
Change-Enabled Software Systems?

Oscar Nierstrasz, Marcus Denker, Tudor Gı̂rba,
Adrian Lienhard, David Röthlisberger

Software Composition Group, University of Bern
http://scg.unibe.ch/

Abstract. Few real software systems are built completely from scratch
nowadays. Instead, systems are built iteratively and incrementally, while
integrating and interacting with components from many other systems.
Adaptation, reconfiguration and evolution are normal, ongoing processes
throughout the lifecycle of a software system. Nevertheless the platforms,
tools and environments we use to develop software are still largely based
on an outmoded model that presupposes that software systems are closed
and will not significantly evolve after deployment. We claim that in order
to enable effective and graceful evolution of modern software systems,
we must make these systems more amenable to change by (i) providing
explicit, first-class models of software artifacts, change, and history at
the level of the platform, (ii) continuously analysing static and dynamic
evolution to track emergent properties, and (iii) closing the gap between
the domain model and the developers’ view of the evolving system. We
outline our vision of dynamic, evolving software systems and identify the
research challenges to realizing this vision.

1 Introduction

Software inevitably changes, but our development methods, programming lan-
guages, development environments and run-time systems generally assume that
one is building a closed, internally consistent application, which will not signif-
icantly change after deployment. Anticipated evolution can be built in to some
extent, for example by applying well-known design patterns, but unanticipated
changes in requirements are hard to accommodate without reengineering the
system, redeploying it, and possible migrating persistent data.

The vision of an eternal software-intensive system is that of a system that
can survive such unanticipated changes with little or no human intervention at
the lowest level [59]. We claim that this vision can only be realized if software
change is enabled in a fundamental way in our platforms, run-time environments
and development environments [42]. In particular, not only software systems
themselves, but their development and support environments need to be far
more dynamic than they are today. Specifically, what does this entail?

? M. Wirsing et al. (Eds.), Software-Intensive Systems, LNCS 5380, pp. 64-79, 2008.
c© Springer-Verlag Berlin Heidelberg 2008. doi:10.1007/978-3-540-89437-7 3

http://scg.unibe.ch/
http://dx.doi.org/10.1007/978-3-540-89437-7_3

2 O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, D. Röthlisberger

– First of all, we need to provide platforms in terms of programming languages
and run-time environments that make it possible to manipulate and operate
on change as a first-class entity. This in turn implies that an evolving soft-
ware system is not only model-driven, but actually “self-aware” — it must
have a first-class representation of itself available to enable change. To con-
trol the scope of change, change itself should be represented as a first-class,
high-level entity. To manage change over time, the history of the system
must also be accessible and first-class (see Section 2).

– Second, an evolving software system must be capable of analyzing itself,
and in particular of recognizing emergent properties. This means that the
evolution of the static and dynamic models must be monitored, and the
resulting data be analyzed as the system is running (see Section 3).

– Third, to enable continuous evolution, a software system must close the gap
between the development and deployment views of itself. Domain models,
usage models, and features, for example, must be made explicit in the system
to facilitate change (see Section 4).

We will explore these themes in some detail, in each case summarizing pre-
vious work, and establishing a research agenda for further work. We conclude
with summary remarks about next steps.

2 Self-aware platforms to support change

Traditionally, the development and deployment of software are viewed as being
separate in time and space: first a system is developed, then it is deployed.
Indeed, in the classical view, we deal with two completely different artifacts: the
source code that can be developed, debugged and understood on the one hand,
and on the other hand a generated, closed, non-understandable binary program
that just can be run.

Classical development plays out like a finite game with fixed rules and bound-
aries. Evolving software systems, on the other hand, are better thought of as
infinite games without fixed rules or boundaries [5]. Evolving systems will not
have a clear separation of development and deployment. The system will con-
tinue to evolve when it is already deployed. The systems of the future will not
be developed from the outside as a finite game. Development itself will be part
of the infinite game of the system. Evolution needs to happen in parts of the
system, while it is running.

We cannot afford to stop and restart a continuously evolving software sys-
tem, just as we cannot stop and restart the Internet. The Internet has been up
and running since 1969, although many of its atoms have been changed many
times since then. The software intensive systems of the future will need to learn
from these loosely-coupled, long-lived systems. To support this view, we need
appropriate core technologies in terms of programming languages and run-time
systems that can serve as a platform for developing evolving software systems.

Change-Enabled Software Systems 3

2.1 Previous work

In order to enable change at run-time, an evolving system must be able to fully
reflect on itself, that is, it must be self-aware. It is not enough to be model-
driven. The models must be explicit and accessible to the run-time system. A
reflective system provides a description of itself available from within. This de-
scription can be queried (introspection) as well as changed (intercession). In the
past, computational reflection has been an active area of research [13,15,41,55].
Nevertheless, languages used in industry today do not provide full reflection, and
many mainstream languages have no self representation at all (for example C
and C++). More recently created languages like Java and C# support limited
introspection, but no intercession.

In recent years, dynamic languages have attracted much attention [43] and
are increasingly being used in industry (e.g., Python, Ruby, Smalltalk). Dynamic
languages provide a representation that can be queried and changed at run-time
and thus are reflective. But even in these dynamic languages, the support for
reflection is limited. The structural representation of the program stops at the
granularity of the method. Classes and methods are represented as objects and
available to be queried and changed, but the structure of the methods themselves
is not represented. Behavioral reflection is limited as we cannot change behavior
on a fine-grained level. In addition, when applying behavioral reflection to the
system (as opposed to an application), the programmer will soon run into the
problem of meta-object call recursion [11].

We have extended structural reflection to model the structure of methods:
sub-method reflection [8] represents the complete structure, down to the code
itself. The representation can be annotated and thus can be used for integrating
tools. One example is feature annotation [10]. Instead of recording full traces
to analyze features, we can simply annotate the static structure of the system
with feature information. Partial behavioral reflection [51,58] provides means to
select where and when a meta-object is activated and allows us to define which
information is passed to the meta-object. We can introduce behavioral changes
at run-time which provides the basis to supporting unanticipated change to the
systems. Examples range from tools like tracers or profilers [51] to changes of
the language semantics, for example transactional memory [47]. The problem
of meta-object call recursion is solved by representing meta-level execution as a
context and by making meta-object activation context-aware [11].

It is well-established that suitable abstractions are needed to enable pro-
gramming in the large [45]. But in the case of scale, we need to think again: are
existing abstractions good enough for very large software systems? For example,
as software gets larger the assumption that every part of the system must stay
in sync with every other part is not very convincing because the systems of the
future will be so large that we will never be able to evolve them in a single,
synchronous step. As a consequence, an evolving system must be able to cope
with multiple, inconsistent views of itself.

Inconsistency is only tolerable if specific and individual views appear to be
locally consistent. Instead of allowing all changes to be globally visible, we need

4 O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, D. Röthlisberger

a means to control the scope of changes. That is, evolving systems must support
a notion of context and the run-time infrastructure must be context-aware. Being
able to dispatch on context means that we need to support a form of context-
oriented programming [7,27]. Visibility of changes can then be restricted to the
context in which these changes are guaranteed to be valid.

Changeboxes [9] provide a mechanism for encapsulating change as a first-class
entity in a running software system. Changeboxes support multiple, concurrent
and possibly inconsistent views of software artifacts within the same running
system. Since changeboxes are first-class, they can be manipulated to control
the scope of change in a running system. Furthermore, changeboxes capture
the semantics of change. Changeboxes can be used, for example, to encapsulate
refactorings, or to replay or analyze the history of changes.

2.2 Research agenda

We maintain that both reflection and context are crucial to support change and
evolution. There has been much recent progress, but more research is needed. In
particular, the key ideas emerging from previous research need to be consolidated
and integrated into a comprehensive model.

Efficient and practical reflective languages. Sub-method structural reflection and
partial behavioral reflection are improvements over conventional reflective sys-
tems. One problem with reflection, even with efficient partial reflection [51,58]
is performance. With behavioral reflection, we introduce new behavior that re-
places the default behavior. One example is method lookup. The default lookup
is extremely optimized and realized in the virtual machine, so any reflective
redefinition is often slower by an order of magnitude. This difference in perfor-
mance can render a system unusable in practice. We need to integrate reflection
better into the virtual machine, leveraging the dynamic code generator of mod-
ern just-in-time compilers. Another interesting question is how to resolve static
typing with reflection. Type-systems reason about properties that can be guar-
anteed in the future, whereas reflection is about changing the future. We need a
way to check reflective change before it is applied to the system.

Backward compatibility. Backward compatibility is the enemy of forward evolv-
ability. Nevertheless, we cannot live in a world where the old is ignored. An
often overlooked property of software is that new systems can simulate the old,
and the recent trends in hardware virtualization have shown that simulation of
the old is far easier than for the new to stay compatible. A snapshot of an old
Windows machine can run on a virtual machine forever, whereas keeping an op-
erating system compatible forever is bound to fail. Programming languages for
evolving systems should provide backwards compatibility in the same way: we
need a first class description of the history of all code of the system, freeing the
present from being compatible with the past while at the same time providing
the possibility to go back in time easily. The system should provide complete,
runnable snapshots of itself at any point in the past. Our work on changeboxes

Change-Enabled Software Systems 5

forms one first step towards this goal. However, changeboxes are only concerned
with code, thus an important aspect of future work is the problem of migrating
data between versions.

Contextual reflection. Context appears to be deeply related to reflection. In
the case of changeboxes, the currently active changebox provides a context for
execution. For partial behavioral reflection, we solve the problem of meta-object
call recursion by representing the execution of the meta-level as a context [11].
We think that the next step is to revisit these cases and integrate the notion of
context into the reflective model of the language and the virtual machine.

Languages supporting multiple views. In general, we need to explore multi-
dimensional object systems. After achieving a reflective model that is aware
of context, the next step is to build language support that makes this concept
available to the programmer. Some very relevant work has been done in the past,
for example the work on PIE [4,22,23,24], Us [56] and more recently ContextL
and ContextS [7,27]. More research is needed to explore how to combine these
ideas with contextual reflection and changeboxes.

Evolving languages. Evolving systems need languages that support continuous
development and evolution. But there is another aspect when considering the
language itself: to think that we can envision the perfect language to realize all
future systems is to treat language design like a finite game. Thus a language
suited for implementing ever-evolving software systems needs to be itself an
evolving system. An evolving language must evolve to incorporate new ideas and
practices while it is used. It needs to be extensible and growable from within [57].

3 Monitoring and analyzing change

To change a system we must first understand the system and the consequences
of change. Since change inevitably causes the system to drift from its initial
documentation, the most reliable source of information is the system itself. A
self-aware system can reflect on its own specification, which is an aid to static
analysis. But emergent properties as well as program failures can only be moni-
tored with the help of dynamic analysis [26].

Ideally, a productive system should constantly monitor and analyze itself.
This would allow us to discover properties that are only visible over a longer
period of time, such as performance degradation, memory leaks, shifts in how
the system is used, effects of structural changes etc. Furthermore, collecting
detailed data about the program execution can provide crucial information to
uncover the cause of program failures.

3.1 Previous work

Program failures for large, long-lived software systems can be hard to reproduce,
and hard to simulate in a test environment. As a consequence, systems need to

6 O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, D. Röthlisberger

dynamically analyze their behavior to gather execution history while they are
running and allow for remote and safe debugging inside the live system. To be
able to reason about the run-time behavior of a system, dynamic information
has to be linked with the model of the software structure. A platform that pro-
vides an integrated, high-level model of its own structure, design, and behavior
(see Section 2) would offer an appropriate foundation for building self-analyzing
systems.

The challenge we face with such an architecture is that the current state of
the art in dynamic analysis does not permit run-time information to be gathered
below the method level in live systems due to performance reasons. The main
obstacles are (i) code instrumentation requires a system to be restarted, (ii)
run-time overhead can be huge (up to a factor of 100 or more for non-trivial
programs [34]), and (iii) available memory to store the gathered data limits the
analysis to only few and short user sessions.

Most existing dynamic analysis approaches are detached from the run-time
environment, i.e., virtual machine, and hence have only limited means to adapt
and reconfigure the system at runtime without restarting it. Instrumentation
code is weaved into the application code at compile time, for instance through
bytecode manipulation. This additional code then generates data during execu-
tion, which is either stored as a trace of events in memory or in a database where
it is processed post mortem. An evolving system that needs to be running all the
time cannot be restarted to reconfigure the analyzer. Therefore, the run-time
analysis of a self-aware system needs to be an integral part of its run-time envi-
ronment. Like this, no hard-wired instrumentation code is required, but rather
the analyzer is a self-aware component of the virtual machine. The analyzer
needs to be always running and capable of adjusting its own behavior, much like
garbage collectors are always active in modern virtual machines.

We have addressed some of these problems as follows [37,39,38]. We have
extended the object memory model of conventional object-oriented virtual ma-
chines by representing object references as real objects on the heap. In this way
we seamlessly integrate historical execution data into the object model of the
virtual machine. Our approach discards unneeded historical execution data by
employing the standard garbage collector of the VM. We showed that this ap-
proach can dramatically improve the data explosion problem and has much lower
execution overheads compared to other back-in-time debuggers [34,46] that are
not implemented at the virtual machine level.

We have extended the common dynamic analysis model with the notion of
object aliases. That is, object references are explicitly represented in our model,
which allows us to track the flow of objects in the system or to analyze how side
effects are produced [40,38].

By enabling dynamic analysis on live systems, innovative debugging and
analysis techniques come within reach. In a recent study, Liblit et al. examined
bug symptoms for various programs and found that in 50% of the cases the
execution stack contains essentially no information about the bug’s cause [35].
Back-in-time debuggers [28,34,46] allow the developer to explore the program

Change-Enabled Software Systems 7

state at those points in time that are no longer represented on the run-time
stack. We are currently exploring the development of a highly performant back-
in-time debugger on top of our history-aware VM.

In evolving software systems, the changes to the static parts are directly
accessible as first class entities. As such, in evolving software systems, not only
the run-time is dynamic, but also the static part is dynamic when seen from
an historical perspective. Treating history as a first-class entity enables analyses
of the evolution of software artifacts [17]. For example, we can predict where
changes are likely to occur [19], we can detect classes that are changed frequently
[21], or we can identify crosscutting concerns by detecting which parts change
at the same time and in the same way [18].

Given the size of evolving systems, they will not be developed by an isolated
team, but rather by several teams that are physically distributed. In this context,
the social aspect of the development will become increasingly important [6].
Thus, analysis should also include reasoning about how developers collaborate
[2,20,25].

3.2 Research agenda

In the long-term, we expect that run-time monitoring of program execution and
evolution will become not only practical but essential to the survival of long-
lived software systems. To make this a reality however, further research will be
needed in the following areas.

Efficient run-time analysis. Dynamic analysis will only be widely adopted if it
is cheap in time and space. The emergence of multi-core architectures for off-
the-shelf desktop and laptop machines suggests that parallelization should be
explored as one way to reduce the execution time. Even though future hardware
capacity will allow for storing more data more efficiently, more advanced mod-
els for discarding unneeded data are important, as faster running systems also
produce data faster.

Detecting emergent properties. High-level run-time models are needed to reason
about the system from within the system. In an object-oriented system, recording
method execution events alone is not enough for certain analyses and for debug-
ging. Also, a run-time model should be seamlessly connected with the static
model, which captures structural program entities and their evolution. This al-
lows for recognizing links between the behavior of a system and its evolution and
can serve as a source of information for maintainers in their development envi-
ronment. By correlating static and dynamic information over time, one should be
able to detect emergent properties, such as maintenance hot spots, performance
bottlenecks and other opportunities for refactoring and reengineering.

Automatic model reconstruction. Heterogeneous and legacy sources of informa-
tion can be obstacles to analysis and evolution. Yet another complicating factor is

8 O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, D. Röthlisberger

the use of different programming languages and media such as mainstream com-
piled languages, scripting languages, domain specific languages, HTML, XML
and query languages within the same system. Furthermore, some of the lan-
guages used will be either legacy languages or dialects (such as legacy dialects
of C++). Post-hoc parsing of components built with these languages will be
difficult and error-prone since the original language specifications may not be
available. Thus, an evolving software can be seen as a multi-dimensional space
of data that needs to be continuously analyzed. Techniques will be needed to
automatically reconstruct high-level models and meta-models from lower-level
data, without necessarily having up-to-date access to the syntax specifications..
Possible approaches include abstraction from examples [44] and formal concept
analysis [1,36], amongst many others.

4 Enabling change for the developer

The evolution, or rather continuous development, of evolving systems places
special demands on the development environment. To some extent systems can
be designed for evolution. But if we see the development of an evolving system
as an infinite game, it becomes clear that one cannot anticipate all forms of
evolution.

Current IDEs focus on providing the developer only with a static view of
the source code without offering any information about how the code is actu-
ally executed at run-time, about why a bug occurred, or about whether there
are performance issues or memory consumption problems. Furthermore, modern
IDEs do not provide means to bridge the gap between the users’ view and the
developers’ view of the system. For instance, it is hard to locate and understand
a specific feature of a large system by studying its sources code alone.

We envision a development environment in which change is enabled by bridg-
ing the static and dynamic views of the system and by bringing the results of
dynamic analysis to the IDE. Ultimately, the IDE should be an active player
in the development process, enabling developers to interactively manipulate and
extend the system at a high level of abstraction.

4.1 Previous work

Support for refactoring, reorganizing and reengineering must be part of the evolv-
ing system. The state-of-the-art in refactoring support is still in its infancy [16].
Many modern IDEs provide some automated mechanisms to change and evolve
software systems but they tend to be low level, like renaming a class or mov-
ing a method [49]. Furthermore, developers receive little guidance in identifying
opportunities for refactoring [33], and the knowledge about performed refactor-
ings is usually not kept. A promising approach is to offer a better versioning
system that is able to store the high level knowledge about a change [48] and
then provide this information for further analysis [12].

Change-Enabled Software Systems 9

Empirical studies report that a developer performing maintenance tasks on
a system spends at least 35% of the time in navigating source code [31]. A
maintenance-oriented IDE should present the developer with a working set of
source code containing all functionality for a specific maintenance task to reduce
the navigational load. By monitoring the programmer’s activity to get a degree-
of-interest for program elements scattered across a large code base, the IDE can
reveal code elements that are likely to be important for the task at hand [30].
Other proposals [50,54] focus on emphasizing relations between source artifacts
by recommending related artifacts based on the past sequence of browsing, or by
characterizing the kinds of changes that have taken place during development
sessions [48].

Hermion is an experimental IDE that brings run-time information to the de-
veloper to better support maintenance tasks [53]. Dynamic information gathered
at run-time provides the developer with the possibility to directly navigate to ac-
tual senders and implementors of messages, or to navigate to the actual concrete
types to which variables have been dynamically bound. Statistical data about
the run-time call graph is also integrated into the static code views, and is dy-
namically updated as the code under development is further exercised. Dynamic
monitoring is realized by means of mechanisms in the underlying reflectivity
framework (see Section 2) which support unanticipated partial behavioural re-
flection [51]. This allows running code to be instrumented on-the-fly at a high
level of abstraction, and without modifying the underlying source code.

Visualizations can convey complex information in a condensed and effective
manner. Extensions to the VisualWorks Smalltalk IDE (e.g., RBCrawler) inte-
grate various well-known visualizations such as class blueprints [14], polymetric
views [32] or system complexity views [32]. They are well integrated in the static
source navigation tools of this IDE, however, they do not take dynamic infor-
mation into account and are thus just a starting point for further work.

One particularly useful application of visualization is to correlate static views
of software components, with the features of the running systems. Feature-driven
browsing exploits run-time information gathered when exercising features and
presents this information as a visual map [52]. This enables us to quickly iden-
tify the components responsible for a feature and to highlight the dependencies
between different features. As this feature visualization is integrated in the IDE,
the developer can also better assess the impact of a source code level change on
various features of the system if there is an explicit mapping between features
and source artifacts available.

4.2 Research agenda

Today’s IDEs are largely passive players in the development process, though
there is a clear and gradual trend towards IDEs and tools that play a more
active role. We believe that further research is needed here to make the IDE a
more active player in enabling change. Some promising research tracks follow.

10 O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, D. Röthlisberger

Automatic and continuous execution. Not only should the IDE provide com-
plete information, it should also do this efficiently to avoid slowing down the
development process. To achieve efficient integration of dynamic information, we
envision applying the concept of continuous integration by running the system
automatically and continuously in the background. This relieves the developer
from the burden of having to manually trigger the execution of the system while
modifying it.

Full coverage. Since manually triggered dynamic analyses normally do not cover
the entire system (i.e., all system’s features), the IDE should assume the re-
sponsibility to ensure full coverage and cover all code still being used by the
application. The IDE should analyze all execution paths through the system by
running the code currently being studied by the developer. If system monitoring
and analysis (see Section 3) can be made sufficiently efficient and non-intrusive,
possibly by exploiting the possibilities of parallel hardware, information gath-
ered from the execution of the live system by real users and certainly also of
recorded scripts could also be fed automatically back to the IDE.

Exploiting fine-grained change histories. Software is currently developed follow-
ing a checkout/change/commit life cycle. This approach hides the local events
and changes from the overall development. To limit this loss of information de-
velopers are advised to commit as often as possible in the central repository.
In the future we envision a central environment that is tightly integrated with
the versioning system and that stores all changes performed on the system. Fur-
thermore, instead of being snapshot-based, change logs will capture the intent
of changes, such as common refactoring operations. This information can then
be fed back into the IDE so that developers can immediately access historical
information in a productive and integrated way.

Autonomous system evolution. The IDE as an active player should be able to
autonomously perform many maintenance tasks. For instance, the IDE should
be able to automatically detect defects, and with the help of dynamic analysis,
suggest repair strategies to the developer. If a certain feature of such an evolving
system is broken, the environment should be able to locate this feature in source
code and determine which classes or methods need to be corrected to successfully
solve the issue. Fine-grained historical information about changes to the software
supporting the defective features should also be a valuable input to automatically
provide focus to the developer to correct the defect.

Model-centric development. Software developers today generally edit and ma-
nipulate textual representations of the systems being developed, i.e., as source
code. However, text is by definition static while the resulting system is dynamic
and neither knows nor cares about the textual representation from which it has
initially been built. We envision a system in which the developer directly ma-
nipulates high-level models that more closely represent the conceptual entities
of the software application. Such an approach would be model-centric rather

Change-Enabled Software Systems 11

than “model-driven”, since models would directly represent the running appli-
cation, rather than serving to generate it. Such a system could be realized by a
visual programming environment that enables developers to develop and change
directly the dynamic structure, e.g., by working with visual components of a sys-
tem’s behavior that can be dragged, dropped, parameterized, adapted, extended
and reorganized, directly modifying the behavior.

5 Concluding remarks

We have argued that traditional approaches to software development do not
adequately support the inevitable change that software will undergo during its
lifetime. We have summarized some current and ongoing research activities to
enable change for long-lived software systems, and we have presented an agenda
of critical research topics for further investigation. Briefly, we see the need for
further research in the following three related areas:

– Self-aware platforms to enable change. In order to enable change for soft-
ware applications, the underlying platform (i.e., programming language and
run-time environment) must support change in a deep way. Such systems
must therefore be reflective, by means of high-level models. Change must be
modeled as a first-class entity, so that changes can be manipulated and rea-
soned about. Finally, the platform must be context-aware so that the scope
of change can be controlled to ensure safe evolution at run-time. We have
argued that these ingredients are necessary for a future generation of self-
aware, long-lived, evolving software applications. Some of these ideas have
been prototyped, but much research is needed before they are ready to be
adopted in mainstream platforms.

– Monitoring and analyzing change. A long-lived, evolving software system
must provide means to monitor and analyze change, both in terms of short-
term, dynamic adaptations, and long-term software evolution. Dynamic anal-
ysis today is mostly post hoc. For performance reasons it is generally imprac-
tical to monitor and analyze live systems. Novel techniques for monitoring,
debugging and analyzing live systems are being developed, but further re-
search is needed to make these approaches practical, for example by exploit-
ing the possibilities of the emerging class of multi-core processors. Further
research is also needed to detect emergent properties of long-lived evolving
software systems, particularly in terms of correlating static and dynamic
software structures. Automatic detection of maintenance hot spots, perfor-
mance bottlenecks, and opportunities for refactoring are some of the areas
where further research is needed.

– Enabling change for the developer. Modern application development envi-
ronments essentially provide developers with static views of the application
source code. Particularly in the case of object-oriented software development,
the gap between the static and the run-time structures implies that much
valuable information is simply not available to the developer. By bringing
together static and dynamic views of the live system, many opportunities

12 O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, D. Röthlisberger

present themselves to improve the productivity of the developer. For in-
stance, dynamic information integrated into the static software views pro-
vides richer navigation possibilities. Further research is needed to make the
IDE itself an active player that exercises, tests and analyzes the live system
as it is being developed, actively updates the static views with the results of
dynamic analysis, automatically detects defects and actively suggests repair
strategies, and keeps track of changes and their intent at a finer granular-
ity than is currently supported. As a long-term goal, we envision IDEs that
are not so much focussed on editing source code, but rather support direct
manipulation and transformation of models of the live system under devel-
opment.

As a closing remark, we note that this kind of research is almost impossible
to carry out effectively by isolated researchers. A certain critical mass in terms of
software infrastructure is needed before research results stabilize and new ideas
can be built on top of older ones. Much of current research results in prototypes
that do not even begin to achieve the level of stability that is needed before
other researchers can build something new on top of them.

On the one hand, we advocate that the research process will need to acknowl-
edge and to reward the engineering effort. In the future, research and engineering
must meet to face the wide space opened by evolving systems. On the other hand,
just like evolving systems will not be the result of one team’s work, we advocate
that research will need to break the group boundary and open towards research
networks [3].

Bringing together research and engineering will also bring together two worlds
that are now rather separated: research and practice. Practitioners face real
problems and need new ideas to solve these problems, but cannot afford the time
and effort to experiment with unproven ideas. Researchers need real problems to
develop new ideas, but cannot afford the effort to fully validate and mature these
ideas in a practical setting. Each group is under pressure to get their products
out the door with acceptable quality and minimum cost. As a consequence few
new ideas get proven in practice, and real problems of practitioners tend not to
propagate in the research environment. The perceived cost of collaboration is
just too high.

A first step to bring these groups together and reduce the cost of collaboration
is to provide an infrastructure in which new ideas can be quickly implemented,
tested and adopted. The need for collaboration to build a successful infrastruc-
ture can be seen in the wide adoption of Eclipse as a platform [29]. Many teams
contribute to Eclipse due to its open architecture, and many researchers are us-
ing it for implementing their vision. While Eclipse is not an academic exercise,
it does facilitate software evolution research. To facilitate relevant and collabo-
rative research into evolving software intensive systems, an analogous common
infrastructure will be needed upon which both research and practice can build.

Change-Enabled Software Systems 13

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Analyzing, capturing and taming software change”
(SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008) and that of the Hasler
Foundation for the project “Enabling the evolution of J2EE applications through
reverse engineering and quality assurance”.

References

1. Gabriela Arévalo, Frank Buchli, and Oscar Nierstrasz. Detecting implicit collabora-
tion patterns. In Proceedings of WCRE ’04 (11th Working Conference on Reverse
Engineering), pages 122–131. IEEE Computer Society Press, November 2004.

2. Mihai Balint, Tudor Gı̂rba, and Radu Marinescu. How developers copy. In Proceed-
ings of International Conference on Program Comprehension (ICPC 2006), pages
56–65, 2006.

3. Warren Bennis and Patricia Ward Biederman. Organizing Genius — The Secrets
of Creative Collaboration. Perseus Books, 1997.

4. Daniel G. Bobrow and Ira P. Goldstein. Representing design alternatives. In Pro-
ceedings of the Conference on Artificial Intelligence and the Simulation of Behavior,
July 1980.

5. James P. Carse. Finite and Infinite Games — A Vision of Life as Play and
Possibility. Ballantine Books, 1987.

6. Melvin E. Conway. How do committees invent? Datamation, 14(4):28–31, April
1968.

7. Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented
programming: An overview of ContextL. In Proceedings of the Dynamic Languages
Symposium (DLS) ’05, co-organized with OOPSLA’05, pages 1–10, New York, NY,
USA, October 2005. ACM.

8. Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe Marschall. Sub-
method reflection. In Journal of Object Technology, Special Issue. Proceedings of
TOOLS Europe 2007, volume 6/9, pages 231–251. ETH, October 2007.

9. Marcus Denker, Tudor Gı̂rba, Adrian Lienhard, Oscar Nierstrasz, Lukas Renggli,
and Pascal Zumkehr. Encapsulating and exploiting change with Changeboxes. In
Proceedings of the 2007 International Conference on Dynamic Languages (ICDL
2007), pages 25–49. ACM Digital Library, 2007.

10. Marcus Denker, Orla Greevy, and Oscar Nierstrasz. Supporting feature analysis
with runtime annotations. In Proceedings of the 3rd International Workshop on
Program Comprehension through Dynamic Analysis (PCODA 2007), pages 29–33.
Technische Universiteit Delft, 2007.

11. Marcus Denker, Mathieu Suen, and Stéphane Ducasse. The meta in meta-object
architectures. In Proceedings of TOOLS EUROPE 2008, volume 11 of LNBIP,
pages 218–237, 2008.

12. Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien Nguyen. Refactoring-aware
configuration management for object-oriented programs. In International Confer-
ence on Software Engineering (ICSE 2007), pages 427–436, 2007.

13. Stéphane Ducasse. Evaluating message passing control techniques in Smalltalk.
Journal of Object-Oriented Programming (JOOP), 12(6):39–44, June 1999.

14 O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, D. Röthlisberger

14. Stéphane Ducasse and Michele Lanza. The class blueprint: Visually supporting the
understanding of classes. Transactions on Software Engineering (TSE), 31(1):75–
90, January 2005.

15. Jacques Ferber. Computational reflection in class-based object-oriented languages.
In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24, pages 317–326,
October 1989.

16. Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison Wesley, 1999.

17. Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software evolu-
tion. Journal of Software Maintenance: Research and Practice (JSME), 18:207–
236, 2006.

18. Tudor Gı̂rba, Stéphane Ducasse, Adrian Kuhn, Radu Marinescu, and Daniel Raţiu.
Using concept analysis to detect co-change patterns. In Proceedings of International
Workshop on Principles of Software Evolution (IWPSE 2007), pages 83–89. ACM
Press, 2007.

19. Tudor Gı̂rba, Stéphane Ducasse, and Michele Lanza. Yesterday’s Weather: Guid-
ing early reverse engineering efforts by summarizing the evolution of changes.
In Proceedings of 20th IEEE International Conference on Software Maintenance
(ICSM’04), pages 40–49, Los Alamitos CA, September 2004. IEEE Computer So-
ciety.

20. Tudor Gı̂rba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How
developers drive software evolution. In Proceedings of International Workshop on
Principles of Software Evolution (IWPSE 2005), pages 113–122. IEEE Computer
Society Press, 2005.

21. Tudor Gı̂rba, Michele Lanza, and Stéphane Ducasse. Characterizing the evolution
of class hierarchies. In Proceedings of 9th European Conference on Software Main-
tenance and Reengineering (CSMR’05), pages 2–11, Los Alamitos CA, 2005. IEEE
Computer Society.

22. Ira P. Goldstein and Daniel G. Bobrow. Descriptions for a programming environ-
ment. In Proceedings of the First Annual Conference of the National Association
for Artificial Intelligence, August 1980.

23. Ira P. Goldstein and Daniel G. Bobrow. Extending object-oriented programming
in Smalltalk. In Proceedings of the Lisp Conference, pages 75–81, August 1980.

24. Ira P. Goldstein and Daniel G. Bobrow. A layered approach to software design.
Technical Report CSL-80-5, Xerox PARC, December 1980.

25. Orla Greevy, Tudor Gı̂rba, and Stéphane Ducasse. How developers develop fea-
tures. In Proceedings of 11th European Conference on Software Maintenance and
Reengineering (CSMR 2007), pages 256–274, Los Alamitos CA, 2007. IEEE Com-
puter Society.

26. Abdelwahab Hamou-Lhadj and Timothy Lethbridge. A survey of trace exploration
tools and techniques. In Proceedings IBM Centers for Advanced Studies Confer-
ences (CASON 2004), pages 42–55, Indianapolis IN, 2004. IBM Press.

27. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3), March 2008.

28. Christoph Hofer, Marcus Denker, and Stéphane Ducasse. Design and implemen-
tation of a backward-in-time debugger. In Proceedings of NODE’06, volume P-88
of Lecture Notes in Informatics, pages 17–32. Gesellschaft für Informatik (GI),
September 2006.

29. Steve Holzner. Eclipse. O’Reilly, May 2004.

Change-Enabled Software Systems 15

30. Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for ides.
In AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented
software development, pages 159–168, New York, NY, USA, 2005. ACM Press.

31. Andrew J. Ko, Htet Aung, and Brad A. Myers. Eliciting design requirements
for maintenance-oriented ides: a detailed study of corrective and perfective main-
tenance tasks. In ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pages 125–135, 2005.

32. Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight visual
approach to reverse engineering. Transactions on Software Engineering (TSE),
29(9):782–795, September 2003.

33. Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-
Verlag, 2006.

34. Bill Lewis and Mireille Ducassé. Using events to debug Java programs backwards
in time. In OOPSLA Companion 2003, pages 96–97, 2003.

35. Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scal-
able statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design and implementation (PLDI’05), pages
15–26, New York, NY, USA, 2005. ACM.

36. Adrian Lienhard, Stéphane Ducasse, and Gabriela Arévalo. Identifying traits with
formal concept analysis. In Proceedings of 20th Conference on Automated Software
Engineering (ASE’05), pages 66–75. IEEE Computer Society, November 2005.

37. Adrian Lienhard, Stéphane Ducasse, and Tudor Gı̂rba. Taking an object-centric
view on dynamic information with object flow analysis. Journal of Computer
Languages, Systems and Structures, 2008. To appear.

38. Adrian Lienhard, Tudor Gı̂rba, Orla Greevy, and Oscar Nierstrasz. Test blueprints
– exposing side effects in execution traces to support writing unit tests. In 12th
European Conference on Software Maintenance and Reengineering (CSMR’08),
pages 83–92. IEEE Computer Society Press, 2008.

39. Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz. Practical object-oriented
back-in-time debugging. In 22nd European Conference on Object-Oriented Pro-
gramming (ECOOP’08), volume 5142 of LNCS, pages 592–615. Springer, 2008.
ECOOP distinguished paper award.

40. Adrian Lienhard, Orla Greevy, and Oscar Nierstrasz. Tracking objects to de-
tect feature dependencies. In Proceedings International Conference on Program
Comprehension (ICPC’07), pages 59–68, Washington, DC, USA, June 2007. IEEE
Computer Society.

41. Pattie Maes. Computational Reflection. PhD thesis, Laboratory for Artificial
Intelligence, Vrije Universiteit Brussel, Brussels Belgium, January 1987.

42. Oscar Nierstrasz. Software evolution as the key to productivity. In A. Knapp
M. Wirsing and S. Balsamo, editors, Radical Innovations of Software and Systems
Engineering in the Future, volume 2941 of LNCS, pages 274–282. Springer-Verlag,
2004.

43. Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane Ducasse, Markus
Gaelli, and Roel Wuyts. On the revival of dynamic languages. In Thomas Gschwind
and Uwe Aßmann, editors, Proceedings of Software Composition 2005, volume
3628, pages 1–13. LNCS 3628, 2005. Invited paper.

44. Oscar Nierstrasz, Markus Kobel, Tudor Gı̂rba, Michele Lanza, and Horst Bunke.
Example-driven reconstruction of software models. In Proceedings of Conference
on Software Maintenance and Reengineering (CSMR 2007), pages 275–286, Los
Alamitos CA, 2007. IEEE Computer Society Press.

16 O. Nierstrasz, M. Denker, T. Gı̂rba, A. Lienhard, D. Röthlisberger

45. David L. Parnas. On the criteria to be used in decomposing systems into modules.
CACM, 15(12):1053–1058, December 1972.

46. Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient debugging.
Proceedings of the 22nd Annual SCM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’07), 2007. To ap-
pear, ACM.

47. Lukas Renggli and Oscar Nierstrasz. Transactional memory for Smalltalk. In
Proceedings of the 2007 International Conference on Dynamic Languages (ICDL
2007), pages 207–221. ACM Digital Library, 2007.

48. Romain Robbes and Michele Lanza. Characterizing and understanding develop-
ment sessions. In Proceedings of ICPC 2007 (15th International Conference on
Program Comprehension), page to be published, 2007.

49. Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for Smalltalk.
Theory and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.

50. Martin P. Robillard and Gail C. Murphy. Feat: A tool for locating, describing, and
analyzing concerns in source code. In Proceedings of 25th International Conference
on Software Engineering, pages 822–823, May 2003.

51. David Röthlisberger, Marcus Denker, and Éric Tanter. Unanticipated partial be-
havioral reflection: Adapting applications at runtime. Journal of Computer Lan-
guages, Systems and Structures, 34(2-3):46–65, July 2008.

52. David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Feature driven browsing.
In Proceedings of the 2007 International Conference on Dynamic Languages (ICDL
2007), pages 79–100. ACM Digital Library, 2007.

53. David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Exploiting runtime infor-
mation in the ide. In Proceedings of the 16th International Conference on Program
Comprehension (ICPC 2008), volume 0, pages 63–72, Los Alamitos, CA, USA,
2008. IEEE Computer Society.

54. Janice Singer, Robert Elves, and Margaret-Anne Storey. Navtracks: Support-
ing navigation in software maintenance. In International Conference on Software
Maintenance (ICSM’05), pages 325–335, sep 2005.

55. Brian Cantwell Smith. Reflection and semantics in a procedural language. Tech-
nical Report TR-272, MIT, Cambridge, MA, 1982.

56. Randall B. Smith and Dave Ungar. A simple and unifying approach to subjective
objects. TAPOS special issue on Subjectivity in Object-Oriented Systems, 2(3):161–
178, 1996.

57. Guy Steele. Growing a language. Higher-Order and Symbolic Computation,
12(3):221–236, October 1999.

58. Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behavioral
reflection: Spatial and temporal selection of reification. In Proceedings of OOPSLA
’03, ACM SIGPLAN Notices, pages 27–46, nov 2003.

59. Martin Wirsing and Matthias Hölzl (editors). Report of the Beyond the Horizon
thematic group 6 on Software Intensive Systems, 2006.

	Change-Enabled Software Systems
	Oscar Nierstrasz, Marcus Denker, Tudor Gîrba, Adrian Lienhard, David Röthlisberger

