
Self-aware, Evolving Eternal Systems

O. Nierstrasz, M. Denker, T. Gı̂rba, A. Kuhn, et al.

Technischer Bericht IAM-08-001 vom 31. Mai 2008

Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch





Self-aware, Evolving Eternal Systems 1

Oscar Nierstrasz, Marcus Denker, Tudor Gı̂rba, Adrian
Kuhn, Adrian Lienhard, David Röthlisberger

Technischer Bericht IAM-08-001 vom 31. Mai 2008

CR Categories and Subject Descriptors:
D.1.5 Object-oriented Programming; D.2.6 [Programming Environments]:
Integrated environments

General Terms:
Languages

Additional Key Words:
self-aware, eternal systems, software-evolution

Institut für Informatik und angewandte Mathematik, Universität Bern

1This extended abstract was submitted to the InterLink Working Group Challenges for
Software-Intensive Systems and New Computing Paradigms





Contents
1 Abtract 1

2 Eternal Systems 2

3 Self-aware Platforms for Eternal Systems 3

4 Analyzing Self-aware Eternal Systems 5

5 Environments for Evolving Eternal Systems 6

6 Fostering Research in Eternal Systems 8

References 10





Abtract 1

1 Abtract
Few real software systems are built completely from scratch nowadays.
Instead, systems are built iteratively and incrementally, while integrating
and interacting with components from many other systems. These sys-
tems also last longer than their developers might imagine — they are, in
effect, eternal. Nevertheless the platforms, tools and environments we use
to develop software are still largely based on an outmoded model that pre-
supposes that software systems are closed and will not significantly evolve
after deployment. We claim that in order to enable effective and graceful
evolution of eternal systems, we must make them self-aware. A self-aware
eternal system supports evolution by: (i) providing explicit, first-class mod-
els of software artifacts, change and history at the level of the platform,
(ii) continuously analysing static and dynamic evolution to track emergent
properties, and (iii) closing the gap between the domain model and the de-
velopers’ view of the evolving system. We outline our vision of self-aware
eternal systems and identify the research challenges to realizing this vi-
sion.



2 IAM-08-001

2 Eternal Systems
Software inevitably changes, but our development methods, programming
languages, development environments and run-time systems provide lit-
tle that acknowledges this fact. There is a general assumption behind
most tools and methods that one is building a closed, internally consistent
application, which will not significantly change after deployment. Antici-
pated evolution can be built in to some extent, for example by applying
well-known design patterns, but unanticipated changes in requirements
are hard to accommodate without reengineering the system, redeploying
it, and possible migrating persistent data.
The vision of an eternal software-intensive system is that of a system that
can survive such unanticipated changes with little or no human interven-
tion at the lowest level [1]. We claim that this vision can only be realized if
software evolution is supported in a fundamental way in our platforms, run-
time environments and development environments [2]. Specifically, what
does this entail?
First of all, we need to provide platforms in terms of programming lan-
guages and run-time environments that make it possible to manipulate
and operate on change as a first-class entity. This in turn implies that an
eternal system is not only model-driven, but actually self-aware — it must
have a first-class representation of itself available to enable change. To
control the scope of change, change itself should be represented as a
first-class, high-level entity. And to manage change over time, the history
of the system must also be accessible and first-class (see Section 3).
Second, a self-aware eternal system must be capable of analyzing itself,
and in particular of recognizing emergent properties. This means that the
evolution of the static and dynamic models must be monitored, and the
resulting data be analyzed as the system is running (see Section 4).
Third, to enable continuous evolution, a self-aware eternal system must
close the gap between the development and deployment views of itself.
Domain models, usage models, and features, for example, must be made
explicit in the system to facilitate change (see Section 5).
Finally, concrete incentives are needed to bring research and practice
closer together (see Section 6).



Self-aware Platforms for Eternal Systems 3

3 Self-aware Platforms for Eternal Sys-
tems

Traditionally, the development and deployment of software are viewed as
being separate in time and space: first a system is developed, then it
is deployed. Indeed, in the classical view, we deal with two completely
different artifacts: the source code that can be developed, debugged and
understood on the one hand, and on the other hand a generated, closed,
non-understandable binary program that just can be run.
Classical development plays out like a finite game with fixed rules and
boundaries. Eternal software-intensive systems, on the other hand, are
better thought of as infinite games without fixed rules or boundaries [3].
Eternal systems will not have a clear separation of development and de-
ployment. The system will continue to evolve when it is already deployed.
The systems of the future will not be developed from the outside as a finite
game. Development itself will be part of the infinite game of the system.
Evolution needs to happen in parts of the system, while it is running.
We cannot afford to stop and restart an eternal software system, just as
we cannot stop and restart the Internet. The Internet has been up and
running since 1969, although each atom that it is physically made of has
been replaced since then. The software intensive systems of the future will
need to learn from these loosely-coupled, long-lived systems. To support
this view, we need appropriate core technologies in terms of programming
languages and runtime systems that can serve as a platform for developing
eternal systems.
In order to enable change at runtime, an eternal system must be able to
fully reflect on itself, that is, it must be self-aware. It is not enough to be
model-driven. The models must be explicit and accessible to the run-time
system. Furthermore, changes to the model and the system must be ex-
plicit and manipulable, so changes must have a first-class representation.
Finally, in order to reason about the impact of changes, it is essential that
the history of the system must also be fully accessible and manipulable.
It has been very early understood that abstractions are needed for making
programming in the large possible. But with scale, we need to think again:
are existing abstractions good enough for very large software systems?
One example is that as software gets larger, the idea that every part of
the system is in sync with any other part is not very convincing: in huge
systems, the parts will indeed be inconsistent. Evolution itself will lead
to inconsistency, as the system is so large that we can never evolve the
complete system at the same time. As a consequence, an eternal system



4 IAM-08-001

must be able to cope with multiple, inconsistent views of itself.
Inconsistency is only tolerable if specific and individual views appear to
be locally consistent. Instead of allowing all changes to be globally visi-
ble, we need a means to control the scope of changes. That is, eternal
systems must support a notion of context and the run-time infrastructure
must be context-aware. Being able to dispatch on context means that we
need to support a form of context-oriented programming [4]. Visibility of
changes can then be restricted to the context in which these changes are
guaranteed to be valid.
Backward compatibility is the enemy of forward-evolvability. Nevertheless,
we cannot live in a world were the old is ignored. A snapshot of an old
Windows machine can run on a virtual machine forever, whereas keeping
an operating system compatible forever will be bound to fail. Programming
languages for eternal systems should provide backwards compatibility in
the same way: we need a first class description of the history of all code of
the system, freeing the present from being compatible with the past while
at the same time providing the possibility to go back in time easily. The
system should provide complete, runnable snapshots of the system at any
point in the past.
Eternal systems need languages that support continuous development
and evolution. But there is another aspect to the language: to think that we
can envision the perfect language to realize all future systems is to treat
language design like a finite game. Thus a language suited for implement-
ing ever-evolving, eternal software systems needs to be itself an eternal
program. An eternal language must evolve to incorporate new ideas and
practices while it is used. It needs to be extensible and growable from
within [5].



Analyzing Self-aware Eternal Systems 5

4 Analyzing Self-aware Eternal Sys-
tems

To change a system we must first understand the system and the conse-
quences of change. Since change inevitably causes the system to drift
from its initial documentation, the most reliable source of information is the
system itself. However, documentation will not only be provided in form
of documents, but also in various other forms like online discussions, bug
reports, and description of the changes [6]. Therefore, software analysis
tools for reverse engineering are central to support software evolution [7].
A self-aware system can reflect on its own specification, which is an aid to
static analysis. But the run-time architecture and other emergent prop-
erties can only be monitored with the help of dynamic analysis [8]. A
self-aware, eternal system must be capable of tracing and analyzing its
run-time behaviour while it is online, much like garbage collectors are al-
ways active in modern virtual machines.
In eternal software systems, the changes to the static parts are directly
accessible as first class entities. As such, in eternal software systems, not
only the run-time is dynamic, but also the static part is dynamic when seen
from a historical perspective. Treating history as a first-class entity enables
analyses of the evolution of software artifacts [9].
Given the size of eternal systems, they will not be developed by an isolated
team, but rather by several teams that are physically distributed. In this
context, the social aspect of the development will become increasingly
important [10]. Thus, analysis will also consist of reasoning about how
developers collaborate.
Yet another complicating factor is the use of different languages and media
within the same system. Furthermore, some of the languages used will be
either legacy languages or dialects. For this reason, post-hoc parsing of
components built with these languages will be difficult and error-prone.
Thus, a software eternal software can be seen as a multi-dimensional
space of data that needs to be continuously analyzed.



6 IAM-08-001

5 Environments for Evolving Eternal
Systems

The evolution, or rather continuous development, of eternal systems
places special demands on the development environment.
To some extent systems can be designed for evolution. But if we see
the development of an eternal system as an infinite game, it becomes
clear that one cannot anticipate all forms of evolution. Support for refactor-
ing, reorganizing and reengineering must be part of the evolving system.
The state-of-the-art in refactoring support is still in its infancy. Many mod-
ern IDEs provide some automated mechanisms to change and evolve a
software-intensive systems. For instance, they support automated refac-
torings such as renaming a class or moving a method from one class to
another [11]. Eclipse, for example, is very well adopted in industry, with
more than half of all Java developers using this environment in their daily
work [12]. Nevertheless, automated refactorings tend to be low-level, the
fact that code has been refactored is not evident in the code base, and
developers obtain no guidance in identifying opportunities for refactoring.
Examples of promising research directions that would help to support the
development of eternal systems include mining system histories to guide
developers in implementing or adapting features [13], and guiding devel-
opers to the use and reuse of existing components [14, 15].
A further problem with modern IDEs is the difficulty of bridging the gap
between the users’ view and the developers’ view of the system. For in-
stance, it is hard to locate and understand a specific feature in a system
consisting of a large number of classes. Furthermore, there is a signifi-
cant gap between the static, class-oriented view of the source code and
the dynamic, object-based view of the run-time system. To build a com-
prehensive mental map of a large system the developer needs to navigate
many classes and methods, a process which is only poorly supported by
Eclipse and most other modern IDEs.
Empirical studies report that a developer performing maintenance tasks
on a system spends at least 35% of the time in navigating source code
to get a understanding for the implementation of a specific feature [16].
A maintenance-oriented IDE should present the developer with a working
set of source code containing all functionality for a specific maintenance
task to reduce the navigational load. By monitoring the programmer’s ac-
tivity to get a degree-of-interest for program elements scattered across a
large code base, the IDE can reveal code elements that are likely to be im-
portant for the task at hand [17]. By monitoring the execution of common



Environments for Evolving Eternal Systems 7

user tasks, an eternal system can correlate features with software artifacts
[18] and use this information to drive development tasks related to those
features.
Static and dynamic analysis of eternal systems, as outlined in Section 4,
can be tightly integrated into the development environment to help drive
evolution. For instance, visualizations of the system or of a specific feature
should be accessible directly in the programming environment. As the
system evolves these visualizations have to evolve as well to constantly
reflect the changing structure and behavior.



8 IAM-08-001

6 Fostering Research in Eternal Sys-
tems

Not only do we need to research new ways of dealing with software evo-
lution, but the way to conduct the research needs to be adapted to the
task. The greater the body of existing work, the more people will research
the area, and the more difficult it will be for a single person to achieve a
reasonable delta within a reasonable amount of time. As a consequence,
it becomes essential to have an infrastructure that allows the state of the
art to be readily applied.
Currently PhD students serve as the engine of much research. Typically a
PhD student must ensure that the research carried out be distant enough
from that of his peers that there be no overlap in terms of the new ideas.
Hence, the PhD student will tend to implement and validate his work alone.
As a consequence, although the new ideas may spread, there is no incen-
tive to ensure that the implementation will survive to be used by others.
The next PhD student will have to re-implement those ideas before he can
build on them. This process does not scale, as the research space grows
larger.
On the one hand, we advocate that the research process will need to ac-
knowledge and to reward the engineering effort. In the future, research
and engineering must meet to face the wide space opened by eternal sys-
tems. On the other hand, just like eternal systems will not be the result of
one team’s work, we advocate that research will need to break the group
boundary and open towards research networks [19].
Bringing together research and engineering will also bring together two
worlds that are now rather separated: research and practice. Practition-
ers face real problems and need new ideas to solve these problems, but
cannot afford the time and effort to experiment with unproven ideas. Re-
searchers need real problems to develop new ideas, but cannot afford the
effort to fully validate and mature these ideas in a practical setting. Each
group is under pressure to get their product out the door with acceptable
quality and minimum cost. As a consequence few new ideas get proven
in practice, and real problems of practitioners tend not to propagate in the
research environment. The perceived cost of collaboration is just too high.
A first step to bring these groups together and reduce the cost of collab-
oration is to provide an infrastructure in which new ideas can be quickly
implemented, tested and adopted. The need for collaboration to build a
successful infrastructure can be seen in the wide adoption of Eclipse as
a platform [20]. Many teams contribute to Eclipse due to its open archi-



Fostering Research in Eternal Systems 9

tecture, and many researchers are using it for implementing their vision.
While Eclipse is not an academic exercise, it does facilitate software evolu-
tion research. To facilitate relevant and collaborative research into eternal
software intensive systems, a common infrastructure will be needed upon
which both research and practice can build.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss National Sci-
ence Foundation for the project “Analyzing, capturing and taming software
change” (SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008).



10 IAM-08-001

References
[1] M. Wirsing and M. H. (editors), “Report of the Beyond the Horizon

thematic group 6 on Software Intensive Systems,” 2006.

[2] O. Nierstrasz, “Software evolution as the key to productivity,” in
Radical Innovations of Software and Systems Engineering in the
Future (A. K. M. Wirsing and S. Balsamo, eds.), vol. 2941 of LNCS,
pp. 274–282, Springer-Verlag, 2004.

[3] J. P. Carse, Finite and Infinite Games — A Vision of Life as Play and
Possibility. Ballantine Books, 1987.

[4] P. Costanza and R. Hirschfeld, “Language constructs for context-
oriented programming: An overview of ContextL,” in Proceedings of
the Dynamic Languages Symposium (DLS) ’05, co-organized with
OOPSLA’05, (New York, NY, USA), pp. 1–10, ACM, Oct. 2005.

[5] G. Steele, “Growing a language,” Higher-Order and Symbolic
Computation, vol. 12, pp. 221–236, Oct. 1999.

[6] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug
report data for feature tracking,” in Proceedings IEEE Working
Conference on Reverse Engineering (WCRE 2003), (Los Alamitos
CA), pp. 90–99, IEEE Computer Society Press, Nov. 2003.

[7] O. Nierstrasz, M. Denker, T. Gı̂rba, and A. Lienhard, “Analyzing, cap-
turing and taming software change,” in Proceedings of the Workshop
on Revival of Dynamic Languages (co-located with ECOOP’06), July
2006.

[8] A. Hamou-Lhadj and T. Lethbridge, “A survey of trace exploration
tools and techniques,” in Proceedings IBM Centers for Advanced
Studies Conferences (CASON 2004), (Indianapolis IN), pp. 42–55,
IBM Press, 2004.

[9] T. Gı̂rba and S. Ducasse, “Modeling history to analyze software evo-
lution,” Journal of Software Maintenance: Research and Practice
(JSME), vol. 18, pp. 207–236, 2006.

[10] M. E. Conway, “How do committees invent?,” Datamation, vol. 14,
pp. 28–31, Apr. 1968.



References 11

[11] D. Roberts, J. Brant, and R. E. Johnson, “A refactoring tool for
Smalltalk,” Theory and Practice of Object Systems (TAPOS), vol. 3,
no. 4, pp. 253–263, 1997.

[12] G. Goth, “Beware the march of this IDE: Eclipse is overshadowing
other tool technologies,” IEEE Software, vol. 22, no. 4, pp. 108–111,
2005.

[13] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in 26th International
Conference on Software Engineering (ICSE 2004), (Los Alamitos
CA), pp. 563–572, IEEE Computer Society Press, 2004.

[14] Y. Ye and G. Fischer, “Reuse-conducive development environments,”
Autom. Softw. Eng., vol. 12, no. 2, pp. 199–235, 2005.

[15] D. Cubranic and G. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proceedings 25th International
Conference on Software Engineering (ICSE 2003), (New York NY),
pp. 408–418, ACM Press, 2003.

[16] A. J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements
for maintenance-oriented ides: a detailed study of corrective and
perfective maintenance tasks,” in ICSE ’05: Proceedings of the
27th international conference on Software engineering, pp. 125–135,
2005.

[17] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
ides,” in AOSD ’05: Proceedings of the 4th international conference
on Aspect-oriented software development, (New York, NY, USA),
pp. 159–168, ACM Press, 2005.

[18] O. Greevy, S. Ducasse, and T. Gı̂rba, “Analyzing software evolu-
tion through feature views,” Journal of Software Maintenance and
Evolution: Research and Practice (JSME), vol. 18, no. 6, pp. 425–
456, 2006.

[19] W. Bennis and P. W. Biederman, Organizing Genius — The Secrets
of Creative Collaboration. Perseus Books, 1997.

[20] S. Holzner, Eclipse. O’Reilly, May 2004.


	Abtract
	Eternal Systems
	Self-aware Platforms for Eternal Systems
	Analyzing Self-aware Eternal Systems
	Environments for Evolving Eternal Systems
	Fostering Research in Eternal Systems
	References

