
Lessons in Software Evolution
Learned by Listening to Smalltalk ?

Oscar Nierstrasz and Tudor Gı̂rba

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch

Abstract. The biggest challenge facing software developers today is
how to gracefully evolve complex software systems in the face of chang-
ing requirements. We clearly need software systems to be more dynamic,
compositional and model-centric, but instead we continue to build sys-
tems that are static, baroque and inflexible. How can we better build
change-enabled systems in the future? To answer this question, we pro-
pose to look back to one of the most successful systems to support change,
namely Smalltalk. We briefly introduce Smalltalk with a few simple ex-
amples, and draw some lessons for software evolution. Smalltalk’s sim-
plicity, its reflective design, and its highly dynamic nature all go a long
way towards enabling change in Smalltalk applications. We then illus-
trate how these lessons work in practice by reviewing a number of re-
search projects that support software evolution by exploiting Smalltalk’s
design. We conclude by summarizing open issues and challenges for
change-enabled systems of the future.

1 Introduction

The conventional view of disciplined software construction is to reason that cor-
rectness of the final result is paramount, so we must invest carefully in rigorous
requirements collection, specification, verification and validation.

Of course these things are important, but the fallacy is to suppose that there
is a final result. This leads one to the flawed corollary that it is possible to
get the requirements right. The truth (as we know) is that in practice evolu-
tion is paramount [26,32], so the system is never finished, and neither are its
requirements [4].

What features are important in a software system to enable graceful software
evolution? In previous work we have argued that evolution is enabled by high-
level composition of components [2]. We have also argued that such systems
should also be dynamic, they should support reflection on-demand, and they
should provide mechanisms to manage the scope of change [33]. Change should
be represented as a first-class entity, and both static and dynamic models of the
running applications should be available at run-time to support continuous mon-
itoring and analysis of evolution [34]. Instead of being merely “model-driven”,
? J. van Leeuwen et al. (Eds.): SOFSEM 2010, LNCS 5901, pp. 77–95, 2010.

Invited paper. © Springer-Verlag Berlin Heidelberg 2010.

http://scg.unibe.ch

2 O. Nierstrasz and T. Gı̂rba

such systems should be model-centric, meaning that models are not only avail-
able for analysis, but also to enable and enact change. To control the scope of
change, systems need to be context-aware, thus allowing selected changes to be
visible to different parts of the same running system [35]. In a nutshell, change-
enabled systems should be (i) compositional, (ii) dynamic, (iii) model-centric,
(iv) reflective, (v) self-monitoring, and (vi) context-aware.

But how should we build such change-enabled systems? What are good ex-
amples of systems that actively support and enable rather than limit and impede
software evolution?

In this paper we take the position that many of these questions can be par-
tially answered by taking a close look at the Smalltalk system. Smalltalk [19,23]
was the first programming language and development environment designed to
be fully object-oriented from the ground up1. Many technical and process inno-
vations arose from Smalltalk, including the first interactive development environ-
ments with graphical user interfaces, many virtual machine advances, refactoring
tools, unit testing frameworks, and so on. Although it shows its age today, in
many ways Smalltalk (like ALGOL [21]) still improves on its successors.

Smalltalk is still interesting today because it offers many features that sup-
port graceful software evolution. First of all, at the core it is very simple.
Smalltalk is built up from a small set of fully object-oriented principles, start-
ing with the notions that everything is an object and everything happens by
sending messages. The syntax is remarkably simple, and can be read aloud like
pidgin English. Second, it is fully reflective, so all features of the Smalltalk sys-
tem are available at run-time as ... objects. Third, Smalltalk is highly dynamic.
While most programming languages are trapped in an edit/compile/run cycle,
Smalltalk supports incremental and interactive development of running appli-
cations by erasing the artificial distinction between “compile-time” and “run-
time”.

In Section 2 we introduce Smalltalk by means of series of simple examples,
and we draw three lessons that illustrate how Smalltalk support software evo-
lution. In Section 3, Section 4, and Section 5 we review a series of research
projects that demonstrate how Smalltalk’s simplicity, its reflective design, and
its dynamic nature enable change. In Section 6 we discuss several shortcomings
of Smalltalk and open challenges for change-enabled systems of the future. We
conclude with a few closing remarks in Section 7.

2 What Can We Learn From Smalltalk?

Smalltalk was designed to be the programming language and operating system
for implementing a new generation of lightweight, interactive computers known
as the Dynabook [22,23] (now recognizable as a precursor of today’s laptops; see
Figure 1). To build such a radically different kind of computer, Kay reasoned

1 Simula-67 [6] was earlier, but essentially extended ALGOL with object-oriented con-
structs, rather than being fully object-oriented.

Lessons in Software Evolution Learned by Listening to Smalltalk 3

that the underlying language and system should be object-oriented from the
ground up.

Fig. 1. Dynabook sketch from Kay’s 1972 paper [22].

The principle “Everything is an object” pervades Smalltalk’s design [19]. As
we shall see, this simple starting point inevitably led to a design in which all
aspects of Smalltalk are reified and available at run-time.

In this section we introduce Smalltalk through a series of simple examples
that illustrate surprising aspects of Smalltalk’s design principles. We conclude
by drawing three lessons for designing change-enabled software systems.

2.1 Simple, Read-Aloud Syntax

Smalltalk as a language is pretty much minimal. It is common to remark that
Smalltalk syntax can be learned in an afternoon, while the system itself can take
many months to master.

Smalltalk supports three kinds of message syntax, as seen in the following
example:

2 raisedTo: 1 + 3 factorial −→ 128

Unary messages, like factorial or new, consist of simple alphabetic identifiers, and
are evaluated first. Binary messages, like +, are built up of operator symbols
(much like in C++), always take a single argument, and are evaluated next.
Finally, keyword messages, like raisedTo: or ifTrue:ifFalse:, consist of any number
of keywords, each of which ends in a colon (:) and takes a single argument.

By exercising some common sense when naming classes, instance variables
and methods, this scheme leads to compact code which can be read aloud as
though it were a kind of pidgin English.

As a trivial example, try to read the following two roughly equivalent code
fragments out loud:

4 O. Nierstrasz and T. Gı̂rba

for(int n=1; n<=10; n++){
System.out.println(n);

}

1 to: 10 do: [:n | Transcript show: n; cr]

By avoiding the need for most declarations, and by adhering to a message
syntax that allows verbs and nouns to conveniently alternate, Smalltalk achieves
a high level of readability. This is of course important if code is to be largely
self-documenting. A large part of continuing development of complex software
systems is reading of existing code, not just writing of new code.

2.2 Everything Happens by Sending Messages to Objects

Not only the syntax is simple, but also the design and implementation of Smalltalk
follow logically from a few basic principles[19]. The most fundamental of these
principles are:

1. Everything is an object.
2. Everything happens by sending messages.

Other important principles state, for instance, that:

3. Every object is an instance of a class.
4. Every class (except the root) has a superclass.
5. Method lookup follows the superclass hierarchy.

Everything is an object, including numbers, so when we compute 3 + 4, we
send the message + to the object 3 with argument 4:2

3 + 4 −→ 7

Both little numbers and very big numbers are objects:

42 factorial −→
1405006117752879898543142606244511569936384000000000

Since everything is an object, classes and methods are objects too. And since
everything happens by sending messages, instantiating objects, defining new
classes, and creating methods also happen by sending messages. For example, to
define a class, we send a message to its superclass:

Object subclass: #Life
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'MyUniverse'

2 To indicate the result of evaluating a Smalltalk expression we use the notation
expression −→ result

Lessons in Software Evolution Learned by Listening to Smalltalk 5

We have just asked the root class Object to create a subclass of itself called Life
in the category (read “package”) called 'MyUniverse'.

To create a new object, we send a message to a class:

myLife := Life new

To define a method, we can send a message to its class:

Life compile: 'answer ↑ 42'

This method will be evaluated in response to the message answer, and returns3

the result 42. Normally, however, we would define methods using the develop-
ment environment, but it is important to remember that everything a tool does
actually happens by sending messages.

Of course we can send messages to plain objects too:

myLife answer −→ 42

(You might have noticed that we just extended the behaviour of a living object.)
What is now more interesting is that we can now easily navigate and query

the system as well simply by sending messages:

Life superclass −→ Object
Life methods size −→ 1
Life methods first selector −→ #answer
Life methods first class −→ CompiledMethod

In this way we can quickly reach the meta-objects that implement the system
(such as CompiledMethod). We can also easily explore the system’s meta-model:

Life class −→ Life class
Life class class −→ Metaclass
Life class class class −→ Metaclass class

This tells us that Life is an instance of Life class, that Life class is an instance
of Metaclass, and that Metaclass is an instance of Metaclass class.4

2.3 Everything is There, All the Time

In Smalltalk, there is no distinction between the development environment and
the runtime environment. They are one and the same.

The fact that all objects of the run-time system are accessible from the run-
ning image, and that all the source code is available all the time, leads to a very
different style of development from the traditional file-based edit/compile/run
life-cycle. Instead, Smalltalk encourages iterative and incremental development
in which a single class is created or a single method is compiled at a time. We can
change or extend the behaviour of already existing objects (e.g., myLife acquires
the answer method at run-time).
3 ↑ is Smalltalk for “return”.
4 The alert reader might be able to conclude how this tale continues.

6 O. Nierstrasz and T. Gı̂rba

As a consequence, Test-Driven Development, in which failing tests are writ-
ten before the code that makes the test pass, is naturally supported [5]. The
surprising fact is that it is possible to add the missing code, using the Smalltalk
debugger, from the context of the failing test.

Perhaps even more surprising is the extent to which it is considered best
practice in Smalltalk to make heavy use of the debugger. By contrast, in most
programming languages, the debugger is often considered a tool of last resort.
In Smalltalk, since the entire system is live, the debugger provides a convenient
interface to link source code to live objects. In other words, the debugger is your
friend. Since code can be evaluated and even changed in the debugger, this leads
to an interactive and incremental style of development in which one can modify
and test a running application in very tight iterations.

Suppose, for instance, that we try to evaluate the following:

myLife meaning

Since our Smalltalk environment has never heard of the message “meaning”,
it asks us to confirm that this is what we intend. When we confirm, the object
myLife receives the message meaning, but does not know what to do with it. This
causes Smalltalk to send it the message doesNotUnderstand: with the symbol
#meaning as its argument. The default behaviour is to launch a pre-debugger
window which offers us the possibility of creating the missing method (Figure 2).

Fig. 2. Not understanding the meaning of life.

Smalltalk kindly generates a default implementation within the debugger,
which does nothing but send the message shouldBeImplemented to self. From
within the debugger we can change this method to something more reasonable
(Figure 3).

Now if we ask Smalltalk to Proceed, we obtain the result we expect, without
ever having left the running system.

Lessons in Software Evolution Learned by Listening to Smalltalk 7

Fig. 3. Redefining the meaning of life.

myLife meaning −→ 'Try and be nice to people, avoid eating fat, read a good
book every now and then, get some walking in, and try and live together in

peace and harmony with people of all creeds and nations'

2.4 Lessons in Software Evolution

We have seen how Smalltalk distinguishes itself by its simplicity, its reflective
design, and its dynamic nature. These features support software evolution in
important ways:

– Less is more: Both the model and the syntax of Smalltalk are minimal.
The model is extended by introducing new objects, not by changing the
language. This minimal syntax allows for fluent interfaces to arise more nat-
urally in Smalltalk than many other languages, thus the code is largely self-
documenting — a critical feature for an evolving system.

– Reify everything : The design of Smalltalk follows logically from a small set
of principles. This makes the system easy to navigate, query and extend.

– You can change a running system: Contrary to most other software systems,
in Smalltalk you can only change a running system. There is no distinction
between edit-time, compile-time and run-time. The entire Smalltalk system
is described in itself. Essentially all the source code and the entire run-time
system is accessible all the time. This makes it a good basis for realizing
run-time, model-driven systems.

In the following sections, we will explore these points by reviewing several
research projects that exploit Smalltalk to enable change.

Smalltalk also has quite a few wrinkles, grey hairs and creaky joints. For
instance, Smalltalk’s traditional support for modularity based on “categories” of

8 O. Nierstrasz and T. Gı̂rba

related classes is primitive at best. We will conclude this paper with a discussion
of a number of areas where Smalltalk, and other programming systems, need to
better address the needs of software evolution.

3 Less is More

The simplicity of Smalltalk’s syntax makes it easy to learn. But, there is another
important aspect that this simple syntax supports well, which is the design of
fluent interfaces for black-box, component frameworks. A fluent interface resem-
bles a domain specific language (DSL), except that it is entirely embedded in
a host language, without requiring any syntactic extensions [18]. Fluent inter-
faces arise naturally with black-box frameworks, in which applications are built
by plugging together existing components, as opposed to white-box frameworks,
where applications are built by subclassing framework classes and implementing
hook methods [43].

By carefully designing the interface of a black-box framework, compositions
of components resemble readable (or “fluent”) high-level “scripts” in a DSL.
DSLs enable change by raising the level of abstraction, and by offering a more
suitable notation for domain experts to express requirements. Let us review a
number of examples.

Seaside. Consider the following example from an on-line store programmed using
Seaside [15], a web application development framework written in Smalltalk:

renderContentOn: html
html heading: item title.
html heading level3; with: item subtitle.
html paragraph: item description.
html emphasis: item price printStringAsCents.
html form: [

html submitButton callback: [self addToCart]; text: 'Add To Cart'.
html space.
html submitButton callback: [self answer]; text: 'Done']

A reader who knows neither the specific application nor Smalltalk, but is familiar
with HTML, should be able to read this aloud and make sense of it. The code
reads like a script in a DSL, but is actually plain Smalltalk code using Seaside’s
fluent interface. The result can be seen in the California Roll item in Figure 4.

Mondrian. Mondrian [31] is a black-box framework for generating visualizations.
The following script generates a simple System Complexity View [25] of a class
hierarchy, mapping dimensions and shading of boxes to metrics (see Figure 5):

view := ViewRenderer new.
view nodeShape rectangle

width: #NOA; height: #NOM;
linearColor: #LOC within: model classes.

view nodes: model classes.

Lessons in Software Evolution Learned by Listening to Smalltalk 9

Fig. 4. Scripting a Seaside component.

view edges: model inheritances from: #superclass to: #subclass.
view treeLayout.
view open.

Fig. 5. A Mondrian-scripted System Complexity View

Glamour. Glamour is yet another black-box framework used to develop interac-
tive browsers for diverse information models [8]. As with Seaside and Mondrian,
Glamour scripts are compact, readable, and resemble code written in a dedi-
cated DSL, though in fact they simply make use of a fluent interface written in
Smalltalk. For example, the following script produces a file browser similar to
Windows Explorer (see Figure 6).

browser := TableLayoutBrowser new.
browser

column: #folders;
column: [:col | col row: #files span: 2; row: #preview] span: 2.

10 O. Nierstrasz and T. Gı̂rba

browser showOn: #folders; using: [
browser tree children: [:folder | folder files select: #isDirectory]].

browser showOn: #files; from: #folders; using: [
browser list display: [:folder | folder files reject: #isDirectory]].

browser showOn: #preview; from: #files; using: [
browser text display: #contentsOfEntireFile]].

Fig. 6. A Windows Explorer-like browser implemented in Glamour.

Black-box frameworks separate what is stable (i.e., the components) from
what needs to stay flexible (i.e., the scripts) [2]. High-level scripts facilitate
software evolution by concentrating the composition of the system in a readable
specification. A fluent interface makes scripts easy to read, and hence easy to
modify and test, in contrast to traditional white-box frameworks which can be
notoriously difficult to understand, specialize, and configure. Smalltalk’s simple
syntax and semantics supports both the development of pluggable black-box
components and fluent interfaces to compose them.

4 Reify Everything

Smalltalk relies on a simple and explicit meta-model. With a simple meta-model,
not only can we easily query our software, we can also extend it. In this section
we will review a number of projects that have extended Smalltalk’s meta-model
to support software evolution.

Traits. Traits [16] extend Smalltalk’s meta-model with reusable groups of meth-
ods, thus overcoming the limitations of single inheritance, while avoiding fragility
problems known to occur with multiple inheritance and mixins. The introduction
of traits required changes to the meta-model, the compiler, and the run-time, but
no changes to the language or the syntax, since everything happens by sending
messages.

Let us define a new trait:

Trait named: #TUltimate uses: {} category: 'MyUniverse'.
TUltimate compile: 'question ↑ ''What do you get if you multiply six by nine?'''

Lessons in Software Evolution Learned by Listening to Smalltalk 11

We change our class to use this trait:

Object subclass: #Life
uses: TUltimate
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'MyUniverse'

And now:

myLife question −→ 'What do you get if you multiply six by nine?'

Traits support evolution by simplifying the refactoring of complex hierarchies
into finer grained, reusable components [10].

Magritte. Model-driven engineering (MDE) promotes software evolution by rais-
ing the level of continuous development to levels that are closer to the prob-
lem domain. But conventional MDE makes use of transformations to gener-
ate platform-specific models (and code) from platform-independent models. The
models are not typically available to the run-time system, so further adaptation
and evolution are not possible at run-time.

A model-centric system [35] makes high-level, causally-connected models
available to the run-time system for analysis and run-time adaptation. Smalltalk
offers a good foundation for model-centric systems due to its reflective architec-
ture.

A good example of a model-centric system is Magritte [38] a meta-description
framework implemented in Smalltalk. Magritte has been used, for example, to
meta-describe components of the Pier content management system5, allowing it
to be customized at run-time. Not only users can customize the domain model at
run-time, but developers can directly customize many aspects of the meta-model
without writing a line of code, since the meta-model is also meta-described and
rendered by Pier as web components (Figure 7).

Moose. Moose6 provides another example of a model-centric system. It offers a
platform for capturing, querying, navigating, analyzing and visualizing models
of complex software systems [36]. Several analyses have been built on top of
it dealing with various aspects of software: static analysis, dynamic analysis,
evolution analysis, semantic analysis, code duplication, code ownership analysis
and so on.

These analyses require various meta-models. To accommodate them, at its
core, Moose has a meta-meta-model in terms of which the various meta-models
are defined [14,24]. Based on these descriptions, Moose offers import-export ca-
pabilities, it generates user interfaces for navigation, and provides integration
mechanisms for extension services that encode specific analyses.

5 http://www.piercms.com
6 http://moose.unibe.ch

http://www.piercms.com
http://moose.unibe.ch

12 O. Nierstrasz and T. Gı̂rba

Domain Model

Metamodel

Meta-
Metamodel

Magritte
Developer

«described-by»

«described-by»

Developer

End User
Magritte
End User

Fig. 7. Magritte enables run-time customization of models and meta-models.

5 You can Change a Running System

Since in Smalltalk, everything is an object, it follows that the Smalltalk system
itself consists of a collection of objects. Since everything happens by sending
messages, it follows that all changes to the system are simply consequences of
messages being sent. In other words changes to the system occur within the
system, and are no different than any other events.

The fact that everything is there all the time and can be changed dynamically
means that both past and future evolution are accessible to the running system.
We will briefly look at three ways this can be exploited.

Object-Flow Analysis. One of the well-known shortcomings of conventional stack-
oriented debuggers is that the offending context which may have led to a run-time
error may no longer be on the stack. If a method has left an object in an invalid
state, this might produce an undesirable side effect at a much later point in time.
A so-called back-in-time debugger [29] keeps track of historical execution con-
texts to allow the developer to debug further back in time. Although appealing,
tracking history may generate vast amounts of data, and still it may be difficult
to track the actual cause of a defect.

The object-flow VM [28] tracks history in a live Smalltalk system by tracking
the flow of objects with first-class aliases, each of which stores a past state and
records the previous alias which led to it. Since aliases are first-class, unreach-
able aliases are automatically garbage-collected, leading to a simple and elegant
saving of space. Since aliases are managed at the VM level, they are invisible
to running applications. Compass [27] is a back-in-time debugger implemented

Lessons in Software Evolution Learned by Listening to Smalltalk 13

using the object-flow VM, which exploits object flow to simplify navigation of
the tree of past contexts (see Figure 8).

Fig. 8. Tracing object flow with the Compass back-in-time debugger

Changeboxes. Change management is an essential task to support software evo-
lution. Smalltalk provides a simple form of change management already within
the environment, so it is always possible to roll back changes. All changes are
also logged, so it is impossible to lose code.

This form of change management, however, is strictly limited to source code.
In a complex and evolving software system, different parts may depend on differ-
ent versions of the same software base. For a system that cannot afford significant
down-time, it may be unrealistic to expect that the entire code base be globally
consistent at all times. Changeboxes [12] is a prototype of a system supporting
change management for running software — deployed and development branches
may co-exist in the same running image, and can run different versions of the
same software. Branches can be dynamically split and merged without disrupt-
ing running clients, since the scope of applicable changes (i.e., a “changebox”)
is always uniquely defined for any given context. A running web application, for
example, can be modified without impacting clients, and incrementally deployed
on the live system by merging branches when they are ready (Figure 9).

The Changeboxes prototype adapted the Smalltalk meta-model by modifying
tools to be changebox-aware, and by modifying method lookup to select the right
version of a method for the currently active changebox.

14 O. Nierstrasz and T. Gı̂rba

Deployed Branch:

Release Branch:

Development Branch:

1. deployed

2. defective

4. merged 7. merged

6. merged

3. bug fix

5. refactored

Fig. 9. Multiple versions of the same running system can be dynamically up-
dated, split, and merged.

Reflectivity. Reflectivity [11] goes a step further in providing a general infras-
tructure for adapting running code at a fine level of granularity. Code is reified
by its abstract syntax tree (AST), and links are installed on this representation
as annotations (Figure 10). A compiler plug-in transforms the annotated ASTs
before execution to take the links into account. When the annotated code is
run, if any optional activation conditions are fulfilled, a message is sent to a
designated meta-object to take appropriate action.

metaobject

activation
condition

source code
(AST)

link

Fig. 10. Links annotate code reified as ASTs to trigger meta-object adaptations.

Lessons in Software Evolution Learned by Listening to Smalltalk 15

A typical application is to dynamically add and remove instrumentation code
on a running system to gather statistics for program analysis [40]. Other applica-
tions, however, include aspect-oriented adaptation [42] and automatic adaptation
of methods to use software transactional memory [39].

6 The Future of Change

Successful software must change to maintain its value. Why is it that the lan-
guages and environments we use to develop software inherently inhibit change
rather than enable it?

We have seen how a simple object model which uniformly reifies all entities
of the run-time meta-model supports dynamic change in a system like Smalltalk.
Still, there are many aspects of software evolution that are no better handled
by Smalltalk than by many other systems, both mainstream and exotic. Let us
have a brief look at three of these issues.

Closing the gap between objects and models. Model-driven development (MDD)
enables change by generating code from high-level models. When the models
change, the corresponding code can be freshly generated. Models, however, are
normally absent as artifacts in the running system, so no further changes are pos-
sible in a deployed system. Traditionally models, meta-models and meta-meta-
models are distinct and their instances do not exist as entities at the same level.
In Smalltalk-like systems, however, everything is an object, so objects, classes
and metaclasses (for example) are all objects. They are all causally connected,
so a change to a class impacts its instances, just as a change to a metaclass will
impact the class.

Ultimately, programming is modeling, and a programming language or system
is essentially a modeling tool. Object-oriented languages are particularly well-
suited for allowing developers to design their own high-level models for a given
application domain. An explicit notion of a model, however, is conspicuously
missing from programming languages, Smalltalk included.

In the 1950s, FORTRAN was proposed as a high-level language from which
computer code would be automatically generated. Nowadays we are used to
thinking of programs written in high-level languages as being “the code”, and
we barely concern ourselves with the machine code that is “generated”. By
the same token, perhaps we should stop thinking about “generating code from
models” and instead target development platforms where models themselves are
executable. (Whether models are interpreted or code is generated on the fly
should be purely an implementation detail.)

We have argued that change-enabled systems should be model-centric, mak-
ing models available at run-time [35]. How to achieve this, however, is an open
question, though some trends are interesting to watch. Executable UML [30]
aims at making UML diagrams executable by means of dedicated compilers
(though such models won’t be available at run-time). Visual languages come
and go [9], but some recent developments, such as Subtext [17], approach the

16 O. Nierstrasz and T. Gı̂rba

direct manipulation of models. Naked Objects [37] pushes ideas implicit in the
model-view-controller paradigm to nearly eliminate the distinction between do-
main objects, their implementation and their view.

Eliminating the barrier between the image and the VM. Smalltalk objects live
in the “image”, a persistent representation of object memory. Images are saved
as binary files, making it is easy to take multiple snapshots of the state of the
system, move images between machines, and share images with other users. The
virtual machine abstracts from the underlying hardware, so the same image can
run on any hardware or operating system platform.

On the other hand, images are essentially single-user (even if they host web
services), and communicating with the outside world (files, servers, other running
images) is clumsy at best. Although advanced collaborative tools exist [41,7],
objects by and large are “trapped in the image”. Little work has been done
recently to enable distributed, collaborative development.

Furthermore, although nearly everything is available to the run-time system,
objects of the VM are not. There exists a hard barrier between the image and
the VM which cannot be overcome. Certain kinds of changes are only possible
by implementing a new VM. As we have seen in Section 5, object-flow analy-
sis extended Smalltalks meta-model by introducing first-class aliases, but this
was only possible by modifying the Smalltalk VM. Making such functionality
available to other users is a non-trivial engineering task, since it is not simply a
matter of loading a new package into the image.

To better support such deep changes in the run-time of change-enabled sys-
tems, we must either find ways to bridge the boundary between the image and
the VM, or we need to erase the boundary completely. Pinocchio7 [44] is an open
language and system whose semantics and implementation is fully bootstrapped,
allowing deep changes to be made at run-time. By eliminating the separation be-
tween the image and the VM, full control over the run-time semantics is possible.
Non-intrusive changes important for software evolution, such as tracking object-
flow or monitoring run-time performance can be dynamically enabled without
requiring the VM to be replaced.

Putting objects into context. Most languages and systems, including Smalltalk,
assume that the world is consistent. We are forced to assume that a name means
one thing, that a single version of any piece of software is deployed at a time,
that types and interfaces are consistent. The real world is rife with inconsistency,
yet we cope with it very well. Why can’t our software systems?

We cope with real world inconsistency because we easily keep track of dif-
ferent contexts. How we behave, how we react to events, and how we present
ourselves depends on a constantly changing context. Furthermore we generally
have little difficulty in managing multiple contexts being active at the same time.
(We can deal with family, friends, co-workers and strangers present in the same
room.)

7 http://scg.unibe.ch/research/pinocchio

http://scg.unibe.ch/research/pinocchio

Lessons in Software Evolution Learned by Listening to Smalltalk 17

The Changebox prototype described in Section 5 managed multiple deploy-
ment contexts for software by adapting Smalltalk’s method lookup to take a
particular kind of context (a “changebox”) into account, but this only works
for changebox-aware tools. In practice, there are many different kinds of con-
text variables that context-aware applications need to take into account [1,3].
To deal with context in a rigorous and fully general way, we argue that it is
necessary to accommodate context deeply in the semantics [13] and the design
[20] of programming languages and systems.

7 Conclusion

To sketch out what a change-enabled software system might look like, we have
taken a brief look at a classic, dynamic system, Smalltalk, and seen how it
supports software evolution in various ways. The single principle, everything is
an object, can be seen as the driving force behind its simplicity, and its support
for change. The key lessons for software evolution that we draw are: (i) Less
is more — simple syntax and semantics can lead to a system that is easy to
understand and change; (ii) Reify everything — by making all key entities first-
class, they become available for modification and extension; (iii) You can change
a running system — by causally connecting entities with their meta-descriptions,
graceful, incremental change is enabled.

Change is here with us to stay. Increasingly, software systems will need to
adapt to change dynamically, which means that software models must be acces-
sible at run-time. Ideally, models will be executable, and different versions of the
same models will need to be simultaneously active, and context-aware.

Acknowledgments. We gratefully acknowledge the financial support of the Swiss Na-

tional Science Foundation for the project “Bringing Models Closer to Code” (SNF

Project No. 200020-121594, Oct 1, 2008 - Sept. 30, 2010) and the Hasler project “En-

abling the evolution of J2EE applications through reverse engineering and quality as-

surance” (project no. 2234). We also thank Lukas Renggli, Erwann Wernli, Fabrizio

Perin, Bernhard Rumpe and Jan Ringert for their helpful comments and suggestions.

References

1. Gregory D. Abowd and Anind K. Dey. Towards a better understanding of context
and context-awareness. In Proceedings of the CHI 2000 Workshop on the What,
Who, Where, When and How of Context-Awareness. ACM Press, New York., 2000.

2. Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz.
Piccola — a small composition language. In Howard Bowman and John Derrick,
editors, Formal Methods for Distributed Processing — A Survey of Object-Oriented
Approaches, pages 403–426. Cambridge University Press, 2001.

3. Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on
context-aware systems. International Journal of Ad Hoc and Ubiquitous Com-
puting, 2(4):263–277, 2007.

18 O. Nierstrasz and T. Gı̂rba

4. Kent Beck. Extreme Programming Explained: Embrace Change. Addison Wesley,
2000.

5. Kent Beck. Test Driven Development: By Example. Addison-Wesley Longman,
2002.

6. G. Birtwistle, Ole Johan Dahl, B. Myhrtag, and Kristen Nygaard. Simula Begin.
Auerbach Press, Philadelphia, 1973.

7. Avi Bryant. Monticello. http://www.wiresong.ca/Monticello.
8. Philipp Bunge. Scripting browsers with Glamour. Master’s thesis, University of

Bern, April 2009.
9. Margaret M. Burnett and Adele Goldberg. Visual Object-Oriented Programming.

Prentice-Hall, 1995.
10. Damien Cassou, Stéphane Ducasse, and Roel Wuyts. Traits at work: the design

of a new trait-based stream library. Journal of Computer Languages, Systems and
Structures, 35(1):2–20, 2009.

11. Marcus Denker. Sub-method Structural and Behavioral Reflection. PhD thesis,
University of Bern, May 2008.

12. Marcus Denker, Tudor Gı̂rba, Adrian Lienhard, Oscar Nierstrasz, Lukas Renggli,
and Pascal Zumkehr. Encapsulating and exploiting change with Changeboxes. In
Proceedings of the 2007 International Conference on Dynamic Languages (ICDL
2007), pages 25–49. ACM Digital Library, 2007.

13. Mariangiola Dezani-Ciancaglini, Paola Giannini, and Oscar Nierstrasz. A calculus
of evolving objects. Scientific Annals of Computer Science, XVIII:63–98, 2008.

14. Stéphane Ducasse, Tudor Gı̂rba, Adrian Kuhn, and Lukas Renggli. Meta-
environment and executable meta-language using Smalltalk: an experience report.
Journal of Software and Systems Modeling (SOSYM), 8(1):5–19, February 2009.

15. Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside: A flexible en-
vironment for building dynamic web applications. IEEE Software, 24(5):56–63,
2007.

16. Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew
Black. Traits: A mechanism for fine-grained reuse. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 28(2):331–388, March 2006.

17. Jonathan Edwards. Subtext: uncovering the simplicity of programming. In Ralph
Johnson and Richard P. Gabriel, editors, Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2004, San Diego, CA, USA, pages
505–518. ACM, 2005.

18. Martin Fowler. FluentInterface, on Martin Fowler’s blog, December 2005.
http://www.martinfowler.com/bliki/FluentInterface.html.

19. Adele Goldberg and David Robson. Smalltalk 80: the Language and its Implemen-
tation. Addison Wesley, Reading, Mass., May 1983.

20. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3), March 2008.

21. C. A. R. Hoare. Hints on programming language design. Technical Report CS-
TR-73-403, Stanford University, 1973.

22. Alan C. Kay. A personal computer for children of all ages. In Proceedings of the
ACM National Conference. ACM Press, August 1972.

23. Alan C. Kay. The early history of Smalltalk. In ACM SIGPLAN Notices, vol-
ume 28, pages 69–95. ACM Press, March 1993.

24. Adrian Kuhn and Toon Verwaest. FAME, a polyglot library for metamodeling at
runtime. In Workshop on Models at Runtime, pages 57–66, 2008.

Lessons in Software Evolution Learned by Listening to Smalltalk 19

25. Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-
Verlag, 2006.

26. Manny Lehman and Les Belady. Program Evolution: Processes of Software Change.
London Academic Press, London, 1985.

27. Adrian Lienhard, Julien Fierz, and Oscar Nierstrasz. Flow-centric, back-in-time
debugging. In Objects, Components, Models and Patterns, Proceedings of TOOLS
Europe 2009, volume 33 of LNBIP, pages 272–288. Springer-Verlag, 2009.

28. Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz. Practical object-oriented
back-in-time debugging. In Proceedings of the 22nd European Conference on
Object-Oriented Programming (ECOOP’08), volume 5142 of LNCS, pages 592–
615. Springer, 2008. ECOOP distinguished paper award.

29. Kazutaka Maruyama and Minoru Terada. Debugging with reverse watchpoint. In
Proceedings of the Third International Conference on Quality Software (QSIC’03),
page 116, Washington, DC, USA, 2003. IEEE Computer Society.

30. Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley Professional, May 2002.

31. Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An agile visualization
framework. In ACM Symposium on Software Visualization (SoftVis’06), pages
135–144, New York, NY, USA, 2006. ACM Press.

32. Oscar Nierstrasz. Software evolution as the key to productivity. In A. Knapp
M. Wirsing and S. Balsamo, editors, Radical Innovations of Software and Systems
Engineering in the Future, volume 2941 of LNCS, pages 274–282. Springer-Verlag,
2004.

33. Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane Ducasse, Markus
Gaelli, and Roel Wuyts. On the revival of dynamic languages. In Thomas Gschwind
and Uwe Aßmann, editors, Proceedings of Software Composition 2005, volume
3628, pages 1–13. LNCS 3628, 2005. Invited paper.

34. Oscar Nierstrasz, Marcus Denker, Tudor Gı̂rba, Adrian Lienhard, and David
Röthlisberger. Change-enabled software systems. In Martin Wirsing, Jean-Pierre
Banâtre, and Matthias Hölzl, editors, Challenges for Software-Intensive Systems
and New Computing Paradigms, volume 5380 of LNCS, pages 64–79. Springer-
Verlag, 2008.

35. Oscar Nierstrasz, Marcus Denker, and Lukas Renggli. Model-centric, context-aware
software adaptation. In Betty H.C. Cheng, Rogerio de Lemos, Holger Giese, Paola
Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems,
volume 5525 of LNCS, pages 128–145. Springer-Verlag, 2009.

36. Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of Moose: an agile
reengineering environment. In Proceedings of the European Software Engineering
Conference (ESEC/FSE’05), pages 1–10, New York NY, 2005. ACM Press. Invited
paper.

37. Richard Pawson. Naked Objects. Ph.D. thesis, Trinity College, Dublin, 2004.
38. Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn. Magritte — a meta-driven

approach to empower developers and end users. In Gregor Engels, Bill Opdyke,
Douglas C. Schmidt, and Frank Weil, editors, Model Driven Engineering Languages
and Systems, volume 4735 of LNCS, pages 106–120. Springer, September 2007.

39. Lukas Renggli and Oscar Nierstrasz. Transactional memory in a dynamic language.
Journal of Computer Languages, Systems and Structures, 35(1):21–30, April 2009.

40. David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Exploiting runtime infor-
mation in the IDE. In Proceedings of the 16th International Conference on Program
Comprehension (ICPC 2008), pages 63–72, Los Alamitos, CA, USA, 2008. IEEE
Computer Society.

20 O. Nierstrasz and T. Gı̂rba

41. David A. Smith, Alan Kay, Andreas Raab, and David P. Reed. Croquet, a collab-
oration system architecture. In Proceedings of the First Conference on Creating,
Connecting and Collaborating through Computing, pages 2–9, 2003.

42. Anselm Strauss. Dynamic aspects — an AOP implementation for Squeak. Master’s
thesis, University of Bern, November 2008.

43. Clemens A. Szyperski. Component Software. Addison Wesley, 1998.
44. Toon Verwaest and Lukas Renggli. Safe reflection through polymorphism. In

CASTA ’09: Proceedings of the first international workshop on Context-aware soft-
ware technology and applications, pages 21–24, New York, NY, USA, 2009. ACM.

	Lessons in Software Evolution Learned by Listening to Smalltalk
	Oscar Nierstrasz and Tudor Gîrba

