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Abstract

As software systems evolve, they become more complex
and harder to understand and maintain. Certain reverse en-
gineering techniques attempt to reconstruct software mod-
els from source code with the help of a parser for the source
language. Unfortunately a great deal of effort may be re-
quired to build a specialized parser for a legacy program-
ming language or dialect. On the other hand, (i) we typi-
cally do not need a complete parser that recognizes all lan-
guage constructs, and (ii) we have a rich supply of (legacy)
examples. We present an approach to use these facts to
rapidly and incrementally develop parsers as follows: we
specify mappings from source code examples to model ele-
ments; we use the mappings to generate a parser; we parse
as much code as we can; we use the exceptional cases to de-
velop new example mappings; and we iterate. Experiments
with Java and Ruby, two very different languages, suggest
that our approach can be a very efficient and effective way
to rapidly construct software models from legacy code.

Keywords: parsing, grammars, reverse engineering

1 Introduction

As software evolves, it becomes more complex and

harder to maintain [20]. Additional effort is therefore re-

quired to simplify the software. Reverse engineering is the

process of analyzing a software system to build a higher-

level model of that system [5]. Reverse engineering is part

of a broader reengineering lifecycle in which software sys-

tems are analyzed, models are built, problems are detected,

and various measures are taken to rejuvenate and simplify

the software to enable further change [7, 24].

Many different sources of information can be exploited

to reverse engineer a software system, such as stakehold-

ers’ experiences, documentation, bug reports, the running

system and so on, but undoubtedly one of the most reli-

able resources, and sometimes the only one, is the source

code itself. Experience shows that in many legacy projects

high-level design documentation will be out of sync with

the source code, so the high-level models will need to be

reconstructed from the code. Various reverse engineering

tools and approaches do not operate directly on the source

code, but rather parse the code and build an abstract model

of the code conforming to some reverse-engineering meta-

model. This model is then used as the basis for various

analyses, queries and manipulations [25].

A special parser is needed that can construct model el-

ements that are understood by reverse engineering tools.

If one is lucky enough to have available a general pars-

ing framework for the language in question, a specialized

model builder can be built by a talented and experienced de-

veloper with a few days of effort. Unfortunately there exist

thousands of programming languages, and even mainstream

languages exist in many dialects. For many languages, off-

the-shelf parsers that can be adapted to the task of model

reconstruction simply do not exist. This simple fact can

greatly increase the effort required to build the parser from

days to weeks (or worse). As a consequence, a reverse en-

gineering project for a “new” language can be stymied at its

very inception due the lack of a suitable parser.

We envision an approach in which a software reverse en-

gineering expert should be able to spend no more than a few

hours to construct a model-building parser for source code
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written in an arbitrary programming language. We exploit

two important facts concerning the task at hand:

1. A complete parser is typically not required, as in many

analyses, many programming features can be ignored.

For example, many useful analyses can already be per-

formed with coarse-grained information about classes,

methods, the inheritance relations between classes,

and the lines of code inside each method [16].

2. The code of the legacy system offers a large amount of

code examples that the reverse engineer understands.

Based on these two facts, we propose the following ap-

proach in which:

1. the engineer specifies a set of mappings from source

code examples to model elements of the reverse-

engineering meta-model,

2. the mappings are used to automatically generate a

parser for the examples that will directly produce

model elements,

3. the resulting parser is applied to some portion of the

code base,

4. software artifacts that cannot be parsed are flagged and

are used to construct new mapping examples,

5. a new parser is generated and applied to the remaining

code base,

6. the process is repeated until all (or enough of) the code

is analyzed.

The key benefits of this approach are:

• The engineer specifies mappings, not grammar rules,

so does not need to be an expert in parser technology.

• The model-building parser is developed quickly and

iteratively. One can interrupt the process when

“enough” code has been converted to the the reverse-

engineering meta-model. “Enough” in this case is de-

pendent on the reverse engineering goal.

• A single, consistent grammar is not needed. Multiple

parsers based on different sets of examples can be used

to parse the code base with different strategies.

Structure of the paper. In Section 2 we describe

the technical details of our approach. In Section 3 we

present an overview of CODESNOOPER, our experimen-

tal implementation of example-driven model reconstruc-
tion. We use CODESNOOPER to reconstruct software mod-

els that conform to the FAMIX reverse-engineering meta-

model. In Section 4 we discuss two case studies in which

CODESNOOPER is applied to Java and Ruby code. We con-

tinue in Section 5 with a discussion of the achievements and

the current limitations of our approach. We briefly discuss

related work in Section 6, and we conclude with some re-

marks about future and ongoing work in Section 7.

2 Example-Driven Parsing

The initial phases of a reengineering project can be criti-

cal for assessing the state of the software and for establish-

ing confidence with various stakeholders [7]. A large num-

ber of reverse engineering and software analysis tools and

techniques have been developed over the years, but many of

them require the source code to be parsed before the anal-

ysis technique can be applied. This can be a major obsta-

cle for the vast majority of software projects written in pro-

gramming languages for which off-the-shelf parsers ready

to be adapted to new tasks simply do not exist.

We envision a scenario in which a reverse engineer could

quickly develop an ad hoc parser generated from examples

of mappings from code to model elements. For the approach

to be of practical value, the following points should be ad-

dressed:

• There should be few assumptions about the host lan-

guage.

• There should be a simple, high-level interface for spec-

ifying mappings from example code to model ele-

ments.

• The approach should be able to handle any kind of in-

put, i.e., even code containing errors.

• The approach should be incremental and iterative —

specify mappings, generate parser, parse code, identify

any code that cannot be parsed, and so on.

• Whenever the generated parsers cannot parse some

given code, focussed feedback should be generated in-

dicating which examples could not be parsed, to aid the

user in specifying new mappings for those examples.

Figure 1. CodeSnooper overview
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Figure 1 presents an overview of a typical usage scenario

of our approach supported by CODESNOOPER, a proof-of-

concept tool to support example-driven model reconstruc-

tion (see Section 3).

1. Legacy source code is imported as source code nodes.

2. The user specifies example mappings from code to

model elements.

3. The mappings are used to generate a BNF grammar.

4. The grammar is used to generate a parser.

5. Source code is parsed by one or more parsers to pro-

duce source code nodes.

6. The parsed nodes are exported as model elements.

2.1 Scanning

Lexical analysis is performed by a simple, generic scan-

ner that breaks source code files into streams of tokens rep-

resenting identifiers, numbers, comments and whitespace.

The parser, rather than the scanner, is given the task of dis-

tinguishing which “identifiers” actually represent keywords

in the language. Similarly, special character sequences can

be recognized directly in the parser as language construct

non-terminals.

The effect of this simple approach is that at most a few

minutes are dedicated to adapting the scanner to a new lan-

guage. The reverse engineer can then focus his or her at-

tention on the modeling task, rather than fiddling with the

scanner definition. In general, we expect that a set of stan-

dard scanner definitions will suffice for most languages, so

even this task could be streamlined.

The example depicted below shows the scanner defini-

tion that we use for parsing source code written in Java.

<DECIMAL INTEGER>: 0
| [1−9][0−9]∗ ;

<HEX INTEGER>: 0 [ xX][0−9a−fA−F]+ ;
<OCTAL INTEGER>: 0[0−7]+ ;
<IDENTIFIER>: [ a−zA−Z $ ] \w∗ ;
<eol >: \ r

| \n
| \ r \n ;

<comment>: \ / \ / [ ˆ \ r \n]∗<eol>
| \ /\∗ [ ˆ∗ ]∗\∗+

( [ ˆ / ∗ ] [ ˆ ∗ ] ∗ \ ∗ + ) ∗ \ / ;
<whitespaces >: [ \ f \ t \v ]+ ;

Figure 2. Java scanner

2.2 Mapping Code to Model Elements

Consider the following snippet of Java code.

c lass AJavaClass {
p u b l i c vo id h e l l o ( ) {

System . out . p r i n t l n ( ” He l lo World ! ” ) ;
}

}

Our simple scanner will convert this to a stream of to-

kens. We must now specify how these tokens map to the tar-

get model elements of the reverse-engineering meta-model

(e.g., class, method — see Section 3). First, we must specify

a signature for a class by reducing the example to:

c lass AJavaClass { <not known> }

The code within the curly brackets (described as

<not known>) does not matter at this stage, since we want

to concentrate on the definition of class entity itself.

We must also specify that class, { and } are “key-

words” and that AJavaClass is the name of the entity.

We can similarly specify that a method has the following

signature:

p u b l i c vo id h e l l o ( ) { <not known> }

In this case public, void, {, }, ( and ) are the key-

words and hello is the name.

Figure 3 shows how the entire example is represented as

a tree of nodes. Each nodes knows which target element of

the model it represents, if any. For example, the first node

is a Class and has as name AJavaClass.

2.3 Grammar generation

Based on the signatures we have specified we can gener-

ate a grammar. We traverse the example tree and generate

a grammar production for each node that maps to a target

element of the meta-model, in our case FAMIX[8]. From

the above example we obtain the following grammar rules:

Class : : = ” c lass ” <IDENTIFIER>
” { ” Method∗ ” } ” ;

Method : : = ” p u b l i c ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

The non-terminal of the rule is named after the target

element of the node. The production is generated from the

signature. Keywords become literals. Subnodes translate

to non-terminals unless they do not have a target, in which

case they translate to the catch-all target not_known.
Suppose we start with a different example in which we

are only interested in public methods:
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Figure 3. Example nodes

c lass AJavaClass {
p r i v a t e S t r i n g h e l l o = ” He l lo World ! ” ;
p u b l i c vo id h e l l o ( ) {

System . out . p r i n t l n ( t h i s . h e l l o ) ;
}

}

In this case the nodes representing the private attribute

and the body of the public method will have no target, as

shown in Figure 4.
This example generates a different grammar than the pre-

vious one:

Class : : = ” c lass ” <IDENTIFIER>
” { ” ( not known | Method )∗ ” } ” ;

Method : : = ” p u b l i c ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

The grammars we built are based on multiple examples.

This will result in multiple production rules for the same

non-terminals, which we have to merge. For example, these

rules:

Class : : = ” c lass ” <IDENTIFIER>
” { ” Method∗ ” } ” ;

Method : : = ” p u b l i c ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

Class : : = ” c lass ” <IDENTIFIER>
” { ” Method∗ ” } ” ;

Method : : = ” p r i v a t e ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

Figure 4. Nodes without a target

will be merged into the following grammar:

Class : : = ” c lass ” <IDENTIFIER>
” { ” Method∗ ” } ” ;

Method : : = ” p u b l i c ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ”

| ” p r i v a t e ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

In most cases merging is the right thing to do, but in

certain obscure situations this may result in a grammar that

accepts invalid code [12]. Since we assume that the legacy

code we are parsing is syntactically correct, this is not an

issue in practice.

2.4 The generated parser

From the generated grammar we can now generate a

parser which will build model elements from the parsed

code. If the parser generation fails, we may have to review

the examples, regenerate the grammar and attempt to build

the parser afresh. The most common difficulty is that the

generated grammars may be ambiguous. We will revisit this

issue in Section 5, from the point of view of the experiments

we conducted on Java and Ruby case studies.

The generated parser builds a parse tree of nodes repre-

senting entities of the meta-model. The parse tree can then

be processed in a variety of ways, for instance the tree can

be traversed by a fixed tool that generates a model descrip-
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tion in some interchange format such as XMI1 or GXL2.

Note than we can generate more than one parser, and that

the multiple parsers can work in parallel. For example, we

may specify example mappings for both Java classes and

Java interfaces. Instead of being required to generate a sin-

gle, consistent grammar that will handle both classes and

interfaces, we can generate two grammars and two parsers.

When one parser fails to recognize a model element, we can

simply try another. This leads to a larger number of simpler

parsers and somewhat alleviates the problem of dealing with

ambiguous grammars.

3 CodeSnooper

CODESNOOPER is a proof-of-concept prototype (see

Figure 5) that uses example-driven model reconstruction

[12]. CODESNOOPER is implemented in VISUALWORKS

SMALLTALK 3 using the SMACC 4 compiler compiler.

3.1 Reverse engineering context

In our specific implementation, we use MOOSE as the

target reverse engineering platform [25, 9]. MOOSE is a

language-independent reengineering environment that pro-

vides a variety of common services for reengineering tools

including metrics evaluation and visualization, a model

repository, and generic GUI support for querying, brows-

ing and grouping. A key bottleneck in applying MOOSE to

different legacy projects is generating software models from

source code of new languages.

In MOOSE meta-models are implemented as instances

of the MOF5 meta-meta-model, OMG’s meta-object fa-

cility. In particular, MOOSE implements the FAMIX re-

verse and re-engineering meta-model [29, 28] and, as such,

FAMIX is an instance of MOF. This allowed for a generic

implementation of CODESNOOPER: we did not hardcode

CODESNOOPER to work directly with FAMIX, but we ac-

tually used the MOF descriptions to generate the mappings

from the code to the meta-model elements.

FAMIX is a language-independent meta-model to support

reverse engineering and reengineering operations. In Fig-

ure 6 we see the core of the FAMIX meta-model. FAMIX is

an extensible meta-model which can be adapted to different

programming languages and to the needs of different kinds

of reverse and reengineering tools. For the purpose of this

paper we only focus on the FAMIX core model elements.

We have used example-driven model reconstruction as a

front-end to build FAMIX source models for MOOSE.

1http://www.omg.org/technology/documents/formal/xmi.htm
2http://www.gupro.de/GXL/
3http://smalltalk.cincom.com
4http://www.refactory.com/Software/SmaCC
5http://www.omg.org/mof/

Figure 6. Famix

3.2 Generating the model

A scanner definition must be provided for each language,

but this is usually a straightforward task. CODESNOOPER

focuses instead on the interface needed for dynamically

specifying the mapping from code examples to model el-

ements.

In Figure 5 we see a portion of CODESNOOPER’s

user interface which allows one to select syntactic ele-

ments and flag them as representing either certain language

constructs (i.e., “keywords”) or FAMIX model elements.

CODESNOOPER also provides means to manage keywords,

generate a grammar, modify the grammar or the scanner,

and to parse the set of input files with one or more generated

parsers. The file list (Figure 5, left-hand pane) is updated to

indicate which source files have been successfully parsed or

not.

4 Case studies

We have applied CODESNOOPER to two very differ-

ent case studies to assess the feasibility of example-driven

model reconstruction. The Java case study allows us to as-

sess the recall achieved with CODESNOOPER by compari-

son with results obtained with a robust Java parser that is

available to us for loading software models into MOOSE

from Java source code. The Ruby case study allows us to

assess the approach when applied to a language with a syn-

tax that is very different from Java.
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Figure 5. CodeSnooper: Main View while specifying an example

4.1 JBoss

As first case study we worked with JBoss, an open source

implementation of the J2EE application server specifica-

tions. We analyzed the jboss-j2ee package of JBoss, con-

sisting of 363 Java files.

We proceeded iteratively, starting with just three exam-

ples:

1. The first example is a normal Java class that we

map to a FAMIX Class without any attributes set.

javax/ejb/AccessLocalException.java

2. The second example is an abstract Java class

that we map to a FAMIX Class. For that en-

tity we also set the “isAbstract” attribute to true.

javax/xml/soap/SOAPPart.java

3. As third example we take a Java interface that

we map also to a FAMIX Class. We also set

the ‘isAbstract’ attribute for that entity to true.

javax/ejb/EJBObject.java

This yields the following grammar (reduce actions not
shown):

Class : : = ” c lass ” <IDENTIFIER> ’name ’
not known∗ ” { ” Class not known∗ ” } ”

| ” i n t e r f a c e ” <IDENTIFIER> ’name ’
not known∗ ” { ” Class not known∗ ” } ”

| ” abs t r ac t ” ” c lass ” <IDENTIFIER>
not known∗ ” { ” Class not known∗ ” } ” ;

The resulting parser can parse 355 of the 363 Java files.

Of the eight files that cannot be parsed, two contain unbal-

anced brackets or comment characters within a string and

the other six use the keyword class in an unexpected con-

text (i.e. to denote an inner class). To solve the first problem

we would just need a slightly more sophisticated scanner to

remove the problematic strings.

We can solve the second problem by ignoring class in

the context of a class. In this way we can parse more files,

but we fail then to detect inner classes. Comparing this first

result to that obtained with a robust parser we find that we

only miss five classes:
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Precise Model Our Model

Number of Model Classes 366 361

Number of Abstract Classes 233 233

In a second iteration we give examples of methods in ab-

stract and concrete classes as well as interfaces. This leads

to three separate grammars which cannot easily be merged

since this would lead to an ambiguous grammar [12]. In-

stead we generate three parsers and apply them in parallel

to the source files. We now obtain the following results:

Precise Model Our Model

Number of Model Classes 366 316

Number of Abstract Classes 233 233

Total Number Of Methods 1887 1648

In addition to the two files we could not parse earlier,

we now have some problems due to (i) attributes being con-

fused with methods, (ii) language constructs (like static)

occurring in unexpected contexts, (iii) different kinds of

definitions of methods. Additional examples would help to

solve these problems.

In a third iteration we add examples to recognize at-

tributes. Once again we obtain three parsers based on three

sets of examples for abstract classes, concrete classes and

interfaces. We obtain the following results:

Precise Model Our Model

Number of Model Classes 366 346

Number of Abstract Classes 233 230

Total Number Of Methods 1887 1780

Total Number of Attributes 395 304

This process can be repeated to cover more and more of

the subject language. The question on when to stop can be

answered with “When the results are good enough”. Good

enough in this context means when we have enough infor-

mation for a specific reverse engineering task. For example,

a “System Complexity View” [18] is a visualization used to

obtain an initial impression of a legacy software system. To

generate such a view we need to parse a significant number

of the classes, identify subclass relations, and establish the

numbers of methods and attributes of each class. Even if we

parse only 80% of the code, we can still get an initial im-

pression of the state of the system. If on the other we would

want to display a “Class Blueprint” [17], a semantically en-

riched visualization of the internal structure of classes we

would need a refined grammar to extract more information.

The “good enough” is thus given by the reverse engineering

goals, which vary from case to case.

4.2 Ruby

As second case study we chose the language Ruby, be-

cause it is quite different from Java and it has a non-trivial

grammar. We took the unit testing library distributed with

Ruby version 1.8.2 released at the end of 2004. This part of

the library contains 22 files written in Ruby. We do not have

a precise parser for Ruby that can generate a FAMIX model

(actually, to our knowledge, for Ruby there is only one pre-

cise parser, namely the Ruby interpreter itself). Instead we

retrieve the reference model by inspecting the source code

manually.

In Ruby there are Classes and Modules. Modules are

collections of Methods and Constants. They cannot gen-

erate instances. However they can be mixed into Classes
and other Modules. A Module cannot inherit from anything.

Modules also have the function of Namespaces. Ruby does

not support Abstract Classes [22].
For the definition of the scanner tokens for identifiers and

comments we use the following regular expressions:

<IDENTIFIER>: [ a−zA−Z $ ] \w∗ ( \? | \ ! ) ? ;
<comment>: \# [ ˆ \ r \n ]∗ <eol> ;

Using just 2 examples each of namespaces, classes,

methods and attributes, we are able to parse 7 of the 22 files.

Precise Model 7 files Our Model

Number of

Namespaces 8 6 6

Number of

Model Classes 25 4 4

Total Number of

Methods 247 26 26

Total Number of

Attributes 136 9 9

Amongst the files we could not parse, there are 4 large files

containing GUI code. If we ignore these files, we are able

to detect about 25% of the target elements.

There are two main reasons that so few files can be suc-

cessfully parsed:

1. The comment character # occurs frequently in strings

and regular expressions, causing our simple-minded

scanner to fail. A better scanner would fix this prob-

lem. With some simple preprocessing (removing any

hash character that occurs inside a string and removing

all comments) we can improve recall to 65-85%.

2. Ruby offers a very rich syntax for control constructs,

allowing the same keywords to occur in many different

positions and contexts. One would need many more

examples to recognize these constructs.

5 Discussion

Our experience with these preliminary case studies

demonstrates that the idea of example-driven model recon-

struction is feasible: using only a naive scanner and a few
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examples that map source code to model elements we can

generate parsers that build models of a significant portion

of the total source code to models. In the ideal case, the

user must only invest a modest amount of time (i.e., hours

rather than days) to reconstruct a usable software model.

Our observation is that the 80/20 rule applies in this case: it

is straight forward to parse a relevant amount of code (say

80%), but very time-consuming to generate a full parser,

which is however not needed in most cases. The end of

the reconstruction process is thus given by the reverse engi-

neering context, i.e. as soon as we can parse enough code

to allow us to perform a specific type of analysis, we stop

the reconstruction process and concentrate on the analysis.

To make the approach really practical for a realistic range

of languages, and robust enough for users not expert in

parser technology, however, a number of issues need to be

resolved, and more extensive case studies need to be car-

ried out. Although there are numerous shortcomings and

obstacles, the path towards a practical and usable approach

is relatively clear.

The first problem is that of ambiguous grammars. Al-

though the parser generator we used (SmaCC) can deal

with ambiguous grammars, the results are often not usable

since conflicts may not be resolved. As a consequence

CODESNOOPER rejects examples that lead to ambiguous

grammars. When this occurs, the user could either try to

specify different examples, or use multiple sets of examples

to generate multiple, unambiguous grammars, for multiple

parallel parsers.

Another possibility to cope with ambiguity is probabilis-

tic grammars [32]. Here a probability is assigned to each

grammar production. Consequently the probability of a

parse tree (or, equivalently, an input string) can be computed

and in case a code fragment has several possible derivations,

a decision can be made for the one that has the highest prob-

ability.

The next difficulty concerns false positives (code frag-

ments classified as the wrong kind of model element) and

false negatives (missed model elements). As long as no

parse errors occur and no robust parser is available, false

positives or negatives can only be detected manually. More

examples are needed to generate more precise parsers. It is

possible that a more sophisticated user interface could help

by allowing the user to mark which source code has been

correctly parsed. Code already correctly classified could

then be used as a benchmark to test the quality of parsers

generated from newer examples, thus compensating par-

tially for the lack of a robust parser.

Incorrectly identified tokens are a major source of prob-

lems. Since we are using very simple-minded scanners, to-

kens like classmay be recognized as keywords when they

should not be. There are essentially two solutions: either we

can ignore more things — i.e., we ignore certain keywords

like class within a given context, thus possibly losing in-

formation — or we can detect more things — i.e., we can

work with richer scanners. It is easy to imagine that a small

library of moderately rich scanners could be used to cover

a wide range of programming languages. However a key

assumption of the entire approach is that the reverse engi-

neer should not be required to directly edit either the scan-

ner or the parser specifications. An open research question

is whether the approach could be generalized to “example

driven scanning”.

Complex control structures in languages like Ruby are

another thorny issue. Keywords like end are used both to

delimit the model elements we are looking for as well as

within expressions that occur inside those elements. To cor-

rectly recognize methods and classes, we must also recog-

nize constructs that we may not necessarily be interested in.

Once again additional examples may be needed to correctly

identify the boundaries of model elements.

6 Related work

Many reengineering frameworks use a form of fuzzy
parsing in order to support more programming languages or

more dialects of the same programming language. A fuzzy

parser extracts a partial source code model by skipping all

input until an anchor terminal is found. Then usual context-

free analysis is attempted using a production starting with

the found anchor terminal [13].

With island grammars [23] we get robust parsers. An is-
land grammar is a grammar that consists of detailed pro-

ductions describing certain constructs of interest (the is-

lands) and liberal productions that catch the remainder (the

water). Our approach exploits this idea since our mappings

may specify that certain constructs correspond to “water”

(i.e., the not_known parts). By varying the amount and

details in productions for the constructs of interest, we can

trade off accuracy, completeness and development speed.

Useful variants of island grammars include lake grammars
(a grammar extended with productions for water), island
with lakes and even lakes with islands [23].

In contrast to island grammars, a tolerant grammar [11]

uses an already available single base-line grammar as a

point-of-reference to reduce both false positives and false

negatives.

The problem we address in this paper is related to gram-

matical inference [6]. Given a set S of sentences, the task

of grammatical inference is to derive a grammar that gener-

ates S. This task, however, is more general than the problem

considered in this paper as we assume that a mapping from

the examples to the target model elements is known.

RegReg is a generator of robust parsers for irregular lan-

guages [19]. The generated parsers are based on a cascade

of lexers. Each lexer acts at a certain level and uses as in-
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put the stream of tokens produced by the lexer one level

above: Level 1 deals only with characters, level 2 is based

on tokens produced by level 1 and level 3 is based on tokens

from level 2. There is no limit set on the number of levels

although at least one level is required. RegReg can be used

to implement both island and fuzzy parsing.

A generalized LR parser (GLR) uses parallel parsers to

explore different ways to proceed when shift/reduce or re-

duce/reduce conflicts arise. If the conflict is due to the need

for a lookahead, the forked parsers die. Parsers proceed in

parallel and synchronize on shift actions: Parsers that are in

the same LR state are merged together. The results are parse

bushes or forests opposed to plain parse trees. The num-

ber of trees is reduced by applying syntactic disambiguation

rules. If there is more than one tree left over at the end, the

user must make a selection. This approach is based on the

optimistic assumption that large parts of the input can be

analyzed with a plain LR parser without the requirement to

clone LR stacks [31].

DURA is a parser generator that uses backtracking to re-

solve conflicts. Compared with a plain LR parser, DURA-

generated parsers provide an “undo” operation in addition

to “shift” and “reduce”. DURA takes a more optimistic

view than GLR parsing: Not only can a plain LR parser

handle most of the input, but in case of conflicts, it does not

need to go very far to backtrack if it selects the wrong path

[4].

Earley parsing [10, 3] is a technique that can parse any

context-free grammars. It can cope in particular with am-

biguous grammars. There has been renewed interest in

Earley parsing for implementing little languages [2] and

domain-specific languages [30]. A powerful extension of

Earley parsing is minimum distance error-correcting pars-

ing [1, 21]. This technique is based on error productions

that can be automatically generated and are added to a

grammar. A minimum distance error-correcting parser is

able to handle any arbitrary syntactically ill-formed input

string, x, by providing the most similar element, y, from

the underlying language, together with the parse trees of x
and y.

Revealer [26, 27] is a reverse engineering tool that uses

a pattern language to recognize architectural elements in

source code. Patterns are specified as XML documents con-

forming to the Revealer DTD. Revealer combines lexical

and syntactic analysis by allowing the user to specify just

the code fragments of interest.

Lämmel and Verhoef have developed an approach to

semi-automatically recover grammars of legacy languages

from numerous resources, including language references,

compilers and other artifacts [15, 14]. They have been able,

for example, to construct a running parser for VS COBOL

II in a few weeks for use in a variety of tools, considerably

less than the 2-3 man-years estimated. They use a series of

techniques to automatically extract grammars from various

sources, automate testing of parsers, and transform gram-

mars specified with diverse formalisms.

The key idea behind this paper is to to use mappings

from example source code fragments to model elements to

automatically generate parsers that will recognize model el-

ements.

7 Conclusions

Example-driven model reconstruction offers a

lightweight means to quickly construct software mod-

els for legacy software in the absence of a specialized

robust parser for the programming language in question.

In principle, a reverse engineer could spend a few hours

developing examples to load the software model, and spend

more productive time analyzing the model.

CODESNOOPER, our proof-of-concept prototype

demonstrates that the process of specifying mapping

examples and generating parsers can be driven by a simple

graphical user interface. Case studies have shown that by

specifying only a few examples, one can automatically

generate software models that cover a large portion of Java

code.

More difficulties were encountered with Ruby code, for

technical reasons that can surely be surmounted. The

parsers generated from the example mappings are often am-

biguous. This problem is alleviated by the fact that we can

generate multiple unambiguous parsers instead, and apply

them in parallel to the source code. Another possibility

to deal with ambiguous grammars is to generate an Earley

parser instead of an LALR parser.

The experiments only made use of minimal scanners. It

is likely that more sophisticated scanners would improve

the quality of the resulting parsers. This however would

place more of a burden on the end user. It is possible that

libraries of relatively standard scanners for comments,

strings and other most common constructs would reduce

this burden.
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