their entirety.

Consequently, C++ traits cannot be compiled separately; instead, each trait is compiled
in context of all the classes where it is actually used. This means that using a trait in
many different classes can lead to a significant duplication in object-code, even though many
compilers try to reduce this overhead by compiling only the trait members that are actually
used in a certain class.

Also regarding error detection at compile time, traits inherit the properties of templates.
Since there is no separate compilation of traits, many errors in a trait are only detected when
it is actually applied to a class. Compilers tell the programmer whether an error occurred in
a trait (template) or in a class that uses the trait. However, as for all templates, traits suffer
from the problem that error messages are often quite verbose and hard to understand.

31

Since C++ templates are not types, neither are traits. This is quite crucial because it
means that it is completely up to the programmer to establish appropriate subtype relations.
One way of doing this is to represent trait types as abstract classes and to declare subtype
relations by (multiply) inheriting from these classes. This is similar as the approach described
in Section 5.2, where we suggest a complete separation between the implementation of traits
and types. In particular, if a trait is declared to be a subtype of a certain type (by inheriting
from the corresponding abstract class), all classes that use this trait are subtypes of this type
as well.

Since many of the recent C++ debuggers support debugging of templates, C++ traits
can be debugged as well. This means that any of the debugging operations such as setting
breakpoints can be used for traits in the same way as they are used for classes.

Conceptual Complexity. Besides the fact that C++ traits inherit some of the problematic
characteristics associated with C++ template classes, the approach of simulating traits with
C++ templates and multiple (virtual) inheritance also leads to more conceptual problems
when compared with traits as a stand-alone composition mechanism.

We first observe that although C++ does not support the complete set of trait composi-
tion features, expressing traits in C++ can be achieved only by using a quite sophisticated
combination of advanced language mechanisms such as nested templates and virtual base
classes. As a consequence, using traits in C++ not only requires one to have a deep un-
derstanding of these mechanisms, but it also requires a lot of coding discipline to achieve
the robustness benefits promised by the traits mechanism. As an example, the programmer
has to avoid using nested scope modifiers (e.g., Super::Super::reset()) to avoid fragility with
respect to (distant) changes in the class and trait hierarchies. Similarly, one has to factor
out all direct accesses to an overridden trait method into a single accessor method that is
then called from all the other methods that require access to the overridden functionality.
This avoids the fragility that arises if explicit calls to trait methods (e.g., TColor::rgb()) are
scattered throughout the source code of multiple methods.

The intrinsic complexity may be part of the reasons why this particular combination of
C++ mechanisms was, to the best of our knowledge, not previously identified and suggested
as a general composition idiom in C++. This is similar to template-based mixins in C++,
which were scientifically investigated and described by VanHilst and Notkin [22, 21] as well
as by Smaragdakis and Batory [18, 19] only after mixins were proposed as a fundamental
composition mechanism by Moon [11] and later analyzed by Bracha and Cook [2]. As noted
by VanHilst [22], templates were previously used, for example in the C++ Standard Template
Library (STL) [12], for genericity (i.e., writing data structures such as collections that can
be used in the context of different types), but not for role composition using inheritance.

8 Implementing Traits in Squeak/Smalltalk

Our primary implementation of traits is in the Smalltalk dialect Squeak. Because Squeak
is dynamically typed, reflective, and purely object-oriented, such an implementation is quite
different from what we described so far. Although these differences make it hard to directly
adapt the Squeak implementation strategy to less dynamic languages, it certainly does not
hurt to understand the basic principles of this implementation. Also, it is interesting to see
how the Squeak implementation deals with the issues stated in Section 3.

32

8.1 Implementation Overview

Squeak is a purely object-oriented programming language based on Smalltalk-80. This means
in particular that all Squeak language concepts such as classes and methods are first class
objects; they are instance of classes and can be manipulated in the exact same way as all
other objects. As a consequence, the task of adding traits to Squeak could be performed
entirely in Squeak itself, and it consisted of two parts. First, we extended the kernel so that
it can represent traits and trait composition. Then we made sure that instances of classes
composed from traits exhibit the runtime behavior specified by the traits model.

Representing traits and trait composition. To make sure that classes can actually be
composed from traits, we first extended the implementation of classes to include an additional
instance variable to contain the information in the composition clause. This variable defines
the traits used by the class, as well as any exclusions and aliases. Based on this extended
definition of classes, we then also introduced a representation for traits. This means that a
trait is essentially stripped-down class that can define neither state nor a superclass.

Flattening traits at composition time. In Squeak, each class holds a reference to a
method dictionary, which is a hash table that includes all the class’ methods in form of bindings
form a method selector to the actual method object containing the byte-code. Together with a
class’ superclass, the method dictionary is what the virtual machine uses to perform a method
lookup. Whenever a message is sent, the lookup algorithm first checks whether the message
selector can be found in the message dictionary of the receiver’s class. If so, the lookup
returns the associated method. Otherwise, the lookup continues in the class’ superclass (or
terminates if there is no superclass).

Based on this infrastructure, we achieved the correct runtime behavior by flattening the
traits structure of each class at composition time. This allows us to ignore the traits structure
at runtime and use the ordinary method lookup algorithm that takes only the (flattened)
method dictionaries of classes into account.

The flattening process affects the method dictionary of a class C that is composed from
at least one trait as follows.

• The method dictionary of C is extended with an entry for each provided trait method
that is not excluded, is not overridden in C, and does not conflict with another method.

• For each alias that does not conflict with another method, we add to the method
dictionary of C a second entry that associates the new name with the aliased method.

• For each conflicting method, we add to the method dictionary of C an entry that asso-
ciates the method selector with a special method representing a method conflict.

Since compiled methods in traits do not usually depend on the location where they are
used, the CompiledMethod objects (i.e., the byte-code) can be shared between the trait that
defines the method and all the classes and traits that use it. The only exception is the methods
that use the keyword super because they store an explicit reference to the superclass in their
literal frame. Therefore, these methods need to be copied with the entry for the superclass
changed appropriately. This copying could be avoided by modifying the virtual machine to
that it computes super when needed, rather than reading it from the literal table for the
method.

33

8.2 Evaluation

Our experience with Squeak shows that implementing traits in a purely object-oriented and
dynamically typed single inheritance language like Squeak is unproblematic. Although our
implementation is quite straight-forward it avoids most of the issues stated in Section 3.

One reason for this is that we introduced a first-class representation of traits in Squeak.
This does not only allow us to compile traits separately, but it also leads to a full integration of
traits into the reflective infrastructure of Squeak. This makes it possible to ask, for example,
what traits are used by a class (or another trait), what methods are provided and required in
a trait, and what trait methods are aliased or excluded in a certain composition. Because the
Squeak debugger is based on the reflective infrastructure, making the debugger traits-aware
is straight-forward and only requires minor changes (mainly of the debugger’s user interface).

Because Squeak methods and method dictionaries are first class objects, and because
methods that do not directly access class or instance variables are usually independent of
their class, most trait methods can be shared among all the classes (and traits) where they
are used. (For the reason explained above, the only exception are methods containing sends
to super, which are relatively rare.)

This leads to a nearly ideal solution for the trade-off between program size and execution
speed: while only a very small percentage of the code in traits needs to be duplicated, a
program with traits exhibits the same performance as the corresponding single inheritance
program in which all the methods provided by traits are implemented directly in the classes
that use those traits5. This is especially remarkable because our implementation did not
introduce any changes to the Squeak virtual machine, which lead to a very small engineering
effort.

Finally, because Squeak is a dynamically typed language, all the issues related to static
types are avoided in the first place.

9 Other Implementations

9.1 Traits in Scala

Traits are a built-in language mechanism of the language Scala [13], a modern multi-paradigm
programming language designed to express common programming patterns in a concise, el-
egant, and type-safe way. The traits adaptation of Scala is particularly interesting as Scala
is a statically typed language with a type system similar to the ones of Java and C#. In the
current version, Scala programs can be compiled either to Java or the .NET platform.

9.1.1 Declaring and Composing Traits.

Scala traits are modeled as abstract classes that do not encapsulate state, neither in the
form of variable definitions nor by providing a constructor with parameters Consequently,
trait declarations have the same form as class declarations except that the keyword class is
replaced by the keyword trait. As an example, consider the definition of a trait Emptiness
providing a method isEmpty, which is defined in terms of an abstract method size:

5The only performance penalty results from the use of accessor methods, but such methods are in any
case widely used in Smalltalk because they improve maintainability. Modern JIT compilers routinely inline
accessors, so we feel that requiring their use is now entirely justifiable.

34

trait Emptiness {
def isEmpty: Boolean = size == 0;
def size: int;

}

In order to apply a number of traits to a class, Scala offers the optional with declaration
that follows the class name and an optional extends declaration specifying the class’ superclass.
As an illustration, consider the definition of a class IntSet that inherits from ScalaObject and
uses the two traits Emptiness and Testing:

class IntSet extends ScalaObject with Emptiness with Testing {
. . .

}

The semantics of with T1 with T2 is the same as that of uses T1 + T2 in the Squeak
implementation (and our formal model []): the composition is symmetric (i.e., the order of
the traits does not matter) and conflicts need to be resolved explicitly. Note, however, that
conflict resolution is less flexible in Scala because it does not feature exclusion and aliasing.

An interesting feature of Scala is that traits cannot only be composed but can also be
inherited, which is a consequence of the fact that Scala traits are just special classes. This
means that both classes and traits can be defined as an extension of other traits. For example,
Scala allows one to define a trait B that inherits from a trait A and uses the two traits U and
V:

trait B extends A with U with V {
. . .

}

The semantics of this construct is the same as if A and B were classes: local methods
in B override methods in U and V, which in turn override methods inherited from A. This
form of trait inheritance allows the programmer to establish partially ordered compositions
of traits: features of trait B override all equally named features of trait A. It also allows the
programmer to use the keyword super in the trait B to access (overridden) methods defined
in A, which somewhat compensates for the missing alias operator.

In this context, it is important to note that in Scala, a super-send super.foo() that occurs
in a trait B is only valid if B inherits from another trait A that implements (or inherits) the
method foo. If the method foo inherited from A is abstract, the super-send super.foo() in B
has the semantics known from super-sends in our traits: it will refer to the method foo in the
superclass of the class to which B will eventually be applied.

9.1.2 Integration into the Type System.

The most interesting aspect of the Scala adaptation of traits is the fact that they are fully
integrated into Scala’s static type system. Because Scala traits are modeled as a abstract
classes, each trait, like each class, also defines a type. This is important because it means
that in Scala, traits without any concrete methods play the roles of interfaces, and Scala
therefore does not have a separate notion of interfaces.

The Scala type system supports generics in a similar but even more expressive way than
Java 1.5. This is important for the integration of traits, because it allows the programmer
to express generic traits without having to introduce any trait-specific additions to the type

35

system. Instead, generic traits are written in exactly the same way as are generic classes.
As an example, consider the fully abstract trait Set, which is parameterized with a type
parameter T that corresponds to the type of the set’s elements:

trait Set[T] {
def includes(x: T): Boolean;
def add(x: T): Set[T];
. . .

}

9.1.3 Implementation Characteristics.

In the current version of Scala, traits cannot be compiled separately; instead, traits are
compiled together with the classes where they are used. This means on one hand that the
object-code of traits is duplicated in all these classes. It also means that whenever a class
uses a trait, the actual source code of the trait must be available at compile time.

Currently, Scala programs are debugged using debuggers of their native platforms (Java
and .NET). Because traits (as well as the other Scala specific features) are compiled away at
that level, these features are not directly represented when debugging. The same holds for
reflection, which is not yet supported on the level of Scala.

As far as the issues regarding static typing are concerned, the integration of traits in Scala
is quite pragmatic. The basic idea is that traits are just a special form of abstract classes,
which cannot encapsulate state, neither in the form of variable definitions nor by providing
a constructor with parameters. Consequently, traits “inherit” most of the characteristics of
classes and these two concepts can be handled in a very uniform way.

In particular, this means that each trait defines a type and that trait composition defines
a subtype relationship on these types. (Note that Scala avoids the problems related to the
question of how the subtype relation should be defined in presence of aliases and exclusions
because these operators are not supported in Scala.) Because traits enable a form of multiple
subtyping in a very similar way as interfaces do in Java or C#, Scala does not support the
notion of interfaces. This means that instead of interfaces, the Scala programmer can use
traits that contain only abstract methods.

While this unification of interfaces and traits simplified the language by reducing the
number of language concepts, it somewhat blurs the conceptual difference between imple-
mentation and interfaces and can lead to the problems outlined in Section 5.1. Together with
the fact that Scala traits can be generic, this unification leads to a very practical solution
that avoids most of the expressiveness issues stated in Section 3.2.

9.2 Traits in VisualWorks

VW Traits is an implementation of traits for VisualWorks [23] by Terry Raymond. Although
VisualWorks is like Squeak a dialect of Smalltalk, there are essential differences between
VW Traits and our Squeak based implementation of traits. A major difference is that VW
Traits can include state, which means that they can specify instance variables, class instance
variables, and shared variables. When a trait is used in a class, the variables defined in the
trait will be added to the ones defined in the class. However, unlike with methods, identically
named variables are unified and do not cause conflicts. If a class C uses two traits T1 and
T2 that both specify a variable x, only one variable x is added to the class, and all references

36

to x in methods of T1 and T2 are bound to this variable. Similarly, if C defines or inherits a
variable x and uses a trait that defines another variable x, these two variables are unified.

While unification of variables makes the use of traits defining variables very straightfor-
ward, it is somewhat problematic because it can easily lead to unexpected behavior when
a class uses two traits that provide identically named variables that are used for different
purposes. Because the variables are unified rather than causing a conflict, this problem may
not be detected at composition time.

Another distinctive feature of VW Traits is that they support “policy objects” that deter-
mine what action to take when particular composition situations occur. By defining additional
policies, the programmer can for example specify how to resolve certain conflicts. A drawback
of VW Traits is that they do not support the alias operator, which makes it had to implement
certain glue methods without code duplication.

Regarding the implementation, the biggest difference between VW Traits and traits in
Squeak is that VW Traits do not reuse CompiledMethod objects. Instead, the source code
of a trait method is copied to each client class and recompiled in the class when the trait
is installed. This means that both the source code and the byte-code of trait methods are
duplicated when the trait is applied to a class. The reason for this implementation strategy
is twofold. First, the VisualWorks virtual machine does not permit one to execute a method
that has not been compiled specifically for the class of the receiver. Second, because methods
in a VW Trait can contain instance variable references, they need to be recompiled to update
the instance variable offsets.

VW Traits are merged into client classes using a “trait specification”. Unlike our composi-
tion clause, which is part of the class definition, this trait specification is a “pragma method”
that identifies the trait to be merged and the package that is to contain the merged methods.
The trait specification allows the programmer to exclude certain trait methods by adding
them to the list of excluded methods.

9.3 Traits in Perl 5

Inspired by our initial publication on traits [17], Stevan Little ported traits to Perl 5. His
implementation closely conforms to the description of traits in our first publication []. In
particular, it supports all three trait composition operators (sum, alias, exclusion), it allows
one to express required methods, and it requires one to explicitly resolve all method conflicts.

Unlike the purely object-based language Smalltalk, Perl 5 is not fundamentally object-
oriented. Instead, Perl models objects as references that know what class they belong to.
Classes are expressed as packages, and methods are subroutines that expect an object refer-
ence to the receiver as the first argument.

Following these principles, Perl traits are also expressed as packages. As an example
consider Figure 23, which shows the Perl implementation of the trait TSyncReadWrite (cf.
the corresponding C++ implementation is discussed in Section 7.1 and shown in Figure 16).
On the first line, we begin the trait definition by declaring the package where the trait resides
(i.e., the name of the trait). The second line declares this package to be a trait by using
the package base from the module Class::Trait. This is necessary in order to be able to
properly resolve all method calls. After declaring the requirements, the trait implements the
synchronized versions of the methods read and write.

Using this trait the synchronized class SyncA can be derived from the base class A as shown
in Figure 24. (See Section 7.1 for the corresponding implementations using C++ templates.)

37

package TSyncReadWrite;

use Class::Trait ’base’;

our @REQUIRES = qw(read write);

sub read {
my ($self) = @ ;
$self->acquireLock();
my $result = $self->SUPER::read();
$self->releaseLock();
return $result;

}

sub write {
my ($self, $n) = @ ;
$self->acquireLock();
$self->SUPER::write($n);
$self->releaseLock();

}

sub acquireLock() { . . . };

sub releaseLock() { . . . };

Figure 23: The trait TSyncRead in Perl

Again, the first line starts the class definition by declaring a new package that is named after
the class. Then, we declare that the new class SyncA inherits from the base class A using the
trait TSyncReadWrite.

The fundamental differences between Perl and Smalltalk is reflected in the actual imple-
mentation of traits in these two languages. A detailed description of the Perl implementation
is outside the scope of this paper. We note only that like the Smalltalk implementation, the
Perl implementation is also based on flattening the trait structure at compile-time: i.e., for
each relevant trait method, the class’ symbol table is extended with an entry that refers to
the original trait method.

9.4 Traits in Fortress

The Fortress Programming Language is a general-purpose, statically checked, nominally
typed, component-based programming language designed for producing robust high-performance
software with high programmer productivity.

9.4.1 The Fortress Object Model.

The Fortress object model has two basic concepts: object and trait. As in most other object-
oriented programming languages, a Fortress object consists of fields and methods. The fields
of an object are specified in its definition. An object definition may also include additional

38

package SyncA;

use base (”A”);

use Class::Trait (”TSyncReadWrite”);

Figure 24: The class SyncA defined as a subclass of A using the trait TSyncReadWrite

method definitions.
A Fortress trait is a named program construct that declares a set of methods. A method

may be either abstract or concrete: abstract methods have only headers; concrete methods
also have bodies. A trait may extend an arbitrary number of other traits: it inherits the
methods declared by the traits it extends (except those that it overrides).

Every object has a set of traits; it inherits the concrete methods of its traits (except those
that are overridden) and must include a definition for any abstract method declared by any
of its traits.

As in Scala, each Fortress trait also represents a type. However, because there are no
classes in Fortress, traits are the only entities that define types. That said, it is important
to mention that also every defined Fortress object has an associated type. This is because
every object implicitly defines a trait (of the same name), of which it is an instance. The
trait implicitly defined by an object includes, as abstract methods, all of the public methods,
including all implicitly defined public accessors, introduced by the object definition (i.e., those
methods not declared by any traits of the object). It also extends all of the declared traits of
the object.

Another similarity between Fortress and Scala is that both languages do not support
operators for aliasing or excluding trait methods form a composition. However, Fortress
allows a trait to exclude another trait. If a trait T excludes another trait S, the two traits
are mutually exclusive: no object can have them both, no third trait can extend them both,
and neither may extend the other. Similarly, a Fortress trait T may include a bounds clause,
which has the meaning that the trait must not be extended with immediate subtraits other
than those that appear in its bounds clause.

Like Scala, also Fortress does not have a separate language construct for interfaces; it
just uses completely abstract traits instead. Being a statically typed language, Fortress also
allows method overloading. This means that methods can be overloaded within a trait but
the set of methods declared or defined in a trait must be mutually compatible. In particular,
it is a static error if a trait contains two methods with identical or ambiguous signatures. As
in the original traits proposal, such conflicts must be explicitly resolved.

9.4.2 Discussion.

Because we do not yet have detailed information about the characteristics of the implementa-
tion of traits in Fortress, we can only discuss about how Fortress traits address the conceptual
issues stated in Section 3.

From a conceptual point of view, the Fortress adaptation of traits is quite unique as it is

39

not an extension of a class-based single inheritance model. This means that instead of using
traits to realize more fine-grained decompositions of classes in a single inheritance setting,
Fortress traits are used as the primary (and only) way of composing objects. Together with
the fact that traits are the only types in Fortress, this leads to a very simple and concise
object model.

However, the absence of single inheritance also means that only symmetric composition
is possible. However, according to our experience, it is sometime useful to have partially
ordered compositions, where a wrapper trait (such as SyncReadWrite discussed in Section 7.1)
applied to a subclass automatically overrides some dedicated methods inherited inherited
from a superclass.

Also, it is not clear whether and how Fortress allows a programmer to refer to an overridden
method. Since each object (and each trait) may use multiple traits, a single keyword such
as super would not be enough to avoid potential ambiguities, and at the same time, Fortress
traits do not seem to support aliases.

As far as the issues regarding static typing are concerned, the integration of traits in
Fortress is quite elegant and comparable to the Scala solution. Each trait is also a type and
trait composition implies subtyping. Furthermore, Fortress supports parametric polymor-
phism in a similar way as Scala, which means that one can write traits that are parameterized
with various types.

10 Concluding Remarks

This report presents an overview of the problems and issues at stake when integrating traits
into a statically typed programming language. A key idea that we promote is that any
integration should focus on the flattening property as an acid test for any typed approach
to traits. Flattening is not necessary a good implementation strategy, but it is useful during
prototyping as it is straightforward to implement.

Although semantically traits can be flattened, a proper integration of traits in a given
language cannot be achieved by mere syntactic transformation. In our Squeak implementation
of traits [9, 15] traits are first-class entities from which classes can be composed. First-class
traits enable code reuse. In addition we reuse methods at the level of method dictionaries, by
physically sharing common methods among traits and classes, without introducing run-time
penalties [17]. Similarly, an extension of a statically typed language with traits should be
consistent with flattening, but a robust implementation would require a deeper integration of
traits with the host language.

Acknowledgments

We gratefully acknowledge the financial support of Microsoft Research for the project “Traits
in C#”. We warmly thank Luigi Liquori for his helpful comments and insights. We also
thank Arnaud Spiwack, Marcus Denker and Tudor Gı̂rba for reviewing drafts.

References

[1] A. P. Black, N. Schärli, and S. Ducasse. Applying traits to the Smalltalk collection
hierarchy. In Proceedings OOPSLA’03 (International Conference on Object-Oriented

40

Programming Systems, Languages and Applications), volume 38, pages 47–64, Oct. 2003.

[2] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings OOPSLA/ECOOP
’90, ACM SIGPLAN Notices, volume 25, pages 303–311, Oct. 1990.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the
past: adding genericity to the Java programming language. In Proceedings OOPSLA ’98,
ACM SIGPLAN Notices, pages 183–200. ACM Press, 1998.

[4] W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In Proceedings POPL
’90, San Francisco, Jan. 1990.

[5] S. Denier. Traits programming with AspectJ. In P. Cointe, editor, Actes de la Première
Journée Francophone sur le Développement du Logiciel par Aspects (JFDLPA’04),
pages 62–78, Paris, France, Sept. 2004. Available at http://www.emn.fr/x-
info/obasco/events/jfdlpa04/.

[6] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits: A mechanism for
fine-grained reuse. Transactions on Programming Languages and Systems, Mar. 2006.
To appear.

[7] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. In Proceedings OOPSLA ’99, ACM SIGPLAN Notices, pages 132–146,
Nov. 1999.

[8] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS, 23(3):396–450, May 2001.

[9] A. Lienhard. Bootstrapping Traits. Master’s thesis, University of Bern, Nov. 2004.

[10] L. Liquori and A. Spiwack. Adding multiple inheritance to Feather-
weight Java. INRIA Sophia Antipolis & ENS Cachan, available at www-
sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf, 2004.

[11] D. A. Moon. Object-oriented programming with Flavors. In Proceedings OOPSLA ’86,
ACM SIGPLAN Notices, volume 21, pages 1–8, Nov. 1986.

[12] D. R. Musser and A. Saini. STL Tutorial and Reference Guide. Addison Wesley, 1996.

[13] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala programming lan-
guage. Technical Report 64, École Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland, 2004.

[14] S. Reichhart. A prototype of traits for C#. Informatikprojekt, University of Bern, 2005.

[15] N. Schärli. Traits — Composing Classes from Behavioral Building Blocks. PhD thesis,
University of Berne, Feb. 2005.

[16] N. Schärli, S. Ducasse, and O. Nierstrasz. Classes = traits + states + glue (beyond mixins
and multiple inheritance). In Proceedings of the International Workshop on Inheritance,
2002.

41

http://www-sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf
http://www-sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf

[17] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior.
In Proceedings ECOOP 2003 (European Conference on Object-Oriented Programming),
volume 2743 of LNCS, pages 248–274. Springer Verlag, July 2003.

[18] Y. Smaragdakis and D. Batory. Implementing layered design with mixin layers. In
E. Jul, editor, Proceedings ECOOP ’98, volume 1445 of LNCS, pages 550–570, Brussels,
Belgium, July 1998.

[19] Y. Smaragdakis and D. Batory. Mixin-based programming in C++. In 2nd Symposium on
Generative and Component-Based Software Engineering (GCSE 2000), Erfurt, Germany,
2000.

[20] B. Stroustrup. The C++ Programming Language. Addison Wesley, third edition, 1997.

[21] M. VanHilst and D. Notkin. Using C++ Templates to Implement Role-Based Designs.
In JSSST International Symposium on Object Technologies for Advanced Software, pages
22–37. Springer Verlag, 1996.

[22] M. VanHilst and D. Notkin. Using Role Components to Implement Collaboration-Based
Designs. In Proceedings OOPSLA ’96, pages 359–369. ACM Press, 1996.

[23] Cincom Smalltalk, Sept. 2003. http://www.cincom.com/scripts/smalltalk.dll/.

42

	Introduction
	Traits in a Nutshell
	Issues
	Representing Traits in the Language
	Typing Trait Methods
	Adapting the Compilation and Execution Mechanisms

	A Flattening-based Calculus for Traits
	Featherweight Trait Java (FTJ)
	Flattening FTJ

	Extending the Traits Calculus with Interfaces and Generics
	Traits and Types
	FJI and FTJI
	FGJ and FTGJ

	Applying the Flattening Approach to C#
	Differences between Calculus and Real Language
	Modifiers
	Typing Traits

	Implementation
	Traits and trait composition
	Flattening Traits using inline expansion
	Adaptations for the C#T prototype

	Evaluation

	Implementing Traits in C++ using MI and Templates
	Multiple Inheritance in C++
	Template-based Mixins in C++
	Traits in C++
	Evaluation

	Implementing Traits in Squeak/Smalltalk
	Implementation Overview
	Evaluation

	Other Implementations
	Traits in Scala
	Declaring and Composing Traits.
	Integration into the Type System.
	Implementation Characteristics.

	Traits in VisualWorks
	Traits in Perl 5
	Traits in Fortress
	The Fortress Object Model.
	Discussion.

	Concluding Remarks

