
The Death of Object-Oriented Programming?

Oscar Nierstrasz1

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract. Modern software systems are increasingly long-lived. In or-
der to gracefully evolve these systems as they address new requirements,
developers need to navigate effectively between domain concepts and
the code that addresses those domains. One of the original promises
of object-orientation was that the same object-oriented models would
be used throughout requirements analysis, design and implementation.
Software systems today however are commonly constructed from a het-
erogeneous “language soup” of mainstream code and dedicated DSLs
addressing a variety of application and technical domains. Has object-
oriented programming outlived its purpose?
In this essay we argue that we need to rethink the original goals of
object-orientation and their relevance for modern software development.
We propose as a driving maxim, “Programming is Modeling,” and ex-
plore what this implies for programming languages, tools and environ-
ments. In particular, we argue that: (1) source code should serve not
only to specify an implementation of a software system, but should en-
code a queryable and manipulable model of the application and technical
domains concerned; (2) IDEs should exploit these domain models to en-
able inexpensive browsing, querying and analysis by developers; and (3)
barriers between the code base, the running application, and the soft-
ware ecosystem at large need to be broken down, and their connections
exploited and monitored to support developers in comprehension and
evolution tasks.

1 Introduction

Is object-oriented programming dying?
The code of real software systems is structured around a number of inter-

acting and overlapping technical and application domains. As we shall see, this
fact is not well supported by mainstream languages and development environ-
ments. Although object-oriented software development made early promises to
close the gaps between analysis, design and implementation by offering a uni-
fying object-oriented modeling paradigm for these activities, we still struggle to
navigate between these worlds. Do the emergence of domain-specific languages
(DSLs) and model-driven development (MDD) prove that object-orientation has
failed?

? Preprint of an invited paper. To appear in Proceedings of FASE 2016, Springer
LNCS 9633.

http://scg.unibe.ch/


2 Oscar Nierstrasz

In this essay we explore some of the symptoms of this apparent failure, and
argue that we need to be bolder in interpreting the vision of object-orientation.
We propose the slogan “Programming is Modeling” and identify a number of
challenges this leads us to.

Let us briefly summarize the key symptoms:

There exists a large gap between models and code. In an ideal world, requirements
and domain models are clearly visible in the implementation of a software system.
In reality, most mainstream programming languages seem to be ill-equipped to
represent domain concepts in a concise way, leading to a proliferation of DSLs.
Internal DSLs, for example, “fluent interfaces” that exploit the syntax of a host
language, are often less fluent and readable than they should be. External DSLs
(i.e. with their own dedicated syntax) can lead to a “soup” of heterogeneous
code that is hard to navigate, understand, and analyse.

MDD represents another important trend, in which high-level models are
typically transformed to implementations, but such “model compilers” tend to
pay off only in well-understood domains where changes in requirements can be
well-expressed by corresponding changes to models.

Mainstream IDEs are glorified text editors. Although software developers spend
much of their time reading and analyzing code, mainstream IDEs mostly treat
source code as text. In general, the IDE is not aware of application or technical
domain concepts, and does not help the developer to formulate domain-specific
queries or custom analyses, such as: Where is this feature implemented? Will
this change impact the system architecture? Who is an expert on this part of the
code? Similarly classical development tools belonging to the IDE are unaware of
the application domain. A classical example is the interactive debugger, which
offers a uniform interface to debugging based on the run-time stack, without any
knowledge of the underlying application domain. Although popular IDEs offer
plugin architectures that allow third-party developers to integrate new tools
into the IDE, the barrier to building such tools remains relatively high, and
the application domain models of the underlying code base remain relatively
inaccessible.

Programming languages and tools live in a closed world. Mainstream program-
ming languages assume the world is closed and frozen. Static type systems, for
example, assume that the type of an entity is fixed and will never change or
evolve. When a type changes, the entire world must change with it. In reality,
complex software systems have to cope with evolving and possibly inconsistent
entities. Another symptom is the strict divide between “compile time” and “run
time” in mainstream programming. For example, it is not possible to navigate
seamlessly from a feature of a running system to the code that implements it.
Finally, we see that developers often resort to web search engines and dedicated
Q&A fora to answer questions that the IDE cannot. We need to acknowledge
that code lives within a much larger ecosystem than the current code base.



The Death of Object-Oriented Programming 3

In this essay we argue that we should revisit the object-oriented paradigm to
address these issues by adopting the maxim that “Programming is Modeling.”
We further propose a number of research challenges along the following lines:

1. Bring models closer to code by expressing queryable and manipulable domain
models directly in source code;

2. Exploit domain models in the IDE to enable custom analyses by developers;
3. Link the code to its ecosystem and monitor them both to steer their evolution.

Caveat: we apologize in advance for referencing only little of the vast amount
of relevant related work.1

2 Bring models closer to code

When we develop and evolve code, we need to comprehend the relationships
between requirements that refer to domain models, and the underlying code that
realizes those requirements. Ideally we want to see domain concepts directly in
the code. We therefore argue that a program should not just serve to specify an
implementation of a set of requirements, but it should encode domain models
suitable for querying and analysis.

This, we believe, was one of the early promises of object-oriented program-
ming as expressed in the 1980s. Nowadays, however, complex software systems
are implemented as a soup of mainstream and domain-specific languages. DSLs
can be used to address either technical or application domains. Typically several
DSLs are needed to address a complex application. Despite the availability of
many dedicated DSLs, important aspects of a software system may not be explic-
itly modeled at all. Notoriously, architectural constraints are implemented with
the help of frameworks and architectural styles, but rarely represented explicitly
or checked as the system evolves.

Introducing ever more DSLs is not a solution. Having many external DSLs
complicates program comprehension and makes it difficult for tools to reason
about the relationships between them.2

Internal (or embedded) DSLs are hard to achieve because (1) the syntax
of many mainstream object-oriented languages does not support well the de-
sign of truly fluent interfaces (with some notable exceptions, such as Smalltalk,
Ruby, Scala, ...), and (2) design methods emphasize the development of “fluent
interfaces,” so they can be hard to achieve post hoc.

We think that many of these problems have their roots in a fundamental mis-
understanding of the object-oriented paradigm. While the imperative program-
ming paradigm can be summarized as programs = algorithms + data structures,
object-oriented programming is often explained (following Alan Kay [8][p 78]) as

1 A representative selection of related work can be found in the research plan of our
SNSF project, “Agile Software Analysis”: http://scg.unibe.ch/research/snf16

2 Coping with this complexity is one of the goals of the GEMOC initiative [6]. See
http://gemoc.org.

http://scg.unibe.ch/research/snf16
http://gemoc.org


4 Oscar Nierstrasz

programs = objects + messages. While this is not incorrect, it is a mechanistic
interpretation that misses the key point.

In our view, the object-oriented paradigm is better expressed as: “design your
own paradigm” (i.e. programming is modeling). A well-designed object-oriented
system consists of objects representing exactly the domain abstractions that
are needed for your application and suitable operations over them (if you like, a
many-sorted algebra). Code can be separated into the objects (or “components”)
representing domain concepts, and scripts that configure them [1].

We therefore posit as a challenge to revive object-oriented programming by
viewing OO languages as modeling languages, not just implementation languages.
Rather than viewing DSLs and MDD as the competition, we should encourage
the use of OO languages as modeling tools, and even as language workbenches
for developing embedded DSLs.3

3 Exploit domain models in the IDE

Although developers are known to spend much of their development time read-
ing and analyzing code, mainstream IDEs do not do a good job of supporting
program comprehension. IDEs are basically glorified text editors.

Developers need custom analyses to answer the questions that arise during
typical development tasks [16,7]. Building a dedicated analysis tool is expensive,
even using a plugin architecture such as that of Eclipse. Dedicated analysis
platforms like Moose [12] and Rascal [9] reduce the cost of custom queries, but
they rely on the existence of a queryable model of the target software.

As we have seen in the previous section, even though we would like to see
programs as models, they are not in a form useful for querying and analysis, so
we need to do extra work to extract these models and work with them.

We see two important challenges. The first is “Agile Model Extraction”, i.e.
the ability to efficiently extract models from source code. This is not just a
problem of parsing heterogeneous code and linking concepts encoded in different
languages (e.g. Java, SQL, XML), but also of recognizing concepts coming from
numerous and intertwined domain models. We are experimenting with approxi-
mate parsing technology, inexpensive heuristics, and other techniques [10,13] to
quickly and cheaply extract models from heterogeneous source code.

The second challenge is “Context-Aware Tooling”, i.e. the ability to cheaply
construct dedicated, custom analyses and tools that close the gap between IDEs
and application software. The key idea is, once we have access to the underlying
domain model of of code (whether it is offered by the underlying infrastructure
or obtained by Agile Model Extraction), to make it easy to exploit that model
in tools used by developers to produce code, browse and query it, analyze it and
debug it. On the one hand, generic core functionality is needed for querying and
navigating models. On the other hand, tools and environments need to be aware

3 See, for example, Helvetia, a workbench for integrating DSLs into the IDE and
toolchain of the host language [15].



The Death of Object-Oriented Programming 5

of the context of the domain model of the code under study so they can adapt
themselves accordingly.

Fig. 1. A domain-specific debugger for PetitParser. The debugging view displays rel-
evant information for debugging parsers ((4) Input, (5) Production structure). Each
widget loads relevant debugging operations (1, 2, 4).

An example is the “moldable debugger” which, instead of presenting only a
generic stack-based interface to the run-time environment, is aware of relevant
domain concepts, such as notifications in an event-driven system, or grammar
rules in a parser [4]. In Figure 1 we see a screenshot of a domain-specific debugger
for PetitParser, a parser combinator framework for Pharo Smalltalk [14]. Each
widget of the debugger is context-sensitive and loads the appropriate debugging
operations for the current context. The debugger is aware of a grammar’s pro-
duction rules and is capable, for example, of stepping to the next production or
the next parser failure, rather than simply to the next expression, statement or
method. Custom visualizations are also loaded to display the production struc-
ture in a suitable way. Custom debuggers can be defined in a straightforward way
by leveraging the explicit representation of the underlying application domain.

The same principles have been applied to the “moldable inspector,” a context-
aware tool for querying and exploring an object space [5]. Domain-specific views
are automatically loaded depending on the entities being inspected. As with the
moldable debugger, custom views are commonly expressed with just a few lines
of code.



6 Oscar Nierstrasz

In the long run we envision a development environment in which we are not
forced to extract models from code, but in which the code is actually a model
that we can interact with, query and analyze.



The Death of Object-Oriented Programming 7

4 Link the code to its ecosystem

Conventional software systems are trapped behind a number of artificial barri-
ers. The most obvious is the barrier between the source code and the running
application. This is manifested in the usual program/compile/run cycle. This
makes it difficult to navigate between application features and source code. The
debugger is classically the only place where the developer can navigate between
the two worlds. It does not have to be that way, as seen in the Morphic frame-
work of Self, in which one may navigate freely between user interface widgets and
the source code related to them [11]. (This is just one dramatic manifestation of
“live programming”, but perhaps one of the most important ones for program
comprehension.)

A second barrier is that between a current version of a system and other
related versions. In order to extract useful information about the evolution of
the system, one must resort to “mining software repositories”, but this possibility
is not readily available to average developers who do not have spare capacity to
carry out such studies. Furthermore, different versions cannot normally co-exist
within a single running system, complicating integration and migration. (There
has been much interesting research but not much is available for mainstream
development.)

A third barrier exists between the system under development and the larger
ecosystem of related software. Countless research efforts in the past decade have
shown that, by mining the ecosystem, much useful knowledge can be gleaned
about common coding practices, bugs and bug fixes, and so on. Unfortunately
this information is not readily accessible to developers, so they often turn instead
to question and answer fora.

We see two main challenges, namely “Ecosystem Mining” and “Evolution-
ary Monitoring.” By mining software ecosystems and offering platforms to ana-
lyze them [2], we hope to automatically discover intelligence relevant to a given
project. Examples are opportunities for code reuse, automatically-generated and
evolving documentation, and usage information than can influence maintainers
of libraries and frameworks.

Evolutionary Monitoring refers to steering the evolution of a software system
by monitoring stakeholder needs. An example of this is architectural monitor-
ing [3] which formalizes architectural constraints and monitors conformance as
the application evolves. Other examples include tracking the needs of stake-
holders (i.e. both developers and users) to determine chronic pain points and
opportunities for improvements; tracking technical debt to assess priorities for
reengineering and replacement; and monitoring technical trends, especially with
respect to relevent technical debt.

In the long run, we envision a development environment that integrates not
just the current code base and the running application, enabling easy naviga-
tion between them, but also knowledge mined from the evolution of the software
under development as well as from the software ecosystem at large. The develop-
ment environment should support active monitoring of the target system as well
as the ecosystem to identify and assess opportunities for code improvements.



8 Oscar Nierstrasz

5 Conclusion

Object-oriented programming has fulfilled many of its promises. Software sys-
tems today are longer-lived and more amenable to change and extension than
ever. Nevertheless we observe that object orientation is slowly dying, with the
introduction of ever more complex and heterogeneous systems.

We propose to rejuvenate object-oriented programming and let ourselves be
guided by the maxim that “programming is modeling.” We need programming
languages, tools and environments that enable models to be directly expressed
in code in such a way that they can be queried, manipulated and analyzed.

Acknowledgments

We thank Mircea Lungu for his comments on an early draft of this essay. We
also gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Agile Software Analysis” (SNSF project No. 200020-
162352, Jan 1, 2016 - Dec. 30, 2018), and its predecessor, “Agile Software As-
sessment” (SNSF project No. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015)

References

1. Franz Achermann and Oscar Nierstrasz. Applications = components + scripts —
a tour of Piccola. In Mehmet Aksit, editor, Software Architectures and Component
Technology, pages 261–292. Kluwer, 2001.

2. Andrea Caracciolo, Andrei Chiş, Boris Spasojević, and Mircea Lungu. Pangea:
A workbench for statically analyzing multi-language software corpora. In Source
Code Analysis and Manipulation (SCAM), 2014 IEEE 14th International Working
Conference on, pages 71–76. IEEE, September 2014.

3. Andrea Caracciolo, Mircea Lungu, and Oscar Nierstrasz. A unified approach to
architecture conformance checking. In Proceedings of the 12th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pages 41–50. ACM Press, May
2015.

4. Andrei Chiş, Marcus Denker, Tudor Gı̂rba, and Oscar Nierstrasz. Practical domain-
specific debuggers using the moldable debugger framework. Computer Languages,
Systems & Structures, 44, Part A:89–113, 2015. Special issue on the 6th and 7th
International Conference on Software Language Engineering (SLE 2013 and SLE
2014).

5. Andrei Chiş, Tudor Gı̂rba, Oscar Nierstrasz, and Aliaksei Syrel. The moldable
inspector. In Proceedings of the 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, Onward!
2015, page to appear, New York, NY, USA, 2015. ACM.

6. Benoit Combemale, Julien Deantoni, Benoit Baudry, Robert B France, Jean-Marc
Jézéquel, and Jordan Gray. Globalizing modeling languages. Computer, 47(6):68–
71, 2014.

7. Thomas Fritz and Gail C. Murphy. Using information fragments to answer the
questions developers ask. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages 175–184, New
York, NY, USA, 2010. ACM.



The Death of Object-Oriented Programming 9

8. Alan C. Kay. The early history of Smalltalk. In ACM SIGPLAN Notices, vol-
ume 28, pages 69–95. ACM Press, March 1993.

9. Paul Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A domain specific
language for source code analysis and manipulation. In Source Code Analysis and
Manipulation, 2009. SCAM ’09. Ninth IEEE International Working Conference
on, pages 168–177, 2009.

10. Jan Kurš, Mircea Lungu, Rathesan Iyadurai, and Oscar Nierstrasz. Bounded seas.
Computer Languages, Systems & Structures, 44, Part A:114 – 140, 2015. Special is-
sue on the 6th and 7th International Conference on Software Language Engineering
(SLE 2013 and {SLE} 2014).

11. John H. Maloney and Randall B. Smith. Directness and liveness in the Morphic
user interface construction environment. In Proceedings of the 8th annual ACM
symposium on User interface and software technology, UIST ’95, pages 21–28, New
York, NY, USA, 1995. ACM.

12. Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of Moose: an agile
reengineering environment. In Proceedings of the European Software Engineering
Conference (ESEC/FSE’05), pages 1–10, New York, NY, USA, September 2005.
ACM Press. Invited paper.

13. Oscar Nierstrasz and Jan Kurš. Parsing for agile modeling. Science of Computer
Programming, 97, Part 1(0):150–156, 2015.

14. Lukas Renggli, Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz. Practical
dynamic grammars for dynamic languages. In 4th Workshop on Dynamic Lan-
guages and Applications (DYLA 2010), pages 1–4, Malaga, Spain, June 2010.

15. Lukas Renggli, Tudor Gı̂rba, and Oscar Nierstrasz. Embedding languages without
breaking tools. In Theo D’Hondt, editor, ECOOP’10: Proceedings of the 24th
European Conference on Object-Oriented Programming, volume 6183 of LNCS,
pages 380–404, Maribor, Slovenia, 2010. Springer-Verlag.

16. Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Asking and answering
questions during a programming change task. IEEE Trans. Softw. Eng., 34:434–
451, July 2008.


	The Death of Object-Oriented Programming 
	Oscar Nierstrasz

