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Foreword

Perhaps, “Going Beyond Objects” should be the subtitle of this volume, as a large p
of the contents departs from the early and popularly perceived image of “Objects.”

The object-oriented programming paradigm has now been firmly accepted in the
ware community as offering the most powerful and promising technology for softwar
velopment currently available, and its expressiveness and modelling power have
much appreciated. But, one of the greatest promises it made in its early stage wa
matic improvement in the ease of software composition and reuse, which is yet
achieved. (People are sometimes entangled with webs of class hierarchies.) And
search continues.

About ten years ago, Dennis and Oscar, moving from Toronto, founded the Objec
tems Group at the University of Geneva, and started a number of research project
tend the object-oriented paradigm in various ways. It did not take more than a cou
years for the group to become the most active and visible research centre of object-
ed technology in Europe. In the mean time, part of the group became involved in a
ESPRIT project called ITHACA which aimed at producing an application developm
environment based object-oriented technology. This volume presents, in a written
the fruits of the group’s ten-year research and development, as directed by Dennis
philosophy on research and innovation. The group attacked real problems and pro
firmly based on reality. Dennis’ early career as a recursive function theorist, taug
Alonzo Church in Princeton, also encouraged foundational work in the group, and
chapters in this volume represent it.

“Beyond Objects” was the title of the panel discussion at the European Conferen
Object-Oriented Programming (ECOOP’91), which was organized by Oscar Niers
and Dennis Tsichritzis in Geneva in July, 1991. They already had clear visions of w
we/they should go from the “Objects” that only partially fulfil the early promise. On
their visions was the “Component-Based” approach for software construction. F
software construction for flexible open application should be performed by compo
and configuration of plug-compatible software components that generalize ob
agents and functions. Oscar and Laurent explain this approach in the first chapter
volume.

Now in the mid 90’s, advanced researchers are struggling to go beyond “Objec
search for better software development approaches. Intelligent Agents, Coordi
Languages, Integration of Constraints and Objects, Component-Based Developm
The contributions in this volume offer valuable clues and suggestions to those who
go beyond “Objects.”

University of Tokyo, January 1995 Akinori Yonezawa
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Preface

Object-oriented technology has been with us since the mid 1960s, but has begun to
significant industrial impact only since the mid 1980s. There are both good an
reasons for adopting the technology, and even the success stories suggest that it 
easy to introduce object-oriented techniques where they were not practised before
of the questionable reasons for “going OO” are:

• “Object-oriented programming is a better kind of structured programming” — 
haps, but structured programming methods won’t help you very much in develo
object-oriented applications. Object-oriented programming is not just struct
programming wearing a new hat.

• “We’ll be able to build applications more quickly because objects are reusabl
there can be a huge gap between software written in an object-oriented langua
a truly reusable framework of object classes. Frameworks are hard to develo
not always easy to use.

• “It will be easier to sell our products if we can tell our customers that they are ob
oriented” — the cost and risk of adopting object-oriented technology can be
high, and should not be taken lightly.

Still, there are good reasons for adopting object-oriented technology: so far it ap
to offer the best means to cope with complexity and variation in large systems. Whe
ilies of similar systems must be built, or single systems must undergo frequent chan
requirements, object-oriented languages, tools and methods offer the means to vie
systems as flexible compositions of software components. It may still require a grea
of skill to build flexible systems that can meet many different needs, but at least obje
ented technology simplifies the task.

Object-Oriented Software Composition adopts the viewpoint that object-oriented tec
nology is essentially aboutcomposing flexible software applications from softwarecom-
ponents. Although object-oriented languages, tools and methods have come a lon
since the birth of object-oriented programming, the technology is not yet mature.
book presents the results of a series of research projects related to object-oriented s
composition that were carried out within the Object Systems Group at the Univers
Geneva, or by partners in collaborative research projects, during a period of abo
years. As such, this book is an attempt to synthesize and juxtapose ideas that wer
oped by a group of people working closely together over several years.

Although many different topics are treated, by presenting them together, we inte
show how certain ideas and principles are closely related to software composition, w
er one considers programming language design, formal specification, tools and en
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includeplug compatibility as a way of formalizing valid ways of composing componen
active objects as being fundamental to the development of open systems,protocols as a
necessary aspect of plug-compatibility for active objects,higher-order functional compo-
sition as complementary to object composition, andevolution of objects and object frame
works as an essential aspect to capture in the software lifecycle.

This book should appeal to researchers and practitioners familiar with object-ori
technology, who are interested in research trends related to software compositio
though this book was not designed as a textbook, it would be suitable for an advance
inar on object-oriented research. Individual chapters can be read independently. Th
of presentation has been selected mainly to illustrate a progression of ideas from pro
ming language design issues to environments and applications. Not only is the “G
view” of object-oriented development presented, but considerable effort has gon
placing the work in context, and several of the chapters contain extensive surveys o
ed work.

The Object Systems Group was founded by Dennis Tsichritzis in 1985, after h
spent several years directing research in the area of Office Information Systems. 
time, it became clear that (1) object-oriented modelling was essential to modelling 
systems, but these models were not yet well developed, and (2) prototypes of advan
fice tools would be easier to develop using object-oriented tools and techniques, b
technology was not available. These two observations led us to conclude that, sin
ject-orientation was a critical factor for the construction of advanced and complex a
cations, we should concentrate on developing this technology rather than carryi
research in office systems with inadequate tools and methodological support.

The first chapter of this book summarizes the relationship between object-ori
approaches and component-oriented development, and surveys the principle re
problems in the design of programming languages, tools, environments and meth
support compositional development.The distinction between objects and compone
discussed in detail, and the impact of compositional development on software lifec
is introduced. An important theme that runs through this book is the notion that the r
a component engineer —as a person who is responsible for defining component fra
works — must be explicitly represented in the software lifecycle. Although this b
focuses on technological issues, there is a progression of concerns from programmi
guages and systems towards tools, frameworks and methods.

The first two research projects of the group focused on programming language i
Hybrid was an early attempt to integrate classes and inheritance with other, “orthog
features such as strong-typing, concurrency and persistence.Knos were active objects that
could migrate from computer to computer within a local area network, and dynami
change their behaviour according to rules triggered by internal conditions or the sta
communications blackboard.Knos bear close comparison to what are now known as “
telligent agents.” The work onHybrid ultimately led to more detailed investigations b
Michael Papathomas into the relationship between concurrency and reuse (chapter
by Dimitri Konstantas into distribution support for flexible open systems (chapter 3).
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evolution of object-oriented libraries and to new techniques to reorganize class h
chies (chapter 8).

This initial phase of experimentation allowed us to gain essential insight into bot
theoretical and practical issues of object systems. As a first consequence, the gro
terest in the formal aspects of programming language semantics and the specifica
object systems became deeper, and led to work by Michael Papathomas and
Nierstrasz on notions of “plug compatibility” for active objects (chapter 4), by Costas
apis on modelling and reasoning about temporal aspects of collaborating object sy
(chapter 5), and by Laurent Dami on new models of compositionality, extensibility
subtyping for objects (chapter 6).

In parallel with these theoretical investigations, the group developed new intere
the area of software tools and development environments. Eugene Fiume, who wa
ing from the University of Toronto, and Laurent Dami in 1988 developed a prototype
“temporal scripting language” for animated objects. This was the group’s first foray
applying object-oriented technology to the domain of multimedia applications. 
notion of a “script” as a high-level specification of coordination amongst a set of
packaged objects became a key theme in the group at the time, though it was not cle
the idea could be carried over from the domain of animation to software objects in ge

At about this time we became involved in ITHACA, a large Technology Integra
Project of the European Community’s ESPRIT programme. The lead partner was N
Informationssysteme (later Siemens-Nixdorf) in Berlin, and other partners included
(Paris), Datamont (Milan), TAO — Tècnics en Automatitzaciò d’Oficines (Barcelo
and FORTH—the Foundation of Research and Technology, Hellas (Heraklion). The
of the project was to produce a complete, application development environment ba
object-oriented technology, including a state-of-the-art fourth-generation persisten
ject-oriented programming language and its associated tools, and a set of appl
“workbenches” to support development in a selected set of domains. A key compon
ITHACA was the “software information base” (SIB) that was to serve as a repositor
all reusable software artefacts (see chapter 7, by Panos Constantopoulos and
Dörr). The SIB was intended to drive application development from requirem
collection and specification (according to stored domain knowledge and requirem
models), through design (according to reusable generic designs), all the w
implementation (according to reusable software components and frameworks). Th
insight of this approach is that the potential for reuse offered by object-orie
technology lies not only in libraries of object classes, but runs through the entire so
development process. To exploit this potential, however, one needs more than o
oriented languages and tools: the software lifecycle must reflect the role of reuse; th
ysis and design methods must reflect the new lifecycle; the project management s
must support the lifecycle and the methods; and some form of software informatio
tem is needed to store and manage the reusable artefacts.

Our contribution to ITHACA was more specifically to develop a “visual scripting to
for dynamically configuring applications from visually presented software compon
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compatibility,” and the idea that a script could be packaged up as a component, em
naturally. Eventually we came to realize the term “script” carried too much sem
baggage from other domains in which timing was a concern (such as animation). Mo
the-point was the view of an application as acomposition of software components, and s
we began to speak ofvisual composition rather than “scripting.” A framework for visua
composition was elaborated and realized by Vicki de Mey as part of the ITHACA pr
(chapter 10).

An important aspect of a software information system is a convenient interface fo
igation. Whereas traditional browsers based on class hierarchies display softwar
facts only according to fixed relationships, anaffinity browser dynamically adapts its
presentation according to changing notions of affinity between entities. New techn
were developed by Xavier Pintado and incorporated into a prototype (chapter 9).

Within ITHACA, object technology was applied to the areas of office systems
public administration. In Geneva, we also explored its application to the domai
multimedia systems and financial applications. A multimedia laboratory was built up
several years, and was used as an experimental platform for a multimedia framewo
framework, designed by Simon Gibbs, allowed heterogeneous hardware and so
multimedia components to be encapsulated as objects that could be connected ac
to a standard set of paradigms (chapter 11). One of the uses of the visual composit
developed within ITHACA was its application to the multimedia framework, th
allowing one to compose multimedia objects interactively instead of having to code
programs to glue them together explicitly.

A second framework for the visualization of real-time financial data was designe
realized by Xavier Pintado. In this framework, a complementary approach was tak
visual composition. Instead of requiring that components provide standard plug-co
ible interfaces, the bindings between components are encapsulated asgluons (chapter 12).

Various themes run through this book. The dominant theme is that flexible, open 
cations should be seen not only as object-oriented constructions, but ascompositions of
plug-compatible software components. The distinction between objects and componen
and the notion of plug-compatibility must be specified with care. A second theme i
concurrency and distribution are fundamental, but that integration of concurrency an
other dynamic aspects into the object model of a programming language poses v
technical difficulties. New computational models are needed that take behavioural a
of objects to be fundamental rather than orthogonal. A third theme is that developm
open systems should beframework-driven, and that this in turn requires new lifecycle
methods and tools. In particular, the development of component frameworks by co
nent engineers is an evolutionary process, which must be supported by software in
tion management tools. Application developers similarly need appropriate tools
facilitate instantiation of applications from frameworks and component libraries.

Our research on object systems resulted in a number of Ph.D. theses (by Casais,
Papathomas, Konstantas, de Mey, Dami and Pintado), produced between 1991 an
which form the basis for seven chapters of this book. Since most of the authors hav
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Component-Oriented
Software Technology

Oscar Nierstrasz and Laurent Dami

Abstract Modern software systems are increasingly required to be open and
distributed. Such systems are open not only in terms of network connections
and interoperability support for heterogeneous hardware and software
platforms, but, above all, in terms of evolving and changing requirements.
Although object-oriented technology offers some relief, to a large extent the
languages, methods and tools fail to address the needs of open systems
because they do not escape from traditional models of software development
that assume system requirements to be closed and stable. We argue that open
systems requirements can only be adequately addressed by adopting a
component-oriented as opposed to a purely object-oriented software
development approach, by shifting emphasis away from programming and
towards generalized software composition.

1.1 Introduction

There has been a continuing trend in the development of software applications awa
closed, proprietary systems towards so-called open systems. This trend can be lar
tributed to the rapid advances in computer hardware technology that have vastly inc
the computational power available to end-user applications. With new possibilities 
new needs: in order to survive, competitive businesses must be able to effectively e
new technology as it becomes available, so existing applications must be able to wo
new, independently developed systems. We can see, then, that open systems 
“open” in at least three important ways [49]:

1. Topology: open applications run on configurable networks.

2. Platform: the hardware and software platforms are heterogeneous.

3. Evolution: requirements are unstable and constantly change.
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representation and implementation details behind object-oriented interfaces, thus p
ting multiple implementations of objects to coexist while protecting clients from cha
in implementation or representation. Evolution is only partially addressed, however,
changes in requirements may entail changes in the way that the objects are structu
configured. In fact, to address evolution, it is necessary to view each application a
one instance of ageneric classof applications, each built up of reconfigurable softwa
components. The notion of component is more general than that of an object, a
particular may be of either much finer or coarser granularity. An object encapsulate
and its associated behaviour, whereas a component may encapsulateany useful software
abstraction. Since not all useful abstractions are necessarily objects, we may miss
tunities for flexible software reuse by focusing too much on objects. By viewing ope
plications as compositions of reusable and configurable components, we expect to 
to cope with evolving requirements by unplugging and reconfiguring only the affe
parts.

1.1.1 What Are Components?

If we accept that open systems must be built in a component-oriented fashion, we
still answer the following questions: What exactly are components, and how do they
from objects? What mechanisms must programming languages and environments p
to support component-oriented development? Where do components come from
software development lifecycle, and how should the software process and metho
commodate them?

In attempting to answer these questions, we must distinguish between methodo
and technical aspects. At a methodological level, a component, we will argue, is a c
nent because it has beendesigned to be used in a compositional way together with oth
components. This means that a component is not normally designed in isolation, 
part of aframework of collaborating components. A framework may be realized as an
stract class hierarchy in an object-oriented language [23], but more generally, comp
need not be classes, and frameworks need not be abstract class hierarchies. Mixin
tions, macros, procedures, templates and modules may all be valid examples of c
nents [3], and component frameworks may standardize interfaces and generic co
various kinds of software abstractions. Furthermore, components in a framework
also be other entities than just software, namely specifications, documentation, tes
example applications, and so on. Such components, however, will not be discussed
tail in this paper: we will mainly concentrate on some technical aspects related to so
components.

At a software technology level, the vision of component-oriented development is a
old idea, which was already present in the first developments of structured program
and modularity [32]. Though it obtained a new impulse through the compositional m
anisms provided by object-oriented programming languages, component-oriented
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ware development is not easy to realize for both technological and methodolo
reasons. For a programming language to support component-oriented developm
must cleanly integrate both thecomputational and thecompositional aspects of software
development. An application can be viewed simultaneously as a computational enti
delivers results, and as a construction of software components that fit together to a
those results (figure 1.1). A componentper se does not perform any computation, but m
be combined with others so that their composition does perform useful computa
much in the way that the parts of a machine do not necessarily perform any functio
vidually, but their composition does. The integration of these two aspects is not str
forward, however, since their goals may conflict. To take a concrete example, concu
mechanisms, which are computational, may conflict with inheritance, which is a a 
positional feature, in that implementation details must often be exposed to correct
plement inheriting subclasses [26] [31] (see chapter 2 for a detailed discussion 
issues). To complicate things even further, the distinction between “composition 
and “run time” is not always as clear as in the picture above: with techniques such 
namic loading, dynamic message lookup or reflection, applications can also be pa
composed or recomposed at run-time.

In order to achieve a clean integration of computational and compositional featu
common semantic foundation is therefore needed in which one may reason abou
kinds of features and their interplay. As we shall see, the notions ofobjects, functions and
agents appear to be the key concepts required for such a foundation. In consequen
will adopt a definition of software component which is sufficiently abstract to range
these various paradigms.

In short, we say that a component is a“static abstraction with plugs”.By “static”, we
mean that a software component is a long-lived entity that can be stored in a softwar
independently of the applications in which it has been used. By “abstraction”, we 
that a component puts a more or less opaque boundary around the software it encap

Figure 1.1 Static and dynamic views of an application.

Dynamic assembly of
cooperating and
communicating “entities”
(objects, agents, ...)

Static assembly of
components
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“With plugs” means that there are well-defined ways to interact and communicate wi
component (parameters, ports, messages, etc.). So, seen from the outside, a com
may appear as in figure 1.2: a single entity, which may be moved around and copie
in particular may be instantiated in a particular context, where the plugs (the small
rectangles) will be bound to values or to other components. In fact, such visual rep
tations of components can be very convenient for supporting interactive composit
applications from component frameworks (see chapter 10).Software composition, then,
is the process of constructing applications by interconnecting software compo
through their plugs. The nature of the plugs, the binding mechanisms and the comp
ity rules for connecting components can vary quite a bit, as we shall see, but the es
concepts of components, plugs, plug-compatibility and composition remain the sam

1.1.2 Where Do Components Come From?

Once the programming language and associated tools support the development o
ponents, we are still left with the question, “Where do the components come fr
Although we argue that a component-oriented approach is necessary to deal with ev
requirements, it turns out that components themselves only emerge through an it
and evolutionary software lifecycle. This is reasonable, if we consider that compo
are only useful as components if they can be easily used in many contexts. Before
useful” component can be designed [23], one must first collect, understand and a
knowledge about these different contexts to determine how their different needs c
addressed by some common frameworks. When component frameworks are put 
they must be evaluated with respect to how easily they can be applied to new pro
and improvements must then be introduced on the basis of new experience. Comp
oriented development is therefore acapital-intensive activity that treats componen
frameworks as capital goods (or “reusable assets”), and requires investment in com
development to achieve economic benefits in the long-term [53]. This means that no
must the programming language technology and support environment addre
technical requirements of component-oriented development, but the entire sof
process, including the analysis and design methods, must incorporate the activ
“component engineering” into the software lifecycle.

Udell, who has provocatively proclaimed the “failure of object-oriented system
deliver on the promise of software reuse,” [50] supports this view by arguing that s

Figure 1.2 A software component and its plugs.
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example of software reuse than object-oriented programming. An animated discu
followed on the Internet* which finally came to the obvious agreement that succes
software reuse is a matter of methodology and design, more than technology; so 
oriented systems cannot be taken as responsible for lack of reusability: they are
likely to help in producing reusable software, provided that the right design decision
taken in the first place. Additional arguments on the same line can be found in [22], 
various authors discuss software reuse not only in terms of technology, but above
terms of economical, human and organizational factors.

Our position is that both software methods and development technology need to 
go some significant changes in order to take advantage of component-oriented de
ment. We will first focus on some of the foundational issues concerning the diffe
between objects and components, and their integration in programming languag
environments; then we will briefly survey related technological and methodolo
problems to be resolved; finally, we will conclude with some prospects for the futu
component-oriented development.

1.2 Objects vs. Components

Object-oriented programming languages and tools constitute an emerging softwar
nology that addresses the development of open systems in two important ways:

1. as anorganizing principle;

2. as aparadigm for reuse.

In the first case, one may view an object-oriented application as a collection of c
orating objects. The fact that each object properly encapsulates both the data and 
responding behaviour of some application entity, and that one may only interact wit
entity through a well-defined interface means that reliability in the face of software 
ifications is improved, as long as client–server interfaces are respected. In the secon
one may view applications as compositions of both predefined and specialized so
components. Application classes inherit interfaces and some core behaviour and
sentation from predefined abstract classes. Interactions within an application ob
protocols defined in the generic design. Inheritance is the principle mechanism for s
and reusing generic designs within object-oriented applications.

Despite these two significant advantages of object-oriented development, it is sti
that present-day object-oriented languages emphasizeprogramming overcomposition,
that is, they emphasize the first view of applications to the detriment of the seco
general, it is not possible to reuse classes without programming new ones — one 
simply compose object classes to obtain new classes in the way that one can co

* The discussion took place during September 1994 in the newsgroup comp.object, under the subje
ing “Objects vs Components.”
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kinds of components are supported, the list is typically ad hoc (for example, mixins, mac-
ros, modules, templates).

If we consider the various dimensions of programming languages supporting som
tion of objects, we discover a mix of features concerned with computational and co
sitional issues. Wegner [54] has proposed a classification scheme with the following
“dimensions”: objects, classes, inheritance, data abstraction, strong typing, concu
and persistence. According to the criterion that sets of features are orthogonal if they
independently in separate programming languages, it turns out that objects, abstr
types, concurrency and persistence are orthogonal. But this does not tell us how e
difficult it is to cleanly integrate combinations of features within a single language.

In fact, if we consider just objects, classes and inheritance, it turns out that it is no
straightforward to ensure both object encapsulation and class encapsulation in th
ence of inheritance [47]. One way of explaining this is that classes are overloaded to
both as templates for instantiating objects and as software components that can be 
ed by inheritance to form new classes. Typically, these two roles are not cleanly sep
by the introduction of separate interfaces. Instead, variousad hoc rules must be introduced
into each object-oriented programming language to determine what features of a
may be visible to subclasses. Since these rules cannot possibly take into account th
of all possible component libraries, the net effect is that encapsulation must often b
lated* in order to achieve the desired degree of software reusability.

A reasonably complete programming language for open systems development s
not only support objects and inheritance, but also strong typing and concurrency. 
are needed to formalize and maintain object and component interfaces, and concu
features are needed to deal with interaction between concurrent or distributed subsy
(Fine-grain parallelism is also of interest, but is not an overriding concern.) Though 
and concurrency are supposedly orthogonal to objects and inheritance, their integra
not a simple matter.

One source of difficulty for types is that objects are not simply values taken in isola
like integers, strings, higher-order functions, or even more complex constructs such
stract datatypes. Objects typically belong to a global context, and may contain refe
to other objects in that context. Furthermore, since they are dynamic entities, the
change behaviour or state, and hence the meaning of references changes over time
extracting static type information from such dynamic systems is considerably more
cult. Modelling inheritance is also problematic, due to the two different roles playe
classes. Many difficulties in early attempts arose from efforts to identify inheritance
subtyping. It turns out, on the contrary, that subtyping and inheritance are best cons

* We say that encapsulation is violated if clients of a software component must be aware of implem
tion details not specified in the interface in order to make correct use of the component. In particular
changes in the implementation that respect the original interface may affect clients adversely, then 
sulation is violated. If the inheritance interface cannot be separately specified, then encapsulation c
violated when implementation changes cause subclasses to behave incorrectly.
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When concurrency is also brought into the picture, the same conflicts are seen to

aggerated degree:

1. Concurrency features may conflict with object encapsulation if clients need 
aware of an object’s use of these features [45] (see chapter 2).

2. Class encapsulation may be violated if subclasses need to be aware of imple
tion details [26] [31].

3. Type systems generally fail to express any aspect of the concurrent behaviour
jects that could be of interest to clients (such as the requirement to obey a c
protocol in issuing requests — see chapter 4).

The source of these technical difficulties, we claim, is the lack of a sufficiently com
nent-oriented view of objects. Components need to be recognized as entities in the
right, independently of objects. A class as a template for instantiating objects is on
of component with a particular type of interface. An object is another kind of compo
with an interface for client requests. A class as a generator for subclasses is yet a
kind of component with a different kind of interface. Each of these components h
own interface for very different purposes. It is possible to provide syntactic sugar to 
a proliferation of names for all of these different roles, but the roles must be distingu
when the semantics of composition is considered.

The other lesson to learn is that each of these dimensions cannot simply be con
as an “add-on” to the others. An appropriate semantic foundation is needed in wh
study the integration issues. If state change and concurrency are modelling require
then a purely functional semantics is not appropriate. As a minimum, it would seem
computational model for modelling both objects and components would need to inte
bothagents andfunctions, since objects, as computational entities, can be viewed as
ticular kinds of communicating agents, whereas components, as compositional e
can be seen as abstractions, or functions over the object space. Moreover, since 
nents may be first-class values, especially in persistent programming environments
new components may be dynamically created, it is essential that the agent and fu
views be consistently integrated. From the point of view of the type system, both o
and components are typed entities, although they may have different kinds of types

1.3 Technical Support for Components

Component-oriented software development not only requires a change of mind-s
methodology: it also requires new technological support. In this section, we will re
some of the issues that arise:

• What are theparadigmsandmechanisms for binding components together?
• What is thestructure of a software component?
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• How do we formally model components and composition, and how can weverify that

fragments are correctly composed?
• To which extend does aconcurrent computational model affect software compos

tion?
These questions obviously are interrelated; moreover, they depend heavily on the c
sition paradigm being used. We have argued that, ideally, a complete environment fo
ware composition should somehow provide a combination of objects, functions
agents. So far, these paradigms have evolved quite independently. In order to co
them into a common environment, considerable care must be taken to integrate
cleanly. In the following, we examine the specific contributions of each paradigm to
ware composition, we discuss how they may be integrated, and we summarize the 
ple open research problems.

1.3.1 Paradigms for Assembling Components

Probably the most fundamental composition mechanism to mention isfunctional compo-
sition. In this paradigm one entity is first encapsulated and parameterized as a fun
abstraction, and is then “activated” (instantiated) by receiving arguments that are bo
its parameters. Obviously this compositional mechanism occurs in nearly e
programming environment, and is by no means restricted to functional program
languages. Many languages, however, do not allow arbitrary software entities to be t
as values, and therefore do not support functional composition in its most general
Parameterized modules, containing variables that can be bound later to other modu
example, are still absent from many programming languages. At the other end of the
trum, functional languages use functional composition at every level and ther
providehomogeneity: any aspect of a software fragment can be parameterized and
bound to another component, thereby providing much flexibility for delimiting 
boundaries of components. Furthermore, functional programming supportshigher-order
composition, i.e. components themselves are data. In consequence, compositio
themselves can be encapsulated as components, and therefore some parts of the c
tion process can be automated. Finally, functional composition has the nice prope
being easily verifiable, since functions can be seen externally as black boxes: unde
assumptions about the parameters of a function, it is possible to deduce some pro
of the result, from which one can know if that result can safely be passed to anothe
tion. Current functional programming languages have developed sophisticated typ
tems to check correctness of composed software [37][21].

Functional composition is a local composition mechanism, in the sense that it on
volves one abstraction and the values passed as parameters. By contrast, agent 
ments typically use a global composition mechanism, often called ablackboard. A
blackboard is a shared space, known by every component, in which information can
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nels, the blackboard is the global space of channel names. Even without agents,
memory in traditional imperative programming also constitutes a kind of blackbo
Blackboard composition supportsn-ary assemblies of components (whereas local co
position mechanisms are mostly binary); furthermore, free access to the shared sp
poses less constraints on the interface of components. The other side of the coin, h
is that blackboard composition systems are much more difficult to check for correc
because interaction between components is not precisely localized. As a partial rem
the problem, blackboard composition systems often incorporate encapsu
mechanisms for setting up boundaries inside the global space within which interfere
restricted to a well-known subset of components. By this means, at least some loca
erties of a blackboard system can be statically verified. Theπ-calculus [35], for example,
has an operator to restrict the visibility of names; in the world of objects,islands[19] have
been proposed as a means to protect local names and avoid certain traditional pr
with aliasing.

Finally, object-oriented systems have introduced a new paradigm for software co
sition with the notion ofextensibility — the possibility of adding functionality to a com
ponent while remaining “compatible” with its previous uses. Extensibility, typica
obtained in object-oriented languages through inheritance or delegation, is an imp
factor for smooth evolution of software configurations. The delicate question, howev
to understand whatcompatibility means exactly. For example, compatibility betwe
classes is usually decided on the basis of the sets of methods they provide, possib
their signatures; in the context of active objects, this view does not take into account
sequences of methods invocations are accepted by an object. Chapter 4 studies how
capture this aspect through so-called regular types. Moreover, compatibility ca
meaningful not only for classes, but for more generalized software entities; in parti
object-oriented systems based on prototypes and delegation need to understan
patibility directly at the level of objects. Chapter 6 investigates a functional calcul
which compatibility is defined at a fundamental level, directly on functions.

Figure 1.3 is an attempt to represent visually the different paradigms. Functional
position is pictured through the usual image of functions as boxes, with parameters
sented as input ports and results of computation as output ports. Connections b
components are established directly and represent bindings of values to forma
meters. The blackboard paradigm has an addressing scheme that structures the
space; it sometimes also uses direct connections, but in addition, components ar
specific locations, and they may establish connections with other components th
their locations. Here locations are pictured as coordinates in a two-dimensional spa
the purpose of the visual illustration. In practice, the common space will most ofte
structured by names or by linear memory addresses. Finally, extensibility is pictur
additional ports and connections added to an existing component, without affectin
features that were already present. Seen at this informal level, it is quite clear that so
habitation of the paradigms should be possible, but it is also clear that many detail
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careful study. The next subsections discuss the notions of components (the boxes)
anisms (the arrows), and software configurations (the assemblies).

1.3.2 Components as Static Abstractions

In the introduction, we described components in terms of their usage: a software fra
is a component if it is designed for reuse and is part of a framework. This does n
much about the structural aspects of a component. Some global invariants seem to b
within any composition paradigm: components typically arestatic entities; moreover,
they always consist of some kind ofabstraction.Both notions, however, deserve mor
careful examination.

There are many different kinds of static software entities: procedures, functions,
ules, classes and so on. In each case, they have a persistent existence independen
surrounding context, allowing them to be manipulated and stored individually. Onc
sembled into a program, these static entities control the creation and evolution of dy
entities, which in current languages are usuallynot components (procedure activation
objects, dynamic data structures). Several examples can be found, however, of dy
entities that could be interesting as reusable software fragments, but cannot direct
ticipate in a composition because of limitations of the software environment. For exa
in most object-oriented languages the classes are static, but the objects (instances)

(x1, y1)

Functional Composition Blackboard

Extensibility

Figure 1.3 Composition paradigms.

(x2, y2)

(x3, y3)

(x4, y4)
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composable entities, such as defining a class that encapsulates a single object (in
Another strategy, heavily used in the NeXTStep environment [39], is to define compl
chiving procedures so that groups of objects can be stored into files (so-called “nib”
the corresponding files can then be composed and the resulting configuration used
reate at run-time the collection of objects defined in the individual groups. In case
this, where the structure of the objects composing a user interface is known statica
does not evolve at run-time, the ability to directly store objects would be much more
venient than writing programs or description files that will dynamically recreate a co
uration of objects.

Another limitation to composition occurs in exactly the reverse situation: saying
components are static entities does not mean that they should be always assembl
cally. Open systems have an increasing need to dynamically manipulate and exc
components, and dynamically link them with a running application. Recent languag
distributed agents such as Telescript [56] orObliq [5] are good examples of this new
direction. Dynamic assembly means that software can be configured at the latest
according to user’s needs, or that several running applications can dynamically c
orate to exchange information.

The notion of a component is also closely related to that of anabstraction, a self-
contained entity, with some kind of boundary around it, which can later be compose
other entities. A procedure is an abstraction for a sequence of instructions; a class is
straction for a collection of objects; a module is a set of named abstractions. The fa
abstractions have boundaries is crucial for software composition, since it provi
means for structuring software, controlling interaction between components, and v
ing proper assembly. Unfortunately, most software environments impose some r
tions on the use of abstractions: boundaries cannot be drawn arbitrarily, accord
user’s needs, but must follow specific patterns. For example, in most object-ori
systems, boundaries cannot cross inheritance paths, i.e. a class cannot be defined
explicitly referencing its superclass. Only CLOS [27] supports a notion of inherit
throughmixins in which the superclass need not be known and can be bound late
flexibility for drawing abstraction boundaries requires all software components t
treated asfirst-class values that can be passed as parameters to other component
discussed above, the languages that are most advanced in that direction are fun
languages, where “everything is a function,” and functions are data. Since func
abstraction is the only abstraction mechanism, programmers have great flexibi
choosing which aspects to fix in a function definition and which aspects to leave o
parameters.

Besides treating components as values, another property of abstractions that has
impact on compositionality isscalability, namely the possibility to use the same abstr
tion and composition mechanisms at every level of a configuration. Again this is obv
ly the case with functions, where an assembly of functions is a function again
advantage is the economy of concepts, and the fact that there is no limit on the gran
of components. Through their inheritance interface, classes can be seen as scalab
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again. By contrast, modules are usually not scalable: an assembly of modules is not
ule itself. An environment without scalability imposes a fixed granularity of compos
(modules can only be assembled into programs), and therefore restrict reusability o
ponents. Furthermore, the absence of scalability often creates problems for formal s
of programming and composition environments, because formal theories are mos
cessful when they can rely on a small set of universal operators. A striking example 
observed in the area of concurrency, where theoreticians typically use process calcu
scalability (a pool of agents or processes is itself a process), while most practical i
mentations involving concurrency clearly distinguish between a process and a sys
processes.

1.3.3 The Composition Process

In traditional environments for software development the various phases for buildi
application are well-defined and distinct: first one has to write a collection of mod
possibly with some interdependencies, and with some dependencies to predefine
ules stored in libraries; then one has tocompile the modules, in order to generate machi
code and, in strongly typed systems, to check type correctness of the modules; fina
has tolink the various pieces of machine code together, using a global name sp
resolve all cross-references. This, of course, is the schema for compiled language
accounts for the great majority of development environments in current use. Theref
such systems, the granularity of components seen by programmers is basically th
as the granularity of units manipulated by the development environment.

In order to get more flexible composition environments, this well-established sch
of program development has to be reviewed. There are several reasons why a com
oriented lifecycle is needed, and there are several tendencies in modern languag
demonstrate the possibility of improving the traditional three-phase assembly of soft

We discussed above the necessity for open systems to be able to dynamically lin
agents into a running system. This implies that the information that is normally disc
at link-time, namely the association between global names and memory addresses
to be kept both in the running system and in the agent that will be added to it. In
words, even a complete system can no longer considered to be totally closed: nam
be locally resolved, but they still need to be considered as potential free variables th
be linked later to a dynamic entity.

In some object-oriented systems, this is true to a further degree: not only the linka
formation, but also a major part of compile-time information is required at run-tim
this is necessary to implement features such as delegation or even reflection. Early
cates of object-oriented programming were often arguing in favour of the high lev
flexibility offered by fully dynamic object-oriented systems, even if they admitted 
such choices have a cost in terms of resources: dynamicity typically consumes more
ory and more computing power than statically optimized code. Later, some though
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a maximum of information, only keeping what is strictly necessary (namely table
dynamic binding of virtual functions); this is one of the main reasons why the C++ 
munity grew so rapidly. Indeed, C++ has been and is very successful for a large num
applications, but one could say that the original target of proponents of object-ori
programming has shifted: C++ is being used as a replacement for C, for applicati
which interaction with operating system, efficient use of resources, tractability for la
scale projects are essential. We are slowly rediscovering, however, that if flexi
openness, fast prototyping are really important issues, then the choice of C++ is no
justified. In the recent years, demand for qualified Smalltalk programmers has been
ily increasing, and large-scale high-level platforms for application development
OpenStep[40] are being based on Objective-C instead of C++; both languages differ
C++ in that they maintain full information about objects, classes and methods in th
time environment. So the market is progressively acknowledging that efficiency i
necessarily the most important feature in any case, and that it also has its cost in te
lack of openness and flexibility.

We are not saying that the future of software components is necessarily in fully 
preted languages, but that flexible open systems need to deal with components in
possible forms, ranging from source code to machine code through several interm
representations, partially compiled and optimized. Some modern languages in v
areas already demonstrate this tendency, and show that much progress has been
such implementation strategies. For example, both the scripting language Perl [5
the functional language CAML-Light [30] are compiled into an intermediate form th
then interpreted; actually, interpreted Perl programs are sometimes faster than equ
compiled programs written in C, and the implementation of the CAML-Light interpr
is faster than compiled versions of the original CAML language! Another example i
Self language [51], which provides a very high level of run-time flexibility, and yet ha
ficient implementations based on the principle ofcompile-by-need: the run-time system
includes a Self compiler, and methods are compiled whenever needed. Static comp
of a method in an object-oriented system is sometimes complicated, because one
make assumptions about the context in which it will be called (taking inheritance
account); if, instead, the method is compiled at run-time, then more information is k
about the context (i.e. which actual object the method belongs to), which allows for a
efficient compilation of the method. In other words, the time lost to compile the meth
run-time may be quickly recovered through subsequent calls to the same method.

Ideally, the responsibility of switching between high-level, human-readable repre
tations of components and low-level, optimized internal representations should be
the composition environment. In practice, however, programmers still often need to
these choices. This means that the granularity of components manipulated by the 
is visible to programmers. In itself, this is not necessarily a disadvantage, but the pr
is that this granularity is often identified with the granularity of logical components
software system. In other words, programmers are forced to think in terms of “com
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tion units,” instead of thinking in terms of “modules.” Leroy [29] explained very clearly
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the distinction:

Modularization is the process of decomposing a program in[to] small units (mod-
ules) that can be understood in isolation by the programmers, and making the rel
tions between those units explicit to the programmers.Separate compilation is the
process of decomposing a program in[to] small units (compilation units)that can be
type-checked and compiled separately by the compiler, and making the relations
tween these units explicit to the compiler and linker.

Identifying the two concepts is very common, and yet is limiting, as Leroy points o
the context of the SML language [37]. Modules — i.e. logical units of a program — 
be structurally much more complex than compilation units, especially if, as discu
above, one wants to be able to treat them as first-class values and to perform highe
module combinations, either statically or even dynamically. In this respect, SML
probably the most sophisticated module system for an existing programming lang
yet it does not support separate compilation. Several researchers are currently wor
removing this limitation [29][16].

1.3.4 Verification of Composition

Whenever components are assembled to perform a common task, there is always
plicit contract between them about the terms of the collaboration. In order to be a
verify the correctness of a configuration, the contracts need to be made explicit an
compared for eventual discrepancies. This issue can be addressed by a type system
ever, conventional type systems cannot capture in general all the aspects of a contr
cause of their limited expressiveness. Two approaches can be taken for dealing w
problem. One approach, taken by Meyer in the Eiffel language [33], is to enrich the 
faces of components with additional constraints expressing the expectations and pr
of each partner in the contract. Part of the constraints are checked by the type syste
part of them are verified at run-time, each time that an actual collaboration (control
ing) between two components takes place. The other approach is to improve the e
siveness of type systems. Much research has been done in this direction, especial
area of functional programming languages. Polymorphic type inference in langu
such as ML or Haskell [21] actually provides a level of security that is much higher
in a traditional language like Pascal, without putting any additional burden on
programmer. However, as soon as one leaves the functional model, such results
longer applicable: in systems with blackboard composition (imperative program
languages, concurrent systems) one cannot infer much type information. As far as
systems are concerned, this is still an open question, examined in detail in a sur
Fisher and Mitchell [11]. The addition of subtyping makes both type inference and
checking considerably harder, so despite important progress made over the recen
no object-oriented language with an ML-like type system has yet been developed.
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To capture the recursive semantics of objects at a type level, most researchers use ex-
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plicitly typed systems with either recursive types or existential quantification; such 
tions have improved the state of the art for object typing, but are not likely to be ap
soon in real languages, since the complexity of the resulting type expressions would
ably appal most programmers not familiar with type theory. Therefore we believe
practicability of object typing will be achieved through type inference rather than thr
explicit typing; preliminary results in that direction are discussed in [18]. The diffi
point, however, is to be able to infer types that are both “minimal” in the sense of
typing, and “principal” in the sense of Curry type schemes (a type scheme is princip
a term if and only if it can generate all other types of that term by substitution of
variables). To our knowledge, this is still an open problem; but some recent results o
cipal types for objects are collected in [15].

Coming back to the problem of explicit contracts between components, we s
mention another family of solutions that puts the contract, not inside components, b
side. For interlanguage composition, this is even the only possibility, since it wou
quite difficult to compare contracts specified in different languages and models. An e
ple of a contract being outside of the components is a database schema that spec
conditions under which a common database may be accessed, and which must be 
ed by every program doing transactions on the database.While providing a glue be
heterogeneous components, this kind of solution has the disadvantage of being quit
the terms of the contract are specified from the beginning and can hardly be change
moreover, this approach cannot support scalability, since components are clearly d
from configurations of multiple components. Contracts outside of components ar
found inmodule interconnection languages, whose job is precisely to perform compos
tion of software components. The amount of information handled in such languages
from one system to the other; Goguen, for example, advocates an algebraic appr
capture semantic information about the components [13]. It should be noted, how
that module interconnection languages seem to have lost part of their importance
literature in favour of more homogeneous approaches in which the distinction be
components and component assemblies is less strict. Object-oriented approaches
that category, as do functional approaches to an even greater degree.

Type systems and algebraic specifications aim at verifying correctness in a ma
checkable way by statically looking at a software configuration. They belong, there
to the world of static semantics. By contrast, a number of techniques have been dev
for studying the dynamic behaviour of programs, like denotational, algebraic, opera
or axiomatic semantics. Since such techniques deal with dynamic information, an
therefore not decidable in general, they are commonly used for studying program
languages and environments rather than particular software configurations. It is the
not our purpose here to discuss them in detail. It should be noted, however, that se
the points discussed above for the evolution of component-oriented software develo
will have some impact on these analysis techniques. For example, most of these se
are compositional, but they are not modular (for denotational semantics, this is ack
edged by Mosses [38]). In the scenario of iterative compositional development, it s
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be possible to progressively refine the semantics of a component according to the availa-
 given
nction
g time
g to the

lence
o state
ming,
 com-
se are
ages

{x=1,
n
re this
e-

urther-
 have a
tures.
antic

s com-

mpu-

re dy-
tween

er-
 [55].
ble knowledge about its context: we know more about a component inserted into a
configuration than about this component seen in isolation. Instead of the usual disti
between static semantics, dynamic semantics, and what Jones [25] calls “bindin
analysis,” we should again have a whole range of intermediate steps, correspondin
various intermediate stages of assembly.

Finally, it should be noted that traditional semantic techniques induce an equiva
relationship over software components — they have been designed to be able t
whether two components are equal or not. In the context of object-oriented program
this is no longer sufficient, since the idea is to extend components — to produce new
ponents that are not just “equal” to previous ones (plug-compatible), but in some sen
“better” (extended). To deal with this aspect, theoreticians of object-oriented langu
have developed the notion ofpartial equivalence relationships (PERs)[4], which equates
components not universally, but relative to a given type: for example the records 
y=3}, {x=1, y=4, z=10} are equivalent as type {x:Int}, but not as type {x:Int, y:Int}. A
alternative approach is proposed in this book in chapter 6, in which components a
time universally related, but by acompatibility partial order instead of an equivalence r
lationship.

1.3.5 Objects as Processes

Earlier in this chapter we argued thatcomponents andconcurrency are both fundamental
concepts, and cannot be considered as “add-ons” to programming languages. F
more, the semantic issues are sufficiently subtle and complex that it is essential to
formal object model and a semantic foundation for reasoning about all language fea
What, then, should the object model look like, and what would be an appropriate sem
foundation?

Let us consider the features we would need to model in a language that support
ponent-oriented development:

1. Active Objects: objects can be viewed as autonomous agents or processes.

2. Components: components are abstractions, possibly higher-order, over the co
tational space of active objects.

3. Composition: generalized composition is supported, not just inheritance.

4. Types: both objects and components have typed interfaces, but, since objects a
namic entities and components are static, the type system must distinguish be
them.

5. Subtypes: subtyping should be based on a notion of “plug compatibility” that p
mits both objects and components to be substituted if their clients are satisfied
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An object model must therefore cope with both objects and components. Objects en-
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capsulateservices, and possessidentity, state andbehaviour* . The services are obtaine
through the behaviour according to some client/serverprotocol. Components, on the othe
hand, areabstractions used to build object systems, i.e., they are functions over the ob
process space. Although functions are fundamental, we cannot model objects as fu
al entities because they are long-lived and concurrent. Since input and output are 
ing, and the same input may produce different results at different times, objec
essentially non-functional. Ideally, anobject calculus [41] would merge the operationa
features of a process calculus with the compositional features of theλ calculus.

Interestingly, recent progress in the study of process calculi addresses many asp
the semantics of concurrent object-oriented systems. The original work by Milner
Calculus of Communicating Systems (CCS) [34] resulted in a highly expressive pr
calculus that nevertheless could not be used to model “mobile processes” that c
change the names of their communication ports in messages. This, of course, is e
to model objects. Work by Engberg and Nielsen [10] borrowed and adapted concept
theλ-calculus to deal with this, and Milner [36] refined and simplified their results to 
duce theπ-calculus, a true “calculus for mobile processes.” In the meantime, Thom
[48] developed the first “Calculus for Higher-Order Communicating Systems” (CHO
which essentially added term-passing to CCS. From an object systems point of vie
should allow one to model objects and components as values at run-time. Milner ex
theπ-calculus to a polyadic form [35], which allows one to express communicatio
complex messages, and he introduced a simple type system for the calculus. Follow
work by Milner, Sangiorgi [46] developed a higher-order process calculus (HOπ), whose
semantics can be faithfully preserved by a mapping to the unadornedπ-calculus, and Hen-
nessy [17] has developed a denotational model of higher-order process calculi. 
[20] has also developed theν-calculus, a process calculus based on asynchronous 
munication, whose semantics is obtained by areduction of the features of theπ-calculus.
Going in the opposite direction, Dezaniet al. [9] have investigated synchronous paralle
ism and asynchronous non-determinism in the classicalλ-calculus. In the object-oriented
community, there have been several other attempts to develop object calculi that tak
initial inspiration from either process calculi or theλ-calculus, or both [8] [20] [41].

We propose that a formal model of objects and components based on recent de
ments in process calculi andλ-calculi should form a good basis not only for understand
and explaining abstraction and composition in a component-oriented software de
ment method, but can actually serve as an abstract machine for developing a new 
tion of component-oriented languages [43] [44], much in the same way that the λ-calculus
has served as a semantic foundation for modern functional programming language

* The distinction between “state” and “behaviour” is admittedly artificial, but is useful for conceptua
sons, since state is thought of as hidden and behaviour as visible. In fact, the notions are dual, and 
consider the “state” of an object to be its “current behaviour.”
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1.3.6 Summary of Research Topics
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In this section we have listed some very ambitious wishes for the future of compo
oriented development environments, but we have also shown that several directio
ready present in modern programming languages can give us some confidence ab
filment of that program. To summarize, here are the points that we consider as
important research issues:

• Merge current notions of abstraction in process calculi, functional languages
object-oriented languages into a single notion ofcomponent, which should be a
firstclass, storable entity equipped with the notions of parameterization (lea
some aspects of the component “open”) and instantiation (ability to gener
“copy” of the component in a given run-time context), and furthermore sho
support scalability (possibility to encapsulate a partial configuration of compon
as a new component).

• Develop software manipulation tools that are able to deal with partial configura
and support an iterative assembly process, by using various levels of interm
representations of components. Current tasks of type checking, compilati
machine code and linkage will be replaced by incremental change of interme
representation.

• Find expressive, yet decidable type inference/partial evaluation systems, that w
able to statically decide about the correctness of a partial configuration, in a wa
is transparent to (or requires minimal typing information from) programmers.

It can be seen that these research directions require a tight integration between 
research being done both at a theoretical level (semantics and types of progra
languages) and at a practical level (implementations, compiler/interpreter design).

1.4 Component Engineering

Once we have a language and environment that permits us to develop software com
frameworks, there remains the question how these components should be deve
maintained and applied. With traditional software development, applications are in
ciple designed to meet very specific requirements. Component frameworks, on the
hand, must be designed to meet many different sets of requirements, and should e
built to anticipate unknown requirements.

Consider the following scenario* [42] for application development: an application d
veloper has access to asoftware information system (SIS)that contains not only descrip
tions of available component frameworks, but domain knowledge concerning va
application domains, descriptions of requirements models, generic designs, and 
lines for mapping requirements specifications in the problem space to designs and

* This scenario was elaborated as part of the ITHACA project (described briefly in the preface).
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mentations in the solution space (see chapter 7 for a description of a such a system). A
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software information system is closer in spirit to an expert system than to a reposito
fact, the principle of a SIS is that it should encode and present the knowledge acqu
a domain expert.

To use the SIS, the application developer first enters into a dialogue to identify the
vant application domain. The information pertaining to this domain can be referred
a Generic Application Frame (GAF). The GAF determines the context for applicatio
development. The next step in the dialogue is to specify the requirements. Since th
includes domain knowledge and requirements models, the requirements specifica
largely performed according to existing patterns. The specific requirements will then
the SIS to suggest, according to stored guidelines, generic designs and componen
works that can be used to build the application. The guidelines may also suggest how
ponents should be instantiated or specialized to meet specific requirements. (Cha
contains a brief description of RECAST, an interactive tool for requirements colle
and specification, based on this scenario.)

The process of completing requirements specifications, making design decision
refining and composing components results in a new information structure that w
call aSpecific Application Frame (SAF). The SAF consists not only of the complete
application, but all the information that was generated along the way. When applic
requirements evolve, the SIS is again used, but in this case the dialogue results in pr
decisions being reconsidered and a new SAF being built from the old.

This scenario is very appealing, but suggests more questions than it answers. How
main knowledge to be captured and represented in the SIS? How are generic desi
component frameworks developed and described? How are guidelines determined 
coded? Who is responsible for maintaining the SIS and its contents, and how are th
tents evaluated and maintained? Is the scenario even realistic? How much will th
need to be supported by human experts? We believe it is, because successful gen
plications and component frameworks do exist, but nobody knows how far this sce
can be pushed to work well in practice. Will it only work for very restricted and w
understood application domains, or is it also valid for more complex and evo
domains?

This suggests that the role ofcomponent engineering is fundamentally different from
the more traditional role ofapplication development. Although the same person may i
some cases play both roles, it is important to separate them in order to keep the d
sets of requirements distinct. In particular, the clients for each are very different. Th
ents of an application are (ultimately) the end-users, whereas the clients of a com
framework are the application developers.

Why is it necessary to elevate component engineering to a distinguished ac
Should it not be possible to find reusable components by scavenging existing o
oriented applications? A plausible scenario might have application developers use
tional methods to arrive at an object-oriented design, and then search for reusable 
that would at least partially meet the specifications. The “found” objects would the
tailored to fit the task at hand.
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The problem with this scenario is that you do not get something for nothing. Software
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components are only reusable if they have beendesigned for reuse. A repository of soft-
ware objects from previous applications is like a “software junkyard” that, more li
than not, will not contain just what you are looking for. The cost of searching for
finding something that approximately meets one’s needs, and the additional c
adapting it to fit may exceed the cost of developing it from scratch. Worse, the ta
components are not maintainable, since such an approach will encourage a prolife
of hacked-up, incompatible versions of somewhat similar components, none of wh
ultimately reusable.Systematic rather than accidental software reuse requires 
investment in component framework development and in software informa
management [53].

1.4.1 Benefits and Risks

A component that has been designed for reuse always forms part of a framework o
ponents that are intended to be used together, much in the way that modular furn
made of components that can be combined in many ways to suit different needs. C
the development of a component framework represents an investment that must be
ated against the expected return. The benefits can be measured in two ways: a com
framework should make it easier (i) to fill (at least partially) the needs of many diffe
applications, and (ii) to adapt a given application to changing needs. (These are a
main selling points of modular furniture.) If either or both of these requirements
present to a sufficient degree, it may be worthwhile developing a component frame
or investing in the use and possible adaptation of an existing framework.

In fact, one can easily argue that component frameworks shouldalways be used: long-
lived applications necessarily undergo changes in requirements with time that can b
easily met with the use of a framework, and short-lived applications must typically b
veloped under tight time constraints, which can also be facilitated by the use of an ex
framework. The risks, however, must also be considered:

1. A steep learning curve can be associated with the use of a framework. Deve
must be willing to invest time and effort into learning a framework before the b
fits can be realized. Thenot invented here syndrome can be difficult to overcome.

2. Development of new frameworks is a costly and long-term activity. The long-
benefits must be justified in terms of the opportunities for recovering the in
ment.

3. Individual projects have short-term goals and deadlines that conflict with the 
term goals of component-engineering. Management must commit to develop
service-oriented infrastructure to support the provision of frameworks to pro
[14]. If the use of frameworks introduces too much overhead, projects will not a
them.
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4. New frameworks evolve rapidly in the beginning, and may undergo several com-
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plete redesigns before they stabilize. The costs of re-engineering client applic
of a redesigned framework may be quite high, though the long-term benefits 
engineering can be significant. In principle one should not use unstable frame
for a large base of client applications, but on the other hand, a framework wi
evolve to the point that it stabilizes unless it is applied to many different kinds o
plications.

The reason that each of these points can be considered a risk is that present s
engineering practice actuallydiscourages component-oriented development by focusi
on the individual application rather than viewing it as part of a much broader soft
process. To address these points we need to rethink the way software is develop
introduce new activities into the software lifecycle.

If we reject the “software junkyard” model of software reuse, we can still consider
a starting point for component engineering. A component engineer processes and 
the results of previous development efforts to synthesize (i) domain knowledge
requirements models [2], (ii) design patterns [12] and generic architectures, (iii) fr
works [24] and component libraries, (iv) guidelines to map from problem to solution
mains (i.e. from requirements to designs and implementations). The result of comp
engineering, therefore, resembles a well-designed cookbook — it is not just a coll
of prepackaged recipes, but it contains a lot of background information, generic re
suggestions on how to combine and tailor recipes, and advice on how to meet s
needs. The “cookbook” is intended to compensate for the fact that not everyone can
the time and expense required to become an expert, and so the acquired experti
duced to a standard set of guidelines and rules. Naturally one cannot hope to ans
possible needs with such an approach, but a large class of relatively mundane pr
can be addressed.

Note that component engineering is not concerned only with developing software
ponents, but touches all aspects of software development from requirements col
and specification, through to design and implementation. The point is that the most
ficial artefacts to reuse are often not software components themselves but domain 
edge and generic designs. Software reuse is most successful if oneplans for it in advance.
By waiting until after requirements are specified and the systems are designed, ma
portunities for reuse may have been wasted, and one may not even be able to find 
components to reuse.

Component engineering can only be considered successful if the results are u
build more flexible applications. Ideally, these results actuallydrive the application devel-
opment process: an application developer should be quickly positioned in the so
information space to some GAF, and the activities of requirements collection
specification, application design, component selection and refinement should follow
a flexible dialog between the developer and a software information system on the b
the contents of the GAF.
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1.4.2 How to Get There from Here
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However attractive such a software information system might be, little is known a
how one should build one that would be successful in practice. (See chapter 7 for a d
sion of some of the issues.) Good results have been achieved by introducing a so
“Expert Services Team” of individuals who are responsible for introducing reusabl
sets into projects [14]. In this way, some of the domain expertise is formalized in ter
reusable assets, but the knowledge of how to apply them to particular situations rem
responsibility of this team. The hard parts remain: (i) how to identify the reusable a
applicable to a given situation (identifying the GAF), (ii) mapping the results of ana
to available architectures and designs, (iii) elaborating missing subsystems and c
nents, (iv) adapting frameworks to unforeseen requirements.

More generally, there are various aspects of component-oriented development th
only be considered open research problems. Some of the more significant problem

1. Domain knowledge engineering: how should domain knowledge be captured a
formalized to support component-oriented development?

2. Synergy between analysis and design: traditional software engineering wisdom
would keep design issues separate from analysis, but opportunities for reuse
missed unless one plans for it. How can analysis benefit from the knowledg
frameworks will be used in system design?

3. Framework design: what methods apply to framework design? Object-orien
analysis and design methods do not address the development of framew
Guidelines exist, but no methods [23].

4. Framework evolution: frameworks evolve as they stabilize. What principles sho
be applied to their evolution? How do we resolve the technical difficulties of m
taining applications based on evolving frameworks? [6]

5. Reuse metrics: traditional software metrics are of limited use in the developmen
object-oriented software. Less is known about measuring the cost of devel
component-oriented software. How does one measure potential for reuse? Th
and cost of framework-based applications? The cost of developing and mainta
reusable assets? [14]

6. Tools and environments: what software tools would facilitate component-orient
development? How can the software information space be managed in such
as to provide the best possible support both for application developers and co
nent engineers?

1.5 Conclusions

Component-oriented software development builds upon object-oriented program
techniques and methods by exploiting and generalizing object-oriented encapsulati
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extensibility, and by shifting emphasis from programming towardscomposition. Present
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object-oriented technology is limited in its support for component-oriented develop
in several ways. First and foremost, the notion of asoftware component is not explicitly
and generally supported by object-oriented languages. A component, as oppose
object, is a static software abstraction that can be composed with other compon
make an application. Various kinds of components can be defined with object-ori
languages, but their granularity is typically too closely linked with that of objects —
addition to classes, both more finely and coarsely grained abstractions are useful a
ponents.

Supporting both components, as software abstractions, and objects, as run-tim
ties, within a common framework requires some care in integrating correspon
language features within a common framework. In particular, it is not so easy to de
satisfactory type system that captures “plug compatibility” in all its useful forms 
guises. Concurrency and evolving object behaviour pose particular difficulties, as i
in chapters 2, 4 and 5. For these reasons, we argue, it is necessary to establish a
semantic foundation of objects, functions and agents that can be used to reaso
software composition at all levels.

Foundational issues, though important, address only a small part of the difficult
making component-oriented development practical. Even if we manage to produce
puter languages that are better suited to expressing frameworks of plug-compatib
ware components, there is a vast range of technological and methodological issue
resolved before we can expect that component-oriented development will become
spread. The most fundamental question — where do the components come from? —
hardest to answer. In a traditional software lifecycle, application “components” are t
made to specific requirements. In a component-oriented approach, the activity ofcompo-
nent engineering must be explicitly incorporated into the lifecycle, and supported by
software process, the methods and the tools. “Software reuse” is not something tha
achieved cheaply by arbitrarily introducing libraries or “repositories” into an exis
method. In fact, rather than focusing on software reuse, we must concentrate on r
design, of architecture and of expertise. Component engineering is the activ
distilling and packaging domain expertise in such a way as to make component-or
application development possible.
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Object-Oriented
Programming Languages

Michael Papathomas

Abstract An essential motivation behind concurrent object-oriented
programming is to exploit the software reuse potential of object-oriented
features in the development of concurrent systems. Early attempts to introduce
concurrency to object-oriented languages uncovered interferences between
object-oriented and concurrency features that limited the extent to which the
benefits of object-oriented programming could be realized for developing
concurrent systems. This has fostered considerable research into languages
and approaches aiming at a graceful integration of object-oriented and
concurrent programming. We will examine the issues underlying concurrent
object-oriented programming, examine and compare how different
approaches for language design address these issues. Although it is not our
intention to make an exhaustive survey of concurrent object-oriented
languages, we provide a broad coverage of the research in the area.

2.1 Introduction

Considerable research activity in the past few years has concentrated on the design
current object-oriented programming languages (COOPLs). This research activity 
at providing an integration of object-oriented and concurrent programming. The fo
ing points discuss some motivation for concurrent object-based programming:

• To augment themodelling power of the object-oriented programming paradigm. O
goal of object-oriented programming can be seen as to model the real world di
and naturally [89]. Concurrency then adds to the modelling power by making it
ier to model the inherently concurrent aspects of the real world.
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and the potential forsoftware reuse in the development of concurrent and distribut
systems. Concurrent and distributed systems are becoming more widespread 
need to develop concurrent programs is becoming more common. This is witn
by the support provided for concurrent programming at the application level pro
ed by modern operating systems.

• To supportsharing of distributed persistent data. The object-oriented paradigm
lends itself well for providing location transparency by encapsulating within obj
access to distributed persistent data. However, as information has to be shar
cess to the objects has to be scheduled in a way that avoids interference and p
support for recovering from failures in the distributed environment. Although 
could be left to the language implementation, as is the case in database mana
systems, taking advantage of the semantics of object types to ensure atomic
substantial benefits with respect to performance and availability. This, how
requires the use of concurrency control mechanisms for the implementation of o
types[90].

• To take advantage ofparallelism in the implementation of object classes fo
increased execution speeds. Data abstraction can be used to conceal p
implementations of objects from programs that use them so as to increase the
formance when run on parallel machines. Parallelizing compilers could be us
generate parallel implementations of object classes, thus avoiding the need fo
currency constructs. However, better results are generally achieved by the use
plicit parallel algorithms as implicit approaches for parallel execution uncover
exploit only a number of restricted classes of parallelism [46]. Moreover, as dat
straction hides the details of the implementation of classes, users of these c
need not be aware of their concurrent implementation.

In all of the above cases it is necessary to combine the concurrent and object-o
programming paradigms, provide linguistic support for concurrent object-oriented
gramming and, ideally, exploit the reuse potential of object-oriented programmin
concurrent software.

However, combining object-oriented and concurrency features has proven to be
difficult than might seem at first sight. Clearly, devising a language that has both co
rent programming and object-oriented constructs poses no problem. There has 
large number of proposals for combining object-oriented and concurrency features.
ever, they are not equally successful in drawing the benefits of object-oriented pro
ming for concurrent software development. The problem is that these features a
orthogonal, and consequently they cannot be combined in an arbitrary way. Most of 
search in the area is devoted to devising graceful combinations that limit the interfe
of features.

In this chapter we present a design space for the approaches for combining o
oriented and concurrency features and a set of criteria for evaluating the various ch
We use the criteria to evaluate some proposals and identify approaches that 
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graceful combination of the features.
 In section 2.2 we present a design space for combining object-oriented and conc

cy features with respect to several aspects of language design. In section 2.3, we 
the issues that have to be addressed to provide the benefits of object-oriented pr
ming. Section 2.4 examines the impact of some proposals on the integration of th
gramming paradigms and their potential for reuse. Finally, in section 2.5 we prese
conclusions, discuss open problems and directions for further work in the area.

2.2 Design Space

We start by presenting three aspects of COOPLs that we consider for constructing 
sign space, and then we discuss the design choices with respect to each of these
Later, in section 2.4, we will examine more closely some existing languages showin
the design of their features situate them in the design space.

2.2.1 A Design Space for Concurrent Object-Oriented Languages

We seek to evaluate language design choices with respect to the integration of the
currency and object-oriented features and the degree to which software reuse is sup
In particular, we wish to understand how choices of concurrency constructs interac
object-oriented techniques and affect the reusability of objects. As such, our classifi
scheme concentrates on the relationship between objects and concurrency. We sh
sider the following aspects:

• Object models:how is object consistency maintained in the presence of concu
cy? The way objects are considered with respect to concurrent execution may o
not provide them with a default protection with respect to concurrent invocat
Furthermore, different languages may favour or enforce a particular way of stru
ing programs to protect objects.

• Internal concurrency:can objects manage multiple internal threads? This issue 
cerns the expressive power that is provided to objects for handling requests. No
the execution of internal threads is also related to the protection of the interna
objects, which is determined by the choice of object model.

• Constructs for object interaction:how much freedom and control do objects have
the way that requests and replies are sent and received? The choice of conc
constructs for sending and receiving messages determines the expressive pow
is provided for implementing concurrent objects. Moreover, the design of const
for conditional acceptance of messages interacts with the use of class inherita
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entirely independent: certain combinations of choices are contradictory and others 
dundant or lack expressive power.

2.2.2 Concurrent Object Models

There are different ways one can structure a concurrent object-based system in o
protect objects from concurrency. A language may support constructs that favour o
enforce one particular way, or may leave it entirely to the programmer to adopt a par
model. There are three main approaches:

• The orthogonal approach:Concurrent execution is independent of objec
Synchronization constructs such as semaphores in Smalltalk-80 [40], “lock blo
as in Trellis/Owl [68] or monitors as in Emerald [19] must be judiciously used
synchronizing concurrent invocations of object methods. In the absence of ex
synchronization, objects are subject to the activation of concurrent requests an
internal consistency may be violated.

• The homogeneous approach:All objects are considered to be “active” entities th
have control over concurrent invocations. The receipt of request messages is d
until the object is ready to service the request. There is a variety of constructs th
be used by an object to indicate which message it is willing to accept next. In PO
T [6] this is specified by executing an explicit accept statement. In Rosette [83] aen-
abled set is used for specifying which set of messages the object is willing to ac
next.

• The heterogeneous approach:Both active and passive objects are provided. Pas
objects do not synchronize concurrent requests. Examples of such languages 
fel // [26] [27] and ACT++ [45]. Both languages ensure that passive objects ca
be invoked concurrently by requiring that they be used only locally within sin
threaded active objects. Argus [55] provides bothguardians (active objects) and
CLU clusters (passive objects) [52].

2.2.3 Internal Concurrency

Wegner [87] classifies concurrent object-based languages according to whether o
are internally sequential, quasi-concurrent or concurrent:

• Sequential objectspossess a single active thread of control. Objects in ABCL/1 [
and POOL-T and Ada tasks [9] are examples of sequential objects.

• Quasi-concurrent objectshave multiple threads but only one thread may be activ
a time. Control must be explicitly released to allow interleaving of threads. Hy
domains [47][70][71][72] and monitors [42] are examples of such objects.
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• Concurrent objects do not restrict the number of internal threads. New threads
created freely when accepting requests. Adapackages and POOL-Tunits resemble
concurrent objects (though they are not first-class objects). Languages like S
talk-80 that adopt the orthogonal object model also support concurrent objects.
the point of view of the called objects, a new local thread is effectively created w
ever a method is activated in response to a message.

According to the above classification, the threads of concurrent objects are create
ly when an object receives a message. However, there are languages where obje
have internally concurrent threads that are not freely created by message reception
der to include these languages in the classification and to capture more information
the way that threads are created, we generalize the concurrent object category to 
any language in which objects have concurrent threads, irrespective of the way th
created, and consider separately the issue of thread creation.

We identify three, non-exclusive ways for the creation of threads within objects a
lows:

• By message reception: Thread creation is triggered by reception of a message. An
ject cannot create a thread on its own unless it can arrange for a message to be
it without blocking the currently executing thread. Depending on whether ob
may control the creation of threads, we have the following subcategories:
— Controlled by the object:The object may delay the creation of threads. F

example, in the language Sina [84] a new concurrent thread may be creat
the execution of a method belonging to a select subset of the object’s me
only if the currently active thread executes thedetach primitive.

— Unconstrained creation:Threads are created automatically at message re
tion. This is the default for languages with an orthogonal object model.

• Explicit creation: Thread creation is not triggered by message reception but th
ject itself initiates the creation of the new thread. For instance, in SR [12] ther
construct similar to a “cobegin” [11] to initiate the execution of concurrent thre

Internal concurrency

Sequential

Single thread of control

ABCL/1, POOL-T

Quasi-noncurrent

There are several logical threads
but only one at a time. Thread
interleaving occurs at programmer
defined places

Hybrid, monitors

Concurrent

There may be several
threads of control active
within an object.

Figure 2.1 Approaches to internal concurrency.
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Another way to create a new thread, in the absence of a special construct, is
asynchronously an operation of the object. This requires, however, that such ca
not blocked at the object’s interface. This approach is used in a recent version o
Such calls bypass the normal method synchronization constraints as well as 
quest queue at the object’s interface. Finally, it would also be possible to creat
independent objects to call the object methods in parallel. However, this is cum
some and it also requires some means of bypassing the message queue at the
interface.

 Thenext andbecome primitives in Rosette and ACT++ can be viewed as a contro
creation of threads, with the additional restriction that concurrent threads may not
the object’s state since they execute on different “versions” of the object.

 In Guide [48], an object may be associated with a set of activation conditions
specify which methods may be executed in parallel by internally concurrent threads.
default case, as with any language following an orthogonal approach for concurrenc
jects may be viewed as concurrent with unconstrained creation of threads triggered
ternal messages.

The creation of threads by reception of external messages or by execution of a s
construct are neither mutually exclusive design choices — as illustrated by SR, w
supports both — nor redundant, as we will see in section 2.3.

2.2.4 Constructs for Object Interaction

We classify these constructs with respect to the degree of control that can be exerc
objects in the client and server roles. We specifically considerreply scheduling, which
concerns the degree of flexibility the client has in accepting a reply, andrequest schedul-
ing, which concerns the control the server can exercise in accepting a request.

Thread creation

 By message reception Explicit creation

SR co, Smalltalk-80 fork

Uncontraintsed
creation of threads⇒
Orthogonal object model

Smalltalk-80, Ada packages

Creation of threads is
controlled by the object

Sina, Act++

Figure 2.2 Approaches to thread creation.
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The following important issues can be identified with respect to the constructs supp
for issuing requests:

• Addressing:How are the recipients of a request specified and determined? How
where is the reply to be sent? Flexible control over the reply destination can r
the amount of message passing required.

• Synchronization for requests and replies: Can the current thread continue after iss
ing the request? What mechanisms are supported for matching replies to req
How does the client synchronize itself with the computation and delivery of th
ply?

• First-class representation of requests and replies:Do requests and replies have
first-class representation that permits them to be forged or changed dynami
What aspects (e.g. destination, method name) can be changed dynamically?

We further discuss these issues below and present how they are addressed by d
proposals.

Addressing

In most languages the recipient of a request is specified directly by using its object 
fier. However, there are some proposals allowing for more flexible ways of addre
where the system determines the recipient of the request. We review some of these 
al below.

Types as Recipients in PROCOL

In PROCOL [49] [85] an object type may be used to specify the recipient of a reque
this case the potential recipients are any instance of the type that is in a state suc
may accept the request. The system determines one recipient among the set of pote
cipients and delivers the request. It is important to note that this feature does not s
any form of multicast; exactly one message is exchanged with the chosen recipie
point to point fashion.

ActorSpace

ActorSpace [2] is a general model providing a flexible and open-ended approach to
communication that has been developed in the context of the actor model.

In this mode,destination patterns may by used to designate the recipients of a requ
Patterns are matched against attributes of actors in an specified actorspace — a
container of actors — to determine a set of potential recipients. A message may be 
either one of two primitives:send orbroadcast.The former delivers exactly one messa
to a recipient chosen non-deterministic by the system. The latter provides a form of 
cast by delivering the request to all potential recipients.
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Extra flexibility is provided in this model by allowing the dynamic inclusion a
removal of actors from ActorSpaces as well as by allowing the dynamic modificati
actor attributes. Moreover, ActorSpaces may be nested.

Synchronization for Requests and Replies

We initially distinguish betweenone-way message passing communication primitives
and constructs supporting arequest/reply protocol. The latter provide support for obje
interactions where requests will be eventually matched by replies. These mecha
vary in flexibility when sending requests and receiving replies. Strict RPC approach
force that requests will be matched by a reply and delay the calling thread until the
is available. Further flexibility is provided by “proxy” objects which disassociate 
sending or receiving of messages from the current thread of control. Examples of b
proxy objects arefuture variables[94] andCBoxes[92].

One-Way Message Passing

Whether communication is synchronous with one-way message passing, as in CS
or PROCOL [85], or asynchronous, as in actor languages, clients are free to inte
activities while there are pending requests. Similarly, replies can be directed to arb
addresses since the delivery of replies must be explicitly programmed.

Client–server interaction

One -way message passing

Higher-level protocols must
be explicitly programmed

PROCOL, CSP

Request/reply

Balanced requests and
replies are supported

Proxies

Sending requests and receiving
replies may be delegated, as with
CBoxes and futures

ABCL/1, ConcurrentSmalltalk, Eiffel //

RPC

Sending a request
blocks the current
thread until a reply is
received

Figure 2.3 Client–server interaction mechanisms.
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the server must cooperate to match replies to requests. As we shall see in section
additional flexibility and control provided by one-way message passing over reque
ply based approaches can only be properly exploited if objects (i.e. servers) are 
mented in such a way that the reply destination can always be explicitly specifie
request.

Remote Procedure Call

With RPC the calling thread of the client is blocked until the server accepts the re
performs the requested service and returns a reply. Most object-oriented languag
port this form of interaction, though “message passing” is generally compiled into p
dure calls.

Supporting RPC as the only means for object interaction may be a disadvantage
objects are sequential as we will see in the next section. Although it is trivial to ob
reply, it is not possible to interleave activities or to specify reply addresses.

Proxies

An alternative approach that provides the client with more flexibility in sending an
ceiving replies is to introduceproxies. The main idea is to delegate the responsibility
delivering the request and obtaining the reply to a proxy. (The proxy need not be a
class object, as is the case withfuture variables [94].) The actual client is therefore free t
switch its attention to another activity while the proxy waits for the reply. The proxy i
may also perform additional computation or even call multiple servers.

If necessary, the reply is obtained by the original client by an ordinary (blocking
quest. This approach, variants of which are supported by several languages [27][9
maintains the benefits of an RPC interface and the flexibility of one-way message pa
In contrast to one-way message passing, however, there is no difficulty in matching r
to requests.

A closely related approach is to combine RPC with one-way message passi
ABCL/1, for example, an object that externally has an RPC interface may internall
lower-level message-passing primitives to reply by sending an asynchronous mes
the client or to its proxy. The use of such facilities is further discussed in section 2.4

First-Class Representation of Requests and Replies

The ability to have a first-class representation of requests and replies may enhan
stantially the expressive power of a language. There is a range of aspects of reque
replies that may have a first-class representation in a language. This varies from (a
no first-class representation at all to a full first-class representation of all aspects
quests and replies. Below we discuss how this issue is addressed in some langua
are characteristic of the various possibilities.
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Apart from the method’s arguments and the target, all other aspects, such as the 
name and the return address, cannot be specified dynamically. This the case for lan
such as POOL-T, Hybrid and Trellis/Owl. One could argue that since the target and 
guments can be specified at run-time, there is a first-class representation of some 
and that the categorization is not accurate. In fact, in older language proposals such
[43] the targets of messages were determined statically. This, however, is uncomm
more recent languages since it makes it hard to develop software libraries: a serv
must be statically bound to its potential callers has a low reuse potential. A first-clas
resentation of the target and arguments can be considered as a minimum that one
expect to find in every language.

First-Class Representation of Method Names and Reply Addresses

PROCOL supports the first-class representation of method names. The name of the
od to call may be supplied as a string. This allows the method names for a reques
passed in messages or computed at run-time.

With ABCL/1 it is possible to specify dynamically and explicitly the object that is to
ceive the reply of a request. The benefits of the use of this feature are discussed in
2.4.2.

Full First-Class Representation

As one would expect, full first-class representation of requests is provided in refle
languages such as ABCL/R. However, it is also provided in languages such as Sm
and Sina which are not fully reflective. In fact, the latter two illustrate the usefulnes
the possibility of having such features in any concurrent language which is not 
reflective. Briot [23] has used the features of Smalltalk to build a several object-ori
programming models using the relative primitive concurrency features provided i
Smalltalk system. Aksitet al. [4] show how these features may be used to abstract
reuse several object coordination paradigms.

2.2.4.2 Accepting Requests
A main concern from the point of view of an object acting as a server is whether req
can be conditionally accepted.* When a request arrives, the server may be busy servi
a previous request, waiting itself for a reply to request it has issued, or idle, but in a
that requires certain requests to be delayed. We distinguish initially between cond
and unconditional acceptance of requests. Conditional acceptance can be further d
inated according to whether requests are scheduled by explicit acceptance, by ac
conditions or by means of reflective computation (see figure 2.4).

* A secondary issue is whether further activity related to a request may continue after the reply has

sent as in the Send/Receive/Reply model [39], but this can also be seen as concern of internal conc

where follow-up activity is viewed as belonging to a new thread.
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Unconditional Acceptance

Unconditional acceptance of requests is illustrated by monitors [42] and by Smalltalk-
[40] objects. The mutual exclusion that is provided by monitors could be considered
implicit condition for the acceptance of requests. However, the mutual exclusion pro
is captured by viewing monitors as quasi-concurrent objects so we consider requ
ceptance to be unconditional. Note that message acceptance for languages with an
onal object model is by default unconditional.

Request scheduling

Unconditional
acceptance

No synchronization with the
state of the target

Ada packets, Smalltalk-80,
Emerald, Trellis/Owl

Explicit acceptance

The execution of the
operation is synchronized
with an “accept” statement
explicitly executed by the
target

ADA tasks, ABCL/1, SR
POOL-T, Eiffel //

Activation conditions

Explicit or implicit conditions on
the target’s state determine
when the execution of an
operation may take place

Abstract – representation
independent

Conditions are expressed in terms of
abstract properties of the object and do
not refer to the particular implementation

ACT++, ROSETTE, PROCOL,
path expressions

Representation specific

Conditions are expressed
directly on the hidden object
state

Guide, Hybrid, Sina

 Reflective computation

The arrival of a message at the
target triggers a reflective
computation in the associated
meta-object. This determines
whether the requested operation
should be executed

ABCL/R, ACTALK

Conditional
acceptance

Figure 2.4 Approaches to scheduling requests.
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With explicit acceptance, requests are scheduled by means of an explicit “accept” s
ment executed in the body of the server. Accept statements vary in their power to s
which messages to accept next. Acceptance may be based on message conte
operation name and arguments) as well as the object’s state. Languages that u
approach are Ada, ABCL/1, Concurrent C, Eiffel//, POOL-T and SR. With this appro
objects are typically single-threaded, though SR is an exception to this rule.

 Activation Conditions

With activation conditions, requests are accepted on the basis of a predicate over th
ject’s state and, possibly, the message contents. The activation condition may be pa
plicit, such as the precondition that there be no other threads currently active with
object. An important issue is whether the conditions are expressed directly over a p
lar representation of the object’s state or if they are expressed in more abstract te
Guide, for example, each method is associated with a condition that directly referenc
object’s instance variables, whereas in ACT++ the condition for accepting a mess
that the object be in an appropriateabstract state which abstracts from the state of a pa
ticular implementation. Another approach is to specify the legal sequences of messa
ceptance by means of a regular expression, as in path expressions [24] and PROCO

 There are also some proposals such assynchronizers [38],separate method argument
[66] andstate predicates[74], for activation conditions that depend on the state or 
computation history of other objects.

A synchronizer [38] is a special object associated with a group of objects. When a
od of any of these objects is called a condition in the synchronizer is evaluated. Depe
on the outcome, the execution of the method may proceed, or be delayed until th
dition becomes true. Synchronizers may have their own variables that are used t
information about the computation history of a group of objects.

Separate method arguments [66] can be used to constraint the execution of a me
preconditions on the argument declared as “separate.” The execution of the metho
layed until the preconditions are true and the separate objects are “reserved” for th
tion of the call. That is, they can only be used in the body of a method.

With state predicate notifiers [74], the execution of a method can be constrained 
notification that another object has reached a state that satisfies astate predicate.This fea-
ture has synchronous and asynchronous forms. In the synchronous variant, the no
object waits until the method is executed and the method gains exclusive access
object. In the asynchronous variant the notifying object proceeds independently.

Reflective Computation

With reflective computation the arrival of a request triggers a method of the server’smeta-
object. The meta-object directly then manipulates object-level messages and mailbo
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objects. This approach is followed by the language ABCL/R [86] and it is also illustrated
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in Actalk [23] where some reflective facilities of the Smalltalk-80 system are used 
tercept messages sent to an object and synchronize their execution in a way that si
message execution in actor-based languages.

2.3 Criteria for Evaluating Language Design Choices

So far we have presented a design space covering the most significant choices in the
of concurrency features for OOPLs, but we have said little about how the variou
proaches compare. Since our goal is to arrive at COOPLs that provide the advant
object-oriented programming for the development of concurrent systems, we mus
formulate our requirements as precisely as possible, before beginning to compa
approaches. We first discuss the issue of developing object classes that have hig
potential. Then, we turn our attention to the support for reuse at a finer granularity
objects and examine the issues related to the use of inheritance and the reuse of s
nization constraints.

2.3.1 Object-Based Features — Support for Active Objects

The main issue for reuse at the object level is that concurrency in an object-oriente
guage should not diminish the benefits of object-based features with respect to reu
instance, encapsulation should still protect the internal state of objects from surrou
objects and it should still be possible to insulate objects’ clients from implement
choices. This should make it possible to change the implementations without affecti
clients provided that the interfaces are maintained and that changes are, in some se
haviourally compatible.

Object-oriented and concurrent programming have different aims that incur diff
software structuring paradigms. Object-oriented programming aims at the decompo
of software into self-contained objects to achieve higher software quality and to pro
reusability. Concurrent programming aims at expressing and controlling the exec
synchronization and communication of conceptually parallel activities. Its primary go
to provide notations that are suitable for devising solutions to problems that involv
coordination of concurrent activities [11].

In order to compare language designs it is necessary to adopt a programming mo
concurrent object-based programming and evaluate how well the various language
port this model. Our view regarding the way the two programming paradigms shou
combined is by structuring programs as cooperating objects that exchange messag
is similar to the way sequential object-oriented programs are structured, however, i
current programs objects may encapsulate one or more concurrent threads that imp
their behaviour. Moreover, the operations of an object may be invoked by concurren
ecuting objects.
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themselves rather than the threads that invoke their operations have the responsib
schedule concurrent requests. Requests should be scheduled in a way consistent 
object’s internal state and the possibly spontaneous execution of internal threads. T
jects developed following this model are independent self-contained entities. They c
reused across applications and they may be refined to support different schedulin
cies for invoked operations. The programs that use the objects should not be affec
such changes.

Although any language combining concurrent and object-oriented features cou
used to develop software following this model, as will be illustrated in section 2.4, n
combinations of concurrent and object-oriented features are equally successful i
porting this programming model. Below we develop a number of requirements on th
guage features to adequately support programming following an active object mod
section 2.4 we will use these requirements to evaluate language design choices an
tify the shortcomings of some approaches.

2.3.1.1 Requirements
According to the active object model discussed above, we would like languages to s
the development of self-contained objects with high reuse potential. A general prin
for achieving this is that reusable object classes should make minimal assumptions
the behaviour of applications that will use them. Furthermore, the choice of cons
should not constrain the possible implementations of a class. We can formulate o
quirements as follows:

1. Mutual exclusion — protecting the objects’ state:The internal state of objects
should be automatically protected from concurrent invocations so that it wi
possible to reuse existing objects in concurrent applications without modifica

2. Request scheduling transparency:An object should be able to delay the servicin
of requests based on its current state and on the nature of the request. This sh
accomplished in a way that is transparent to the client. Solutions that require t
operation of the client are not acceptable from the point of view of reusability s
the client then cannot be written in a generic fashion.

3. Internal concurrency:The concurrency constructs should allow for the impleme
tation of objects that service several requests in parallel or that make u
parallelism in their implementation for increased execution speed in the proce
of a single request. This could be done either by supporting concurrent th
within an object or by implementing an object as a collection of concurre
executing objects. Whatever approach is chosen, it is important that int
concurrency be transparent to the object’s clients so that sequential implem
tions of objects may be replaced by parallel ones.

4. Reply scheduling transparency:A client should not be forced to wait until the ser
ing object replies. In the meantime it may itself accept further requests or call 
objects in parallel. It may even want replies to be directly sent to a proxy. Re
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scheduling by the client should not require the cooperation of the server sinc
would limit the ability to combine independently developed clients and server

2.3.1.2 An Example
In order to compare the design choices and their combinations with respect to the re
quirements, we shall refer to an instance of a “generic” concurrent program structu
administrator inspired by [39]. The administrator is an object that uses a collectio
“worker” objects to service requests. An administrator application consists of four 
kinds of components. Theclients issue requests to the administrator and get back res
The administrator accepts requests from multiple concurrent clients and decomp
them into a number of subrequests. Theworkload manager maintains the status of work
ers and pending requests.Workers handle the subrequests and reply to the administra
The administrator collects the intermediate replies and computes the final results to
turned to clients (see figure 2.5).

The administrator is a very general framework for structuring concurrent applicat
For example, workers may be very specialized resources or they may be general-p
compute servers. The workload manager may seek to maximize parallelism by loa
ancing or it may allocate jobs to workers based on their individual capabilities.

The components described above identify functionally distinct parts of the applic
that could have been developed independently and reused as indicated above to c
a new application.These components do not have to be implemented as single obje
indeed, as we see later, depending on the constructs provided by certain languages
objects will be necessary for realizing the desired functionality. However, it should be
sible to modify the implementation of the above components without affecting the r
if they were single objects.

The following points relate the language design requirements listed above to the
issues in the case of the example application:

Clients

Administrator

WorkersWorkload manager

Figure 2.5 The administrator example.
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tected from concurrent requests by the administrator. There may be cases wh
administrator does not invoke the workload manager concurrently. Although in
cases no protection is needed, workload managers that are not protected could
reused in different concurrent implementations of the administrator. In such a
current implementation the administrator may use a collection of proxies that
invoke the workload manager concurrently. (ii) Worker reuse – workers sh
similarly be protected so that arbitrary objects may be used as workers with va
implementations of the administrator, including concurrent ones.

• Request scheduling transparency: (iii) Genericity of clients, reusing the administra
tor with different clients — the administrator must be able to interleave (or de
multiple client requests, but the client should not be required to take special a
In fact it should be possible to implement any object as an administrator and it s
not matter to the object’s clients if the serving object happens to be implemen
an administrator.

• Internal concurrency: (iv) Client/worker reuse — the administrator should be op
to concurrent implementation (possibly using proxies) without constraining th
terface of either clients or workers;

• Reply scheduling transparency: (v) Worker reuse — it must be possible for the a
ministrator to issue requests to workers concurrently and to receive their re
when it chooses without special action by workers;

2.3.2 Inheritance and Synchronization

There are two main issues concerning reuse at a finer granularity than objects.
• The first is to maintain in concurrent languages the reuse potential offered by i

itance in sequential languages. Several early papers have reported difficulties
ing class inheritance in COOPLs as well as in the design of languages that int
class inheritance and concurrency constructs [19] [6] [22]. In some cases inher
was left out as it was deemed difficult to integrate and of limited use. The need to
chronize the execution of inherited, overridden and newly defined methods, wi
breaking the encapsulation between classes, makes it more difficult to take a
tage of class inheritance than in sequential languages. For instance, if mutex
used for synchronizing method execution, a method defined in a subclass woul
to access a mutex defined in a superclass in order to be synchronized with sup
methods. This would break encapsulation between classes. The design of conc
cy constructs should be made in way to avoid such problems.

• The second is to make it possible to reuse algorithms, often calledsynchronization
constraints, for scheduling the execution of methods of a class. For instance, a
may implement a synchronization algorithm that schedules its methods accord
the readers and writers synchronization scheme. It would be desirable to be a
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In most languages the reuse of synchronization constraints is achieved throug

inheritance and the term inheritance of synchronization constraints is often used for this
issue. We have chosen the term reuse of synchronization constraints since class inherit-
ance is only one possible means to achieve reuse. Furthermore, it is questionable w
class inheritance should be used for this purpose. We will further elaborate on this
below. Then, we will discuss separately the requirements for supporting class inher
and for reusing synchronization constraints.

Inheritance is often considered as the most prominent feature of object-oriente
gramming. The most widespread object-oriented languages such as C++, Smallta
Eiffel provide an inheritance mechanism that may be used for different purposes. 
include: the reuse of the implementation of a class in the implementation of a new
the specification of a type compatibility relation between a class and its parent cl
considering for type-checking purposes that instances of the class are of the same
instances of its superclasses; finally, it may be used to express that the concept o
modelled by the subclass is, in some sense, a refinement of the concepts or entitie
sented by its parent classes.

The use of a single mechanism for all these purposes can, on one hand, be a s
confusion and on the other, limit the effectiveness of the mechanism for each of the
ferent purposes. For instance, subtypes have to be related to a class inheritance r
ship even if they do not share any part of their implementation. In order to use part
implementation of a class in a new class, all the methods have to be inherited to c
with the subtype relation that is also expressed by the inheritance link.Wegner and Z
[88] provide a general and in-depth discussion of inheritance as an incremental mo
tion mechanism and illustrate its use for different purposes. Guide [48] and POOL
are concrete examples of languages with mechanisms that distinguish between the
ent uses of inheritance. Both languages distinguish between class inheritance as a 
use mechanism and typing. POOL-I goes even further by also allowing the specifi
of behaviourally compatible classes.

In section 2.4.3 we will examine more closely the approaches for the reuse of syn
nization constraints followed by different languages. This will illustrate the interact
that class inheritance may have with the reuse of synchronization constraints in the
ferent approaches.

2.3.2.1 Class Inheritance
The issues listed below have to be addressed in order to take advantage effectivel
reuse potential of inheritance. The first two are concerned with the reuse of supe
methods. The third one concerns the use of inheritance for providing generic algo
through the definition and refinement ofabstract classes[36] [44].

• Separate specification of the synchronization constraints:If the code that imple-
ments the synchronization decisions related to the execution of methods is inc
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for the synchronization constraints of the subclass [45].
• Interface between methods and the synchronization constraints:The separate speci

fication of synchronization control actions and method code does not neces
mean that the execution of methods once started should be carried out witho
further interaction with the synchronization constraints. Such an approach limit
expressive power of a language. Instead, there should be a well-defined interfa
tween methods and the synchronization constraints that allows several actions
execution of the method to interact with the synchronization constraints assoc
with the various classes where it is reused.

• Consistency with other uses of inheritance for software composition:Apart from re-
using individual methods, inheritance serves to facilitate sharing of algorithms
designs [36]. For this purpose, inheritance is paired with other features such as
cation of methods through pseudo-variables such asself orsuper in Smalltalk.

2.3.2.2 Reuse of Synchronization Constraints
The issues discussed below are important for evaluating and comparing the propos
the specification and reuse of synchronization constraints:

• Flexibility of the binding mechanism:The mechanism that is used to apply co
straints to a particular class determines the flexibility with which constraints ma
reused. Depending on the mechanism, constraints are bound to exactly one cla
class where they were introduced), or to any class that inherits from the clas
introduced the constraints. Additionally, method names appearing in a cons
specification may be considered as variables to be substituted at binding tim
method names defined in a particular class.

• Compositionality and extensibility: This concerns the support provided for reusi
previously defined constraints in the definition of new ones. A related issue is ex
ing the application of constraints to methods that are introduced at a later stag

• Polymorphism:The potential applicability of constraints to different classes. Thi
related to the binding mechanism and modularity; constraints could be specifie
way that would allow them to be applied to different classes. However, this ma
impossible or inconvenient because of the absence of an appropriate binding 
anism.

• Modifiability and locality of change:There are circumstances where it may be de
able or necessary to change the implementation of a class or of just the sync
zation constraint. Depending on the approach, this may be achieved easily th
some local modification or it may require a cascade of changes in synchroniz
constraints. In some cases it may even be needed to modify the inheritance hie
Most of the other aspects discussed above come into play when considerin
issue.
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2.4 Exploring the Language Design Space
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We now propose to compare the various approaches to the design of COOPLs by s
atically exploring the language design space and evaluating design choices agains
quirements specified in the previous section. Since the various aspects of the desig
are sometimes intertwined, we will find ourselves returning to common issues on 
sion. Basically we will take the following course: first we briefly consider the th
categories of object models; then we consider object interaction mechanisms in com
tion with internal concurrency; finally we explore inheritance and synchronization 
straints as a topic worthy of separate study. We summarize our conclusions in s
2.4.4.

2.4.1 Object Models

By the requirement of mutual exclusion, we can immediately discount the orthog
object model as it provides no default protection for objects in the presence of conc
requests. The reusability of workers and workload managers is clearly enhanced 
will function correctly independently of assumptions of sequential access.

The heterogeneous model is similarly defective since one must explicitly disting
between active and passive objects. A generic administrator would be less reusa
would have to distinguish between active and passive workers. Similarly worker reu
ity is weakened if we can have different kinds of workers.

Thehomogeneous object model is the most reasonable choice with respect to reus
ity. No distinction is made between active and passive objects.

Note that it is not clear whether the performance gains one might expect of a h
geneous model are realizable since they depend on the programmer’s (static) assi
of objects to active or passive classes. With a homogeneous approach, the compile
conceivably make such decisions based on local consideration — whether a compo
shared by other concurrently executing objects is application specific and should be
pendent of the object type.

2.4.2 Object Interaction Mechanisms

Request-reply mechanisms such as an RPC-like interface provide more support for
reuse. Using our administrator example, we can see that one-way message pass
several disadvantages over RPC for reusing objects.

A concurrent client may issue several requests to the administrator before it gets a
In this case it is important for the client to know which reply corresponds to which req
Are replies returned in the same order as requests? In the case of synchronous m
passing an additional difficulty is that the administrator may get blocked when it sen
reply until the client is willing to accept it. Requiring the client to accept the reply imp



50 Concurrency in Object-Oriented Programming Languages
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mechanism has to be supported for sending replies or proxies have to be created.
One-way message passing is also inconvenient for coping with the interaction be

the administrator and worker objects. A difficulty with using one-way messages is ge
the replies from workers: as there will be several workers that are invoked in paral
well as potentially concurrent invocations of single worker, it can be difficult for the
ministrator to tell which reply is associated with which request.

A solution to this problem is to create a proxy for each request. The proxy would 
out the request and then send a message to the administrator containing the worker
plus some extra information used for identifying the request. As with sequential RP
administrator will also have to manage local queues for partially completed request

2.4.2.1 Sequential Objects
We argued that an RPC interface for objects provides better support for object reus
one-way message passing. However, we quickly discover that if objects have a 
thread of control and RPC is the only communication mechanism, the request and
scheduling requirements of the administrator are not satisfied. We further discuss th
itation of this design choice combination below. Then we show additional mechan
that may be used to overcome these limitations without giving up the RPC-interfa
completely discarding sequential object design choice. The limitation of the combin
of sequential objects (“modules” in their case) and RPC is discussed at length in
However, they reach the conclusion that either the sequential object or the RPC 
should be discarded.

Limitations of the Sequential Object–RPC Combination

In particular, a sequential RPC administrator will not be able to interleave multiple cli
requests as it will be forced to reply to a client before it can accept another reques
only “solution” under this assumption requires the cooperation of the client, for exam
the administrator returns the name of a “request handler” proxy to the client, which th
ent must call to obtain the result. In this way the administrator is immediately free t
cept new requests after returning the name of the request handler. Such an appr
however, incompatible with the requirement on request scheduling transparency
scheduling of requests by the administrator is not transparent to its clients.

Consider for instance that we would like to replace the sequential implementation
existing object class by a parallel implementation where instances of the class act
ministrators for a collection of appropriate worker objects. In accord with our req
ments we would like to take advantage of encapsulation and data abstraction to repl
old implementation without having to modify the programs that used it. This, howev
not possible since, as discussed above, in order to be able to process client reque
currently, an object, implemented as an administrator, has to have a different int
than an object having a sequential implementation.
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the administrator. If the administrator invokes workers directly using RPC, its s
thread will get blocked until the invoked worker computes the result and returns the
The sequential RPC combination prevents the administrator from invoking several 
ers in parallel, or accepting further client requests while a worker computes the resu
receiving the workers’ replies at a later time.

It is also possible to have the workers cooperate with the administrator so that it do
block when delegating work to them, but such solutions require workers to be code
special way to implement the cooperation. This is incompatible with our requireme
request scheduling transparency, which would allow any object to be potentially use
worker.

Using Proxies for Reply Scheduling

The limitation of the sequential RPC combination for reply scheduling can be over
by the use of “courier” proxies used by the administrator to invoke workers. Each tim
administrator needs to invoke a worker it creates an appropriate courier proxy that w
voke the worker instead. To get a worker’s reply, the administrator could invoke a m
of the corresponding courier or alternatively the courier could call an administra
method when the reply becomes available.

 The former alternative has the disadvantage that the administrator may get block
invokes the courier too early. This may never occur with the latter approach. Howev
administrator has to manage local queues for replies that are sent to it and that it can
immediately. Furthermore, each time a reply is returned, it should check whether 
replies needed so far for handling a client’s request are available so that it may p
with the client’s request.

The use of proxy objects for carrying out requests and for storing replies is also n
in the case of one-way message passing for allowing requests to be paired with rep

Although proxies are a general programming approach, it is cumbersome to pro
and use them explicitly. In fact unless the language supports classes with type para
and a flexible manipulation of method names, a new proxy class would have to be d
for each different worker class in an administrator application.

Future variables in ABCL/1 [94], theprocess type in PAL [18] and CBox objects in
ConcurrentSmalltalk [92] provide functionality which is somewhat similar to the cou
proxies that were used by the administrator to call workers. These mechanisms co
used by the administrator to call workers without getting blocked and for collecting w
er replies at a later time.

 The advantage of these mechanisms over program-defined proxies is that they
used for calling workers of any class. Future variables, however, are not first-class o
and so are not as flexible. For instance, a future variable cannot be sent in a messag
ing a different object than the one that made the request to receive the reply.
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have to get blocked and wait for a further client request or the reply to a previous w
request. Unless there exists a synchronization mechanism that allows the administ
wait on either of these events, the administrator may get blocked to obtain a reply
quest that is not available and will thus be unable to accept other requests or replie
problem could be circumvented either by polling if a non-blocking request accep
mechanism is supported or by additional, explicitly programmed proxies that wou
turn the replies by invoking some administrator’s operation especially provided for
purpose. This way a synchronization mechanism for selectively accepting requests
allow the administrator to be woken up either for receiving the results of a previou
quests or for accepting new requests.

Still, the administrator’s code may get quite involved. If there is no way to prevent b
woken up by messages containing client requests or worker replies that cannot b
right away, local message queues will have to be managed by the administrator. So
pears that built-in proxies combined with single-thread objects provide limited suppo
reply scheduling by the administrator since one should again rely on the use of exp
programmed proxies.

Combining Request/Reply and One-Way Message Passing

It is also possible to relax the RPC style of communication without going all the w
supporting one-way message passing as the main communication primitive. This h
advantage that it is possible to present an RPC interface to clients and, at the sam
obtain more flexibility for processing requests by the administrator. This possibility 
lustrated by ABCL/1 [94] which permits the pairing of an RPC interface at the client
with one-way asynchronous message passing at the administrator’s side. Moreov
reply message does not have to be sent by the administrator object. This provide
more flexibility in the way that the administrator may handle requests since the re
may be directly returned to the client by proxies. The following segment of code s
how this is accomplished.
 The RPC call at the client side looks like:

result := [ administrator <== :someRequest arg1 ... argn] ...

A message is sent to the administrator to execute the requestsomeRequest with arguments
arg1,...,argn. The client is blocked until the reply to the request is returned and the res
stored in the client’s local variableresult.

At the administrator’s side the client’s request is accepted by matching the messa
tern:

(=> :someRequest arg1 ... argn @ whereToReply
.... actions executed in response to this request ... )

When the administrator accepts this request, the arguments are made available
local variablesarg1,...,argn and thereply destination of the request in the local variabl
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chronous, message for returning the reply to the client. As a reply destination may a
passed around in messages, it is possible for another object to send the reply me
the client. This action would look like:

[ whereToReply <== result ]

wherewhereToReply is a local variable containing the reply destination obtained by
message acceptance statement shown above, andresult is the result of the client’s reques

Another interesting way of using the possibility to combine one-way message pa
with RPC is for flexible reply scheduling by the administrator. In the previous sectio
built-in proxies, we mentioned that a difficulty was that the administrator should be
to wait to accept both returned replies and further requests. A way to circumvent this
lem was to use explicitly programmed proxies that would return results by invoking 
operation provided by the administrator. In this way, replies were returned by reque
that a request acceptance mechanism was sufficient for allowing the administrator 
for both requests and replies. A different approach is possible by pairing one
messages to the RPC interface supported by workers. With this approach
administrator may use a past type message, with itself as reply destination, for call
workers which present an RPC interface. The replies from the workers can th
received by the administrator as any past-type message request. This allow
administrator to use the message acceptance mechanism for receiving both reque
replies.

This approach has, however, some of the drawbacks of one-way message passin
extra work is needed in order to find out which reply message is related to what requ
also that the administrator has to manage queues for replies that may not be used i
ately.

2.4.2.2 Multi-Threaded Objects
Another way for allowing the administrator to service several concurrent requests
supporting multiple concurrent or quasi-concurrent threads. A separate concurrent
may now be used for handling each client request. However, depending on the m
nisms provided for thread creation and scheduling, it may still be necessary to resor
solutions discussed previously in order to achieve a satisfactory level of concurre
the processing of client requests.

We consider in turn quasi-concurrent and concurrent approaches and examine t
port provided by the thread creation and scheduling mechanisms for programming a
istrators.

Quasi-Concurrent Approaches

A traditional example of “objects” with quasi-concurrent thread structure is provide
monitors [42] [21]. However, monitors present some well-known difficulties such
“nested monitor calls,” and they unduly constrain parallelism [56] [77] [20] when use
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to the quasi-concurrent structure of threads. However, an approach based on m
would also constrain concurrency among different objects because of its limited su
for reply scheduling. Assuming that the administrator is a monitor, then when call
worker the monitor would remain blocked until the invoked operation would return. 
situation, calledremote delay[53], makes it impossible for the administrator to acce
further client requests or to call a second worker.

 Consequently, certain object-oriented languages have adopted more flexible 
tions. For example, Emerald [19] uses monitors as defined by Hoare [42]. However, 
operations of an object have to be declared as monitor procedures and also sever
pendent monitors may be used in the implementation of an object.Lock blocks andwait
queues in Trellis/Owl [68] also allow for more flexible implementation schemes tha
objects were identified to monitors. With this approach, however, objects in these
guages are not quasi-concurrent any more.

The restricted support for concurrency among objects by monitors is not due 
quasi-concurrent structure of objects, but rather to the limited flexibility for re
scheduling. This is illustrated by the second quasi-concurrent approach we ex
which by providing a more flexible reply scheduling scheme does not restrict concur
among objects.

 Hybrid [71] is another language which adopts a quasi-concurrent thread structu
objects. However, in contrast to monitors, thedelegated callmechanism provides a more
flexible reply scheduling approach that does not restrain concurrency among objec
administrator may use the delegated call mechanism to invoke workers. In such a
new thread may be activated in the administrator for processing another client req
the meantime.

The delegated call mechanism is satisfactory for allowing the administrator to a
further client requests while a worker is executing a previous request, thus providin
port for concurrency among several client requests. However, it is of no help for allo
several workers to execute in parallel for a single client request.

This may only be done by using proxies for invoking the workers or by a construc
specifying the creation of a new quasi-concurrent thread. Such a construct was pro
in the original design of Hybrid. The newly created quasi-concurrent threads w
resume each other by using delegated calls. This construct was not included in the
type because it substantially increased the complexity of the rules for message a
ance.

Concurrent Objects

With concurrent threads it is straightforward to process several client requests concu
ly by creating a new thread for processing each client request. Provided that satisf
mechanisms are supported for constraining the creation and activation of conc
threads, this does not result in the mutual exclusion problems of languages with an o
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the programmer and the scope of the potential interference of the concurrent thread
stricted to the state of a single object.

Provided that there is some way to suspend the execution of a concurrent thread o
its creation, languages that support concurrent threads provide adequate suppor
quest scheduling and for internal concurrency to the extent that several client reques
be processed concurrently.

A different issue that is not necessarily addressed by the support for concurrent t
is the possibility to use concurrency for processing a single request. Unless the crea
multiple threads can be initiated by the object, the support for reply scheduling of co
rent threads is not sufficient for processing a request in parallel.

For example, the language Sina [84] makes it possible to use several concurrent 
within an object for processing requests; there is no direct means, however, for 
these threads to create more threads for calling the worker objects in parallel. This i
indirectly by creating a courier proxy, as described previously. It is therefore not nec
ily redundant to support both multiple threads and non-blocking communication p
tives.

A satisfactory way for calling workers in parallel without using proxies or async
nous message passing is to support a construct by which more threads may be cr
the object. In this case a worker can be called by each of these threads in an RPC 
With quasi-concurrent threads, a call to a worker should trigger the execution of an
thread. In SR the code segment of the administrator that is used for issuing requ
workers in parallel would look like this:

co result1 := w1.doWork(...) -> loadManager.terminated(w1)
// result2 := w2.doWork(...) -> loadManager.terminated(w2)
oc
globalResult := computResult(result1,result2);
...

2.4.3 Inheritance and Reuse of Synchronization Constraints

A large body of research has concentrated on the issues of making effective use o
itance in COOPLs as well as on the related issue of reusing synchronization
straints.We will provide a brief overview of this work. Then we will turn our attention
the issues discussed in section 2.3.2 and illustrate the issues and how they are ad
by various language designs putting particular emphasis on some points that ha
received the attention they deserved in related work. More extensive presentatio
systematic comparisons of the proposals for supporting inheritance and the re
synchronization constraints may be found in [63] [60] and [16].
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2.4.3.1 A Brief Overview of Related Research
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Eiffel// [26][27] and Guide [34][48] were two of the earliest proposals that attempte
combine inheritance and synchronization constraints by removing the constraints
the bodies of methods.

These approaches presented some shortcomings with respect to the ability to ext
synchronization constraints to account for new methods introduced by subclasse
problems were independently identified by Kafura and Lee [45] and Tomlinson and S
[83], who in turn proposed their own approaches for overcoming them. A common a
of these proposals is that constraints are specified by associating sets of method
stractions of the object state in which they can be executed. The main idea was that
of methods would be extended in subclasses with the additional methods.

Matsuokaet al. [62], however, showed that there existed certain cases, calledinherit-
ance anomalies, where new state abstractions would have to be introduced in subcla
consequently requiring extensive redefinition of inherited methods. Matsuoka late
posed his own approach, where he retained the idea of sets of acceptable metho
provided a combination of guards and accept sets allowing the best technique to b
for the problem at hand.

 The issue of extending and combining inherited constraints was also addressed
ious other proposals, notably: Synchronizing Actions [69], Scheduling Predicates
Ceiffel [57], Frølund’s framework [37], PO [29], SINA [16] and SPN [74]. It is importa
to note that Synchronizing Actions and SPN are two of the very few proposals to con
the issue of suspending method execution, which is important for reply scheduling.

The language DRAGOON [13] [14] supports the specification of generic synchro
tion constraints and provides a special inheritance mechanism separate from class
itance of sequential aspects of classes for reusing these synchronization constrain

Meseguer [67] has proposed a somewhat different approach for avoiding the pro
related to the use of inheritance in COOPLs. He proposes to eliminate the synchron
code which causes inheritance anomalies. His language is based on a concurrent re
logic; the use of appropriate rewrite rules allows the specification of synchroniz
without introducing inheritance anomalies.

Synchronizers [38] is an approach for the specification of synchronization const
that allows constraints to be associated to objects dynamically. An interesting point
this proposal is that constraints may depend on the state and computation history o
al other objects.

2.4.3.2 Binding Mechanisms for Synchronization Constraints
The most direct way to associate synchronization constraints to methods is to s
them together as part of a class definition. Constraints defined in a class are inher
the ordinary class inheritance mechanism. Such an approach is followed by
COOPLs, such as Guide, PO, PROCOL and ACT++, to name a few. This approach
ever, has the shortcoming that it may be difficult to apply constraints to different cla
A first problem is with method names: if constraints refer to particular method nam
the class in which they are defined, it will be difficult to apply them to classes where m
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ods have different names. Another problem comes from the use of class inheritan
reusing constraints. If one uses class inheritance to reuse the constraints, the m
defined in the class are also inherited. Below we examine some approaches that ha
proposed for addressing these problems.

Genericity of Synchronization Constraints in DRAGOON

DRAGOON [13] [14] is an example of a language that supports the specification of g
ic synchronization constraints and of one that dissociates inheritance from the mech
used for binding synchronization constraints to a class’s methods. Generic constrai
defined as behavioural classes (b-classes). The constraints may be applied to asequential
class having no associated constraints, through the b-inheritance (behavioural) m
nism. This mechanism is independent from the inheritance mechanism (f-inherit
used for sequential classes. Figure 2.6 shows an example of the use of the constra
nition and binding mechanism in DRAGOON. A classUNI_BUFFER is defined in (a) and
(b) with methodsPUT andPEEK used to insert a new element into the buffer and to ex
ine the number of elements in the buffer. In (c) a generic constraintREADERS_WRITERS

class UNI_BUFFER
introduces

procedure PUT(I : in SIMPLE.ITEM);
procedure PEEK (NB: out INTEGER);

end UNI_BUFFER;

... definition of the instance variables and
implementation of the operations...

end UNI_BUFFER;

behavioural class READERS_WRITERS is
ruled WOP, ROP;
where

per (WOP) <=> active(WOP) + active(ROP) = 0;
per(ROP) <=> (active(WOP) = 0) and (requested(WOP) = 0);

end READERS_WRITERS;

class READERS_WRITERS_UNI_BUFFER
inherits UNI_BUFFER
ruled by READERS_WRITERS
where

PUT => WOP,
PEEK => ROP

end;

Figure 2.6 Constraint definition in DRAGOON.

(a) (b)

(c)

(d)
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writers, scheduling policy [81]. This synchronization constraint is bound to the c
UNI_BUFFER in (d) wherePUT is associated with the constraints for writers andPEEK with
the ones for readers.

Using the Inheritance mechanism of Beta

A similar effect for specifying and binding constraints may be achieved by using theinner
mechanism of Beta. In Beta a method in a subclass is associated with the superclas
od it specializes. Instead of the subclass method explicitly invoking the superclass m
through the use ofsuper mechanism, as in Smalltalk, the superclass method isalways in-
voked, and subclasses may only introduce additional behaviour at the point where th
word inner occurs. In a sense, the execution of the superclass method is wrapped a
the invoked subclass method. First are executed the actions in the superclass met
precedeinner, then the subclass method is executed, then the actions of the supe
method that followinner are executed.

This feature may be combined with low-level synchronization mechanisms, su
semaphores, to implement classes that encapsulate generic synchronization polic
can be applied to methods defined in subclasses in a way similar to how it is done in
GOON.

Assume there is a classReaderWriterSched (not shown) with methodsreader andwriter
that use semaphores to implement a reader/writer scheduling policy for the methodread-
er andwriter. This synchronization may be applied to a classSynchedBuffer with operations
empty, get, put as follows:

SynchedBuffer: @ | ReaderWriterSched
(# .... instance variables....

peek: Reader(# ...implementation of peek... #)
get: Writer(# ...implementation of get... #)
put: Writer(# ....implementation of put..#)

#)

This allows the execution ofpeek to be constrained according the synchronization c
straints of a reader, whereasget andput are synchronized according to the synchronizat
constraints that apply to writers. More on the use of inheritance in Beta to define g
synchronization policies can be found in [58].

Method Sets and Abstract Classes in ABCL/AP100

Themethod set feature provided in this language may be combined with abstract cla
to define generic synchronization constraints that can be applied to several classes
od sets are specified as part of class definitions, and are associated with synchron
constraints. Method sets can be inherited and modified in subclasses. Systematic
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names. The possibility of combining method sets with abstract classes (classes wh
all methods are defined) can be used to provide facilities similar to those of DRAGO
Abstract classes, making systematic use of method sets in synchronization cons
can be used to represent generic constraints similar to DRAGOON’s b-classes. Ho
in contrast to DRAGOON, programmers have to use the features provided by the lan
in a disciplined way. Another interesting feature of this language, discussed below, 
it is possible to combine synchronization constraints.

2.4.3.3 Polymorphism and Synchronization Constraints
Polymorphism of synchronization constraints is concerned with the potential applic
ty of constraints to different classes provided that the language supports an appr
binding mechanism. There are two potential deficiencies with respect to this issue
proaches for specifying synchronization. The first is related to the use of instance
bles in conditions constraining the activation of methods. The second concerns the
constraints that specify mutual exclusion among methods in languages that suppor
object concurrency.

The first deficiency, also discussed by Bergmans [16], occurs in the propos
Frølund [37] and Matsuoka [63], and in Guide and PROCOL, to cite a few exampl
these languages the conditions that are used in their constraints reference the obj
stance variables. This makes it difficult to apply the constraints to classes implemen
a way that does not require these instance variables. Moreover, it makes it diffic
change the implementation of a class without having to consider the instance variab
erenced in the constraints and, eventually, modifying the constraints as well. The pr
may also be more severe than just modifying the constraints of a single class, as t
straints to be modified may be used by other subclasses as well. This could cause
examination and adjustment of the constraints of several subclasses of the class t
modified.

Two approaches have been be followed for alleviating this problem. First, instead
cessing directly the instance variables, conditions could be specified through a fu
that accesses the object state indirectly. If the implementation had to be modified
these functions would need to be modified to account for the changes in the objec
This approach is followed for this precise reason by Sina in the way conditions are 
fied in wait filters [16] as well as in the specification of state predicates [74]. A se
approach is to use condition variables to maintain an abstract state that is separate f
actual class implementation and is used purely for synchronization purposes
approach is followed Synchronizing Actions, DRAGOON and PO.

The second potential deficiency occurs in languages with intra-object concurren
several languages with intra-object concurrency, such as Guide, DRAGOON and PO
chronization constraints specify mutual exclusion properties among methods. The
reason for imposing mutual exclusion constraints on method executions is that m
implementations access common instance variables. However, a different or modifi
plementation of a class may use a different set of instance variables and may have d
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erties among methods may find limited applicability to classes with a different imple
tation. Also, modifying the implementation of a class to which such constraints
attached, as discussed above for guards that reference instance variables, may c
modification of the constraints attached to several classes. This problem, however, 
received any attention by other work in the area.

2.4.3.4 Extensibility and Compositionality
In languages such as DRAGOON, the issue of combining synchronization constra
avoided by the way the language is designed; inheritance is not allowed among c
that are associated with synchronization constraints, r-classes, or the classes (b-c
that are use to describe the constraints themselves. This approach has advanta
disadvantages. The separation of constraints from classes allows the use of inhe
between f-classes without having to be concerned how the associated constraints
have to be combined. The disadvantage is that there is no support for reusing con
in the definition of new ones.

In other languages the issue of combining constraints is addressed either becau
inheritance mechanism is tight up to the constraint binding mechanism or to allow
straints to be defined incrementally.

Frølund [37] proposed an approach for combining constraints of a class with tho
troduced in subclasses based on the view that constraints should become stricter
classes. The proposed approach for combining constraints supports this vie
incrementally combining conditions that disable method execution. This way condi
may only become more strict in subclasses.

Matsuoka [63] provides a more elaborate way of combining constraints through m
fication ofmethod sets and by the fact that method sets are recomputed in a subclass t
into account the full set of methods including the methods inherited from all supercla
For instance, the method set all-except(LOCKED), whereLOCKED is another method set de
fined elsewhere, denotes all the object’s methods except the ones inLOCKED. This method
set is recomputed in subclasses to account for additional methods defined in the s
or inherited from other superclasses. Such features enable the definition of mixins th
be combined with the constraints of other classes to obtain the synchronization beh
specified by the mixin. An example of such a mixin class is presented in [63].

A powerful way of composing synchronization constraints is also provided by wa
ters in Sina. In order to get accepted, messages are matched against patterns of wait filters.
Wait filters are associated with conditions, a form of guards, that must be true to let m
ing messages go through the filter. Filters can be stacked at the interface of an obj
messages have to traverse all of them before being accepted by the object. Be
shows in [16] how this approach can be used for the locking mixin and for other cons
composition examples. The locking mixin discussed above can be realized by a cla
provides a wait filter that matches all messages butunlock and is associated with a cond
tion, Unlocked, that is true only when the object is unlocked.Lock andUnlock methods
change the state of a lock object so as to render theUnlock condition false and true respec
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sages have to go through its filter first. In this way the synchronization constraint de
by lock can be reused in other classes.

PO [29] also supports the composition of constraints defined in superclasses of a
In contrast to the proposals of Frølund and Matsuoka, where objects are single-thr
PO constraints are designed for objects with internal concurrency. Constraints on th
allel execution of methods are partially ordered in a lattice with fully parallel executio
methods at the top and mutual exclusion among all methods at the bottom of the 
When incompatible constraints are inherited from different superclasses, they are
pared according to this order and the more strict constraint is retained.

2.4.3.5 Combining Inheritance with Request/Reply Scheduling
In most work on the design of mechanisms for the specification and reuse of synchr
tion constraints, little attention has been paid to the eventuality that methods may h
be suspended halfway through their execution. However, as we discussed in sectio
this may be necessary to support reply scheduling. The possibility of suspending m
using mechanisms designed for the reuse of synchronization constraints is addre
Synchronizing Actions [69] and in the design of thestate predicate [74] mechanism.

Synchronizing Actions are based on multi-thread objects. The execution of a m
may be suspended by calling, throughself, another method with a pre-action such that t
call is delayed. This approach may be used to support request and reply scheduling
administrator as shown in figure 2.7. The administrator calls workers by creating 
objects that do the actual call. After creating a proxy the administrator thread is susp
by calling the methodsuspend. The proxy calls the worker and when the call returns it c
theworkerDone method to cause the administrator thread to be resumed. Figure 2.7
trates the implementation of the administrator concentrating on the synchronizatio
pects. Other languages that support internally concurrent objects and fle
specification of synchronization constraints, for instance Guide or Sina, could be u
a similar way. This approach, however, has some shortcomings. First, its comp
would make it difficult to use in practice. Second, it relies on the assumption that me
invoked through self are subject to the same constraints as invocations from other o
This may not be appropriate when self is used in conjunction with inheritance to reu
gorithms defined in abstract superclasses.

The state predicate approach [74] provides a simpler and more direct way for sus
ing method execution based on a state predicate. The effect is similar to the one ac
by the approach discussed above. However, the resulting code is simpler as thread 
sion and resumption is supported by the language and the complications deriving fr
need to call the objects methods through self are avoided.

2.4.4 Summary

 Below we present our observations with respect to reuse issues resulting from our
ration of language design approaches.
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method workerDone()class Admin;
Object-Based Features

• Homogeneous object models promote reuse: Concurrent applications can safely re
use objects developed for sequential applications; efficiency need not be sacri

• Sequential objects with strict RPC are inadequate: Request scheduling and interna
concurrency can only be implemented by sacrificing the RPC interface; the so
is either to support concurrent threads or to relax the strict RPC protocol.

• One-way message passing is expressive but undesirable: Since higher-level request
reply protocols must be explicitly programmed, development and reuse of obje
potentially more error-prone.

• Acceptance of concurrent requests is handled well either by concurrent threads
explicit request/reply scheduling.

• Issuing concurrent requests is handled well by one-way message passing, by p
or by internal concurrency: The combination of both concurrent threads and n
blocking communication primitives may be appropriate for handling the sepa
issues of accepting and issuing concurrent requests.

•  Built-in proxies used bysequential objects with non-blocking request issuing mech
anisms provide adequate support for reply scheduling but are weak at comb
reply and request scheduling.

• Both concurrent objects and multi-object approaches are useful for internal con
rency: These approaches for internal concurrency are both useful for different
poses. Concurrent threads make it easy to implement objects that may service 
concurrent requests that do not modify the objects state. Multi-object approach

Figure 2.7  Request/reply scheduling with synchronization constraints.

matching (true)
pre { worker_finished := true }
action {  }
post { }

method request()
matching ( admin_idle )
pre { admin_idle := false}
action {

do some local processing...
request := worker_proxy.doWork();
self!waitWorker ();
...some more processing...

}
post { admin_idle := true };

concurrency_control:
boolean worker_finished := false,

admin_idle := true;

method suspend()
matching (true)
pre { admin_idle := true }
action{

self!waitWorker ()
 }
post { admin_idle := false}

method waitWorker()
matching (worker_finished );
pre { worker_finished := false;admin_idle := false
}
action { }
post { };
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object classes.

Inheritance and Synchronization Constraints

• Synchronization constraints should not be hardwired in methods:If the synchroniza-
tion code that schedules the execution of methods is hardwired in methods, it w
necessary to modify the method code in order to meet the constraints of other c

• Multiple threads are needed to cope with reply scheduling: To support reply sched-
uling it is important to be able to suspend the execution of a method. Howev
seems difficult to do this if synchronization code is kept separate from metho
support inheritance.

• Method suspension and resumption should be taken into account by synchron
constraints: Taking into account the suspension of method execution by the me
nism that implements the synchronization constraints makes it simpler to pro
reply scheduling problems without compromising the reusability of methods.

• Specification of mutual exclusion may lead to non-polymorphic constraints: Mutual
exclusion properties of methods are often related to the way methods access in
variables. Such constraints may thus not be applicable to classes with dif
instance variables or in which methods access instance variables in a differen
Including mutual exclusion specifications in constraints makes them less reus

• It is advantageous to separate the reuse of constraints from inheritance. It is easier to
reuse synchronization constraints is they are specified generically and if their 
cation to different classes is not accomplished through class inheritance.

2.5 Conclusion

Integrating concurrency and object-oriented programming is not as easy as it may s
a first sight. There is no major difficulty in introducing both object-oriented and con
rency features in a single language. However, arbitrary combinations of concurrenc
object-oriented features do not allow programmers draw the benefits of object-or
programming for the development of concurrent systems. These difficulties have fo
substantial research in the past few years in the design of languages that gracef
tegrate both kinds of features. However, the interference of the features occurs in s
aspects of language design and the various proposals are not equally successful in 
aspects.

In this chapter we have discussed a number of issues that should be addressed in
aspects of language design, and we have formulated some criteria to use in evalua
sign choices. We have used these criteria to evaluate various proposals, and we ha
trated the issues by examining specific languages. The languages discussed were
to illustrate particular points rather than to present a complete survey of all existing
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posals. It was not our intention to compare individual languages; other issues not dis-
fferent
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cussed in this chapter would have to be considered in such an endeavour. Di
considerations come in to play, for example, when designing a language for rapid 
typing or a language for programming embedded systems.

We have presented some guidelines for the design of languages that support th
object-oriented features promoting reuse. Although these seem to be necessary con
more is needed to achieve reuse at a larger scale. These are research issues whic
cussed in other chapters. The further development and the use of techniques for re
larger scale for developing concurrent systems may provide more criteria for evalu
language features and may result in more requirements on language design.
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Object-Oriented
Applications

Dimitri Konstantas

Abstract One of the important advantages of the object-oriented design and
development methodology is the ability to reuse existing software modules.
However the introduction of many programming languages with different
syntax, semantics and/or paradigms has created the need for a consistent
inter-language interoperability support framework. We present a brief
overview of the most characteristic interoperability support methods and
frameworks allowing the access and reuse of objects from different
programming environments and focus on the interface bridging object-
oriented interoperability support approach.

3.1 Reusing Objects from Different Environments

One of the problems that people face when travelling from one country to anothe
cerns the operation of electric appliances, like electric razors and coffee machines.
son living in Switzerland, for example, travelling to Germany will not be able to “plug
and use his coffee machine as he is used in doing when back home. The reason is
that the “interfaces” for connecting to the electricity distribution network, that is the 
of the appliance and the wall socket, are different. Our traveller will need to emp
small inexpensive adaptor in order to bridge the differences of the “interfaces”. But t
are not always that simple. If the same person is travelling to North America he wi
cover that not only is his (Swiss) plug different from the (North American) wall socket
also that the electricity voltage differs. Fortunately also in this case a simple solutio
ists: the use of a transformer that will convert the North American voltage (110 V) t
Swiss standard (220 V).
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In object-oriented programming where the reuse of objects is highly encouraged we
med in
C++
lace,
 one
ncepts
 dif-
nt lan-

ts into
the ob-
ntactic
rame-

aviour
 linked
bjects

ppli-
 imple-
ivation
ge of

n of in-
on the
ich the

s:
hey
 an in-
es the
ed) in-
terface

h a
ition
 way a
pro-
e com-
gram-

pport
face similar problems when we wish to access or reuse objects that are program
different programming languages. A programmer implementing an application in 
cannot easily (re)use (if at all) objects and code written in Smalltalk [5] or even rep
without resorting to extensive reprogramming, a C++ object with some other
performing the same function but under a different interface. What we need are co
similar to the electricity transformer and plug adaptor that will allow us to bridge the
ferences between the interfaces and paradigms of objects programmed in differe
guages.

In general we can classify the problems of bridging the differences between objec
three categories. The first category includes the computation differences between 
jects, like the low-level data representations; the second category includes the sy
particularities of the object interfaces, like the operation names and the required pa
ters; the third category includes the differences of the semantic and functional beh
of the objects, like the representation of a collection of objects as an array or as a
list. We will refer to the bridging of all these differences for the reuse and access of o
written in one or more languages as theinteroperability support problem.

Interoperability is the ability of two or more entities, such as programs, objects, a
cations or environments, to communicate and cooperate despite differences in the
mentation language, the execution environment or the model abstractions. The mot
in the introduction of interoperability support between entities is the mutual exchan
information and the use of resources available in other environments.

During the past few years several approaches have been taken for the introductio
teroperability support. We classify these approaches in two ways. First depending 
way that they solve the interface differences’ problem and second on the point at wh
interoperability support is handled.

For the first classification, interface differences, we identify two general categorie
• The interface bridging approaches bridge the differences between interfaces. T

are characterized by the notions of offered and requested interface and define
terface transformation language. The interface transformation language requir
existence of two interfaces and allows one to express how the offered (request
terface can be transformed to the requested (offered) interface. Note that the in
transformation language is programming language dependent.

• The interface standardization approaches standardize the interface under whic
service (functionality) is offered. They are characterized by an interface defin
language that allows one to express in a programming language independent
specific interface. From the abstract definition of an interface a compiler will 
duce the necessary stub-interface in the implementation language selected. Th
piler will always generate the same stub-interface for the selected target pro
ming language.

For the second classification depending on the point at which interoperability su
is handled, we also identify two categories:
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• Theobject-oriented interoperability approaches that handle interoperability at t

point of the object.
In the rest of this chapter we present a brief overview of some representative pr

from different interoperability approaches, discussing their advantages and disadv
es, and describe in detail the object-oriented interoperability approach of the Cell f
work [12].

3.2 Procedure-Oriented Interoperability

The problem of interface matching between offered and requested services has bee
tified by many researchers [6][15][18][21][22][25][26] as an essential factor for a h
level interoperability in open systems (see also chapter 12). Nevertheless, most
approaches taken in the past are based on the remote procedure call (RPC) parad
handle interoperability at the point of procedure call. We call this type of interopera
support approachprocedure-oriented iteroperability (POI). In POI support it is assumed
that the functionality offered by the server’s procedures matches exactly the functio
requested by the client. Thus the main focus of the interoperability support is theadaption
[21] of the actual parameters passed to the procedure call at the client side to the re
procedures at the server side.

3.2.1 Interface bridging

An example of this approach is the one taken in thePolylith system [21]. The basic as
sumption of the approach is that the interface requested by the client (at the point
procedure call) and the interface offered by the server “fail to match exactly”. That 
offered and requested parameters of the operation calls differ. A language calledNIMBLE
has been developed that allows programmers to declare how the actual paramet
procedure call should be rearranged and transformed in order to match the formal p
eters of the target procedure. The supported parameter transformations include co
of parameters, e.g. five integers to an array of integers, parameter evaluation, e.g.th
formation of the strings “male” and “female” to integer values, and parameter exten
i.e. providing default values for missing parameters. The types of the parameters t
handled are basic data types (integers, strings, Booleans, etc.) and their aggregate
or structures of integers, characters, etc.). The programmer specifies the mapping b
the actual parameters at the client side and the formal parameters at the server sid
NIMBLE and the system will then automatically generate code that handles the tra
mations at run-time.
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3.2.2 Interface standardization
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Whereas NIMBLE focuses on bridging the differences between the offered and requ
service interfaces, theSpecification Level Interoperability (SLI) support of theArcadia
project [25] focuses on the generation of interfaces in the local execution environ
through which services in other execution environments can be accessed. The ma
vantage of SLI is that it defines type compatibility in terms of the properties (specifica
of the objects and hides representation differences for both abstract and simple type
way SLI will hide, for example, the fact that a stack is represented as a linked list or
array, making its representation irrelevant to the interoperating programs sharin
stack. In SLI the specifications of the types that are shared between interoperatin
grams are expressed in theUnifying Type Model (UTM) notation. UTM is a unifying mod-
el in the sense “that it is sufficient for describing those properties of an entity’s type 
are relevant from the perspective of any of the interoperating programs that share ins
es of that type”[25]. SLI provides a set of language bindings and underlying impleme
tions that relate the relevant parts of a type definition given in the language to a defi
as given in the UTM. With SLI the implementer of a new service will need to specify
service interface with UTM and provide any needed new type definitions for the sh
objects and language bindings that do not already exist. In doing so the user will be
ed by theautomated assistance tools which allow him or her to browse through the exis
ing UTM definitions, language bindings and underlying implementations. Once a U
definition for a service has been defined theautomated generation tool will produce the
necessary interface in the implementation language selected plus any representat
code needed to affect the implementation of object instances. This way the auto
generation tool will always produce the same interface specification from the same
input. However, SLI can provide different bindings and implementations for the gene
interface allowing a service to be obtained from different servers on different env
ments, provided that they all have the same UTM interface definition.

An approach similar to SLI has been taken in theCommon Object Request Broker A
chitecture(CORBA) [18] of the Object Management Group (OMG). The Object Requ
Broker (ORB) “provides interoperability between applications on different machine
distributed environments”[18] and it is a common layer through which objects transp
ently exchange messages and receive replies. The interfaces that the client objects
and the object implementations provide are described through theInterface Definition
Language (IDL). IDL is the means by which a particular object implementation tells
potential clients what operations are available and how they should be invoked. An
face definition written in IDL specifies completely the interface and each operat
parameters. The IDL concepts are mapped accordingly to the client languages dep
on the facilities available in them. This way, given an IDL interface, the IDL compiler 
generate interface stubs for the client language through which the service can be ac
using the predefined language bindings.
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3.2.3 Advantages and Disadvantages
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Although the above approaches can provide interoperability support for a large num
applications, they have a number of drawbacks that severely restrict their interoper
support. The first drawback is the degeneration of the “interface” for which interope
ity support is provided to the level of a procedure call. A service is generally prov
through an interface that is composed of a set of interrelated procedures. What is of
tance is not the actual set of the interface procedures but the overall functionality the
vide. By reducing the interoperability “interface” to the level of a procedure call, the i
relation of the interface procedures is lost, since the interoperability support no l
sees the service interface as a single entity but as isolated procedures. This will
problems in approaches like Polylith’s that bridge the differences between the offere
requested service interface, when there is no direct one-to-one correspondence b
the interface’s procedures (interface mismatch problem).

Interoperability approaches like SLI and CORBA, on the other hand, do not suffer
the interface mismatch problem, since the client is forced to use a predefined inte
Nevertheless, the enforcement of predefined interfaces (i.e. sets of procedure
specified functionality) makes it very difficult to access alternative servers that provid
same service under a different interface. This is an important interoperability restr
since we can neither anticipate nor we can enforce in an open distributed environm
interface through which a service will be provided. With the SLI and CORBA approac
the service’s interface must also be embedded in the client’s code. Any change in th
er’s interface will result in changes in the client code.

Another restriction of the above interoperability approaches is that they requir
migration of the procedure parameters from the client’s environment to the server’s
ronment. As a result onlymigratable types can be used as procedure parameters. T
are the basic data types (integers, strings, reals, etc.) and their aggregates (array
tures, etc.), which we calldata types. Composite non-migratable abstract types, like a 
tabase or keyboard type, cannot be passed as procedure parameters. This neverth
reasonable restriction since the above approaches focus in interoperability supp
systems based on non-object-oriented languages where only data types can be de

The need for allowing non-migratable objects as parameters to operation call
identified in the CORBA and a special data type was introduced calledobject reference.
CORBA object references are data types that encapsulate a handle to a (non-mig
object and are globally valid. However object references are a low level primitives w
must be explicitly referenced and de-referenced by the server and the client. A h
level primitive allowing direct access to object is clearly needed if we wish to have
sistent access in an object-oriented environment.

3.3 Object-Oriented Interoperability

Although procedure-oriented interoperability provides a good basis for interopera
support between non-object-oriented language based environments, it is not well
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for a high level interoperability support for environments based on object-oriented lan-
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guages. The reason is that in an object-oriented environment we cannot decompos
ject into a set of independent operations and data and view them separately, since t
mean loss of the object’s semantics. For example, a set of operations that draw a line
tangle and print characters on a screen, have a different meaning if they are seen ind
ently or in the context of a window server object where the rectangle can repre
window into which the characters that represent the user/machine interactions are p
In object-oriented environments it is the overall functionality of the object that is of im
tance and not the functionality of the independent operations. We call this type of int
erability where the semantics of the objects as a whole are preservedobject-oriented
interoperability (OOI).

3.3.1 Interface Bridging

An example of interface bridging in object-oriented interoperability is the one prov
by the Cell framework [12] (where the concept of OOI was also introduced). The Ce
framework for the design and implementation of “strongly distributed object-based
tems”. The purpose of the Cell is to allow objects of different independent object-b
systems to communicate and access each other’s functionality regardless of poss
terface differences. That is, the same functionality can be offered with a different inte
from different objects found either on the same or on different environments. The bri
of the interface differences is done via theInterface Adaption Language (IAL). From the
specification given in the IAL a compiler generates the required stub objects that su
the requested interface and translate the incoming operation invocations to the invoc
of the target object interface.

A more detailed presentation of the Cell interoperability approach is given in se
3.5.

3.3.2 Interface Standardization

The most important example of interface standardization in object-oriented interope
ity is version 2 of CORBA. In contrast to the first version of CORBA, which was orien
towards C and C procedure calls, the second version is oriented towards a C++ e
ment and objects. Otherwise the functionality of CORBA and the basic elements a
same as described in section 3.2.2.

3.3.3 Summary

Object-oriented interoperability is a generalization of procedure-oriented interopera
in the sense that it will use, at its lower levels, the mechanisms and notions of POI.
ever OOI has several advantages over POI. First of all it allows the interoperation of 
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consistent interoperation. A second advantage is that it supports fast prototyping in
cation development and experimentation with different object components from diff
environments. The programmer can develop a prototype by reusing and experim
with different existing objects in remote (or local) environments without having to ch
the code of the prototype when the reused object interfaces differ. A last advantage
since OOI is a generalization of POI, it can be used to provide interoperation betwee
object-oriented and conventional (non-object-oriented) environments. Furthermore
IB-OOI support is used for non-object-oriented environments it provides a more ge
frame than POI and can also handle cases where the requested and offered servi
faces do not match.

In table 3.1 we give a summary of the different approaches presented above an
position in the two classifications.

3.4 Comparison of Interoperability Support Approaches

The interface bridging approaches provide a more general solution than the int
standardization approaches for the access and reuse of objects from different pr
ming environments since they do not enforce any specific interface. The applic
designer can choose the interface that he wants to use for accessing a service and 
accessing not only the target server but also alternative servers offering the same 
under different interfaces.

Another advantage of the interface bridging approaches is that they make no as
tions about the existence and semantics of types in the interoperating environment
type, even the simplest and most banal integer type, must be explicitly related to a t
the remote environment. This way they provide flexibility in the interconnection o
verse environments based on different models and abstractions.

One of the disadvantage of the interface bridging approaches comes from the fa
they do not enforce a common global representation model for expressing the inter
bility bindings. Each execution environment is free to choose its own language. As a
the interoperability interface adaption specifications for a server need to be defined
pendently by the programmer for each execution environment in an interface ad
language that is specially tailored for the programming languages of the two en
ments. However, bilateral mappings can offer a higher flexibility when the interoper

Procedure-oriented
interoperability (POI)

Object-oriented
interoperability (OOI)

Interface standardization (IS) SLI, CORBA v. 1 CORBA v. 2

Interface bridging (IB) NIMBLE Cell

Table 3.1 Classification of interoperability support approaches.
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languages support special features. For example, a common interface definition language,
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like the CORBA IDL, does not include the notion of atransaction; thus, even when the in-
teroperating languages support transactions, like Argus [16] and KAROS [4], their 
based interoperation will not be able to use transactions.

Object-oriented interoperability and procedure-oriented interoperability approa
cannot be directly compared since they are designed for different programming en
ments: the first for object-oriented environments and the second for non-object-or
environments. Nevertheless OOI is a generalization of POI using at its lower leve
same mechanisms as POI. Thus the major advantage of OOI over POI is that it can
plied as well to both types of programming environments and serve as bridge betwe
ject-oriented and non-object-oriented environments.

Although the interface bridging and interface standardization approaches are dist
the way they approach the interoperability problem, they are not exclusive. An inter
ability support system can very well support both approaches and give the program
maximum flexibility in the reuse and access of objects in different programming env
ments. As an example we can consider CORBA which is an interface standardizat
teroperability support system. In a large CORBA-based open distributed system it w
difficult for all service providers to agree on a common interface for the servers the
velop. As a result a number of different server interfaces will be available providin
same or similar services. However, applications being developed to access a s
server interface will not be able to access any other server even if the interface diffe
are minor. In addition, since it is not possible to anticipate the interfaces of future se
applications will not be able to take advantage of newer, more advanced services. W
needed is to introduce interface bridging interoperability support. This can be easily
with the introduction of aninterface adaption service that will allow a client to adapt it
requested service interface to a specific offered interface and dispatch the service r
accordingly.

3.5 Interface Bridging — Object-Oriented
Interoperability

We identify two basic components necessary for the support and implementation of
face bridging OOI (IB-OOI):interface adaption andobject mapping. Interface adaption
provides the means for defining the relations between types on different execution
ronments based on their functionality abstraction, and object mapping provides th
time support for the implementation of the interoperability links.

3.5.1 Terminology

In the rest of this section we use the termclient interface to specify the interface through
which the client wishes to access a service, and the termserver interface to specify the ac-
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environment of an application (client or server), e.g. the Hybrid [7] execution env
ment or the Smalltalk [5] execution environment. In this sense a node can span ove
than one computer, and more than one node can coexist on the same computer. A
we will assume that the client is in thelocal node and the server in theremote node, local
and remote nodes can very well be one and the same. By the termparameter we mean the
operation call parametersand the returned values, unless we explicitly state differen
Finally we should note that by the termuser we mean the physical person who interac
and maintains the interoperability support system.

3.5.2 Interface Adaption

In a strongly distributed environment [24] a given service will be offered by many se
under different interfaces. As a result a client wishing to access a specific service
more than one server will have to use a different interface for each server. Although w
develop the client to support different interfaces for the accessed services, we mig
always be able to anticipate all possible interfaces through which a service can be o
or force service providers to offer their services via a specific interface. IB-OOI appr
es this problem by handling all interface transformations, so that a client can use th
interface to access all servers offering the same service. The interface adaption p
consists of defining and realizing the bindings and transformations from the interfac
the client uses (requested interface), to the actual interface of the service (offered
face).

Ideally we would like to obtain an automatic solution to the interface adaption prob
Unfortunately in the current state of the art this is not possible. The reason is that w
no way of expressing the semantics of the arbitrary functionality of a service or an o
tion in a machine-understandable form. In practice the best we can do is describe
manual page and choose wisely a name so that some indication is given about th
tionality of the entity. Nevertheless, since nothing obliges us to choose meaningful n
for types, operations or their parameters, we cannot make any assumptions ab
meaning of these names. Furthermore even if the names are chosen to be meaning
interpretation depends in the context in which they appear. For example a type n
Account has a totally different meaning and functionality when found in a banking e
ronment and when found in a system administrator’s environment. Thus any solut
the interface adaption problem will require, at some point, human intervention sinc
system can automatically deduce neither which type matches which, nor which ope
corresponds to which, or even which operation parameter corresponds to which be
two matching operations. What the system can do is assist the user in defining th
ings, and generate the corresponding implementations.

We distinguish three phases in providing a solution to the interface adaption pro
In the first phase, which we call thefunctionality phase, the user specifies the type or type
on the remote environment providing the needed functionality (service). The syste
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ing the functionality of the types. This information can be manual pages, informatio
tracted from the type implementation or even usage examples.

In the second phase, which we call theinterface phase, the user defines how the opera
tions of the remote type(s) should be combined to emulate the functionality repres
by the client’s operations. This can a be a very simple task if there is a direct corres
ence between requested and offered operations, or a complicated one if the ope
from several remote types must be combined in order to achieve the needed resul
the functionality phase the system can assist the user by providing information reg
the functionality of the operations.

The third phase is theparameter phase. After specifying the correspondence betwe
the requested and remote interface operations the user will need to specify the para
of the remote operations in relation to the ones that will be passed in the local ope
call. This might require not only a definition of the correspondence between offere
requested parameters, but also the introduction of adaption functions that will tran
or preprocess the parameters. The system can assist the user by identifying the type
corresponding parameters, reusing any information introduced in the past regardi
relation between types and standard adaption functions, and prompt the user for an
tional information that might be required.

3.5.2.1 Type Relations
In IB-OOI we distinguish three kinds of type relations, depending on how the local
can be transformed to the remote type. Namely we haveequivalent, translated andtype
matched types.

Migrating an object from one node to another means moving both of its parts, i.e
and operations, to the remote node, while preserving the semantics of the object. Ho
moving the object operations essentially means that a new object type is introduced
remote node. This case is presently of no interest to IB-OOI since we wish to supp
teroperability through the reuse of existing types. Thus in IB-OOI, migrating an oper
call parameter object means moving the data and using them to initialize an instan
pre-existing equivalent type. This is a common case with data types, like integers, s
and their aggregates, where the operations exist on all nodes and only the data ne
moved. In IB-OOI when this kind of a relation exists between a type of the local nod
a type of the remote node we say that the local typeX has anequivalent typeX´ on the re-
mote node.

Although data types are the best candidates for an equivalence relation, they are
only ones. Other non-data types can also exist for which an equivalent type can be
on a remote node. For example, a raster image or a database type can have an eq
type on a remote node and only the image or database data need to be moved when
ing the object. In general, two types can be defined as equivalent if their semanti
structure are equivalent and the transfer of the data of the object is sufficient to allo
migration of their instances. In migrating an object to its equivalent on the remote 
the IB-OOI support must handle the representation differences of the transferred d
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this sense thetype equivalence of IB-OOI corresponds torepresentation level interopera-
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In an object-oriented environment we are more interested in the semantics of an

rather than its structure and internal implementation. For example, consider the H
[17] typestring and the CooL* [1] typeARRAY OF CHAR. In the general case the semanti
of the two types are different: thestring is a single object, while theARRAY OF CHAR is an
aggregation of independent objects. Nevertheless when in CooL anARRAY OF CHAR is
used for representing a string, it becomes semantically equivalent and can be trans
to a Hybridstring, although the structure, representation and interfaces of the two type
different. In IB-OOI this type relation is defined astype translation.

Translation of the local type to the remote type is done with a user-definable trans
function. This way the particularities of the semantic equivalence can be handled in a
specific way. The user can specify different translations according to the semantics
objects. For example, if the local node is a CooL node and the remote a Hybrid nod
we can define two different translations for anARRAY OF CHAR — the first when theAR-
RAY OF CHAR represents a character string and is translated to astring, and the second
when theARRAY OF CHAR represents a collection of characters that need to be treate
dependently and which is translated to a Hybridarray of integer (in Hybrid characters are
represented via integers).

Type translation can be compared to specification level interoperability, where th
teroperability support links the objects according to their specifications. Neverthe
type translation is more flexible than SLI since it allows multiple translations of the s
type according to the specific needs and semantics of the application.

A local type for which bindings to a remote type or types have been defined, as a
tion to the interface adaption problem (i.e. bindings and transformations from the 
face that the client uses, to the actual interface of the service), is said to betype matched to
the remote node. We can have two kinds of type matched types: multi-type match
uni-type matched types. Multi-type-matched types are the ones that are bound to
that one type on the remote node, when for example one part of the requested funct
is offered from one type and another part from a second type, and uni-type matche
are the ones that are bound to a single type on the remote node.

The target of IB-OOI is to allow access to objects on remote nodes. The basic as
tion being that the object in question cannot be migrated to the local node. Howev
access and use of the remote object will be done with the exchange of other object
form of operation call parameters. The parameter objects can, in their turn, be migr
the remote node or not. Parameter objects that cannot be migrated to the remote n
accessed on the local node via a type match, becoming themselves servers for ob
the remote node.

Type relations are specific to the node for which they are defined and do not imp
a reverse type relation exists, or that they can be applied for another node. For exam
the local node is a Hybrid node and the remote is a C++ node, the Hybrid typeboolean has

* CooL is a an object-oriented language designed and implemented in the ITHACA ESPRIT [20] p
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3.5.2.2 To Type-Match or not to Type-Match?
Type matching is a general mechanism for interoperability support and can be use
cases in place of equivalence and translation of types. However, the existence of t
tion and equivalence of types is needed for performance reasons since accessing
through the node boundary is an expensive operation. If an object is to be access
quently on the remote node, then it might be preferable to migrate it, either as equi
or translated type. For example, it is preferable to migrate “small” objects, like the
types, rather than access them locally. Nevertheless the user always has the possi
accessing any object locally, even an integer if this is needed, as might be the case
integer that is stored at a specific memory address which is hard-wired to an extern
sor (like a thermometer) and which is continuously updated. This can be done by de
a type match and using it in the parameter’s binding definitions.

A typical scenario we envisage in the development of an application with IB-OOI 
port is the following. The user (application programmer) will first define a set of 
matchings for accessing objects on remote nodes. These will be used in the develo
of the application prototype. When the prototype is completed the user will measu
performance of the prototype and choose for which types a local implementation is
provided. For these types an equivalency or translation relation will also be establ
possibly on both nodes, so that they can be migrated and accessed locally. This w
performance of the prototype will be improved. This process can be repeated itera
until the performance gains are no longer justifiable by the implementation effort.

One of the major advantages of the IB-OOI approach is that in the above scena
application prototype will not be modified when local implementations of types are i
duced* and the type relations change. The new type relations are introduced in the IB
support and do not affect the application programs.

3.5.3 Object Mapping

Whereas interface adaption maintains the static information of the interoperability
plates, object mapping provides the dynamic support and implementation of the in
erability links. We distinguish two parts in object mapping: the static and the dyna
The static part of object mapping is responsible for the creation of the classes that 
ment the interoperability links as specified by the corresponding type matching. Th
namic part, on the other hand, is responsible for the instantiation and managemen
objects used during the interoperation.

* With the exception of a possible recompilation if dynamic linking is not supported.
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3.5.3.1 Inter-Classes and Inter-Objects
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The essence of object mapping is to dynamically introduce in the local node the se
of servers found on other nodes. This, however, must be done in such way so that
cess of the services is done according to the local conventions and paradigms. In an
oriented node this will be achieved with the instantiation of a local object that repre
the remote server, which in IB-OOI we call aninter-object. An inter-object differs from a
proxy, as this is defined in [23], in three important respects. First in contrast with a p
an inter-object and its server can belong to different programming and execution en
ments and thus they follow different paradigms, access mechanisms and interface
second difference is that while a proxy provides the only access point to the actual 
i.e. the server can be accessedonly via its proxies, this is not the case with inter-objec
Objects on the same node with the server can access it directly. An inter-object simp
vides the gateway for accessing the server from remote nodes. Finally, while a pr
bound to a specific server, an inter-object can dynamically change its server or even
more than one server, combining their services to appear as a single service on th
node.

An inter-object is an instance of a type for which a type match has been defined
class (i.e. the implementation of a type) of the inter-object is created by the object m
from the type match information and we call it an inter-class.An inter-class is generated
automatically by the object mapper and it includes all code needed for implementin
links to the remote server or servers.

3.5.3.2 Dynamic Support of the Object Mapping
After the instantiation of an inter-object and the establishment of the links to the re
server, the controlling application will start invoking the operations of the inter-ob
passing other objects as parameters. IB-OOI allows objects of any type to be u
parameters at operation calls. The object mapper will handle the parameter o
according to their type relations with the remote node. This way objects for whic
equivalent or translated type exists on the remote node will be migrated, while obje
which a type match exists will be accessed through an inter-object on the remote n

In the case where no type relation exists for the type of a parameter object, the
mapper will invoke the type matcher and ask the user to provide a type relation. Th
type relations can be specified efficiently, taking into account the exact needs and c
stances of their use. In addition the dynamic definition of type relations during run
relieves the user from the task of searching the implementation type hierarchy for 
fined type relations. Also the incremental development and testing of a prototype be
easier since no type relations need to be defined for the parts of the prototype that
currently tested.

3.6 Interface Adaption

Expressing the relations and transformations between two (or more) interfaces c
done using a language which we callInterface Adaption Language (IAL). IAL, just like
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the existing interface definition languages (like the CORBA IDL) that allow the expres-
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sion of an interface in an abstract language independent way, allows the expression
relations and transformations required for the adaption of one interface to anothe
abstract language independent way.

An IAL for the object-oriented interoperability support of the Cell framework pro
type [8][9][11] was designed and implemented at the University of Geneva. The main
of the Cell framework is to allow the objects of a node transparently to access and us
ices found on other heterogeneous nodes using the OOI support. IAL allows the use
press the interface relations between object types of the different nodes. The synta
IAL is very similar to the Hybrid language syntax [7][10][17], in which the Cell prototy
was implemented.

 In the rest of this section we give an overview of the implemented IAL using exam
for the adaption of interfaces between Hybrid object types and CooL [1] object typ
complete description of IAL can be found in [13].

3.6.1 Type Relations

A type relation in IAL is defined for a specific remote cell which is identified by its na
For the examples given below we assume that the local Hybrid cell is namedHybridCell and
the remote CooL cell is namedCooLCell. The general syntax of a type relation on the H
brid cell is

IdOfRemoteCell :: <TypeRelation> ;

where TypeRelation can be either equivalent, translated or type matched 
IdOfRemoteCell is the id of the remote cell, which in the case of the CooL cell isCooLCell.

3.6.1.1 Equivalent and Translated types
In both CooL and Hybrid, integers and Booleans are equivalent types. On the Hybr
this is expressed as

CooLCell :: integer => INT ;
CooLCell :: boolean => BOOL ;

Although the notion of astring exists in both languages, in CooL, strings are represen
as arrays of characters while in Hybrid they arebasic data types. Thus the relation be-
tween them is of a translated type

CooLCell :: string +> ARRAY OF CHAR : string2arrayOfChar ;

In the CooL cell the corresponding definitions will be:
HybridCell :: INT => integer ;
HybridCell :: BOOL => boolean ;
HybridCell :: ARRAY OF CHAR +> string : arrayOfChar2string ;

In the definition of translated types we specify a translation function, 
string2arrayOfChar andarrayOfChar2string, which performs the data translation.
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type  windowServer : abstract  {
3.6.1.2 Type-Matched Types.
A type can be matched to either a single remote type or to a collection of remote
(multi-type match). For example, if we have on the local Hybrid cell a typewindowServer,
which is matched to the typeWINDOW_CONTROL of the remote cell, the type match wi
be expressed as

CooLCell :: windowServer -> WINDOW_CONTROL {<operation bindings>*} ;

while a multi-type match will be expressed as
CooLCell :: windowManager -> < WINDOW_CONTROL, SCREEN_MANAGER >

{ <operation bindings>} ;

When an object of the local nucleus in its attempt to access a service creates an i
of a type-matched type (an inter-object), a corresponding instance of the target typ
be instantiated on the remote cell. However, there are cases where we do not wan
instance to be created on the remote cell but we need to connect to an existing se
IAL this is noted with the addition of@ at the of remote type name:

CooLCell :: personnel -> PERMANENT_PERSONEL_DB @ { <operation bindings>} ;

3.6.2 Description of the Running Example

In order to describe the IAL syntax we use as examples a Hybrid typewindowServer and a
CooL typeWINDOW_CONTROL. The HybridwindowServer defines in the Hybrid cell the
interface through which a window server is to be accessed (requested interface), wh
CooLWINDOW_CONTROL provides an implementation of a window server (offered int
face). For simplicity we assume that the operation names of the two types describe
rately the functionality of the operations. That is, the operation namednewWindow creates
a new window, while the operationget_Position returns the position pointed to by the poin
ing devices.

The Hybrid typewindowServer (figure 3.1) has five operations. OperationsnewWindow
andnewSquareWin return the id of the newly created window or zero in case of failure. 

* The syntax of the operation bindings is described in detail in section 3.6.3.

newWindow : (integer #{ : topLeftX #}, integer #{ : topLeftY #},
        integer #{ : botRightX #}, integer #{ : botRightY #}) -> integer #{: windowId #} ;

newSquareWin : (integer #{ : topLeftX #}, integer #{ : topLeftY #}, integer #{ : side #} )
-> integer #{ : windowId #} ;

refreshDisplay : (display ) -> boolean ;
readCoordinates : ( mouse, keyboard, touchScreen, integer #{ : scaleFactor #} ) -> point ;
windowSelected : (mouse, keyboard, touchScreen ) -> integer ;

} ;

Figure 3.1 Hybrid type windowServer.
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TYPE WINDOW_CONTROL =
eration refreshDisplay returns true or false, signifying success or failure. Operat
readCoordinates returns the coordinates of the active point on the screen as read fro
pointing devices and operationwindowSelected returns the id of the currently selected win
dow or zero if no window is selected.

The CooL typeWINDOW_CONTROL (figure 3.2) has four methods. The metho
create_win andselect_Window return the id of the newly created window and of the wind
into which the specific position is found, or−1 in case of an error. Methodredisplay_all re-
turns 0 or 1, signifying failure or success, and methodget_Position returns the position
pointed by the I/O devices (i.e. keyboard, mouse, touch-screen) as adapted by the 
factor.

3.6.3 Binding of Operations

Although typeWINDOW_CONTROL provides all the functionality that typewindowServer
requires, this is done via an interface different to the one thatwindowServer expects. In
general in the IAL we anticipate two levels of interface differences — first in the requ
parameters (order, type, etc.) and second in the set of supported operations, i.e. d
number of operations with aggregated, segregated or slightly* different functionality. The
resolution of these differences corresponds to the parameter and interface phases o
terface adaption definition.

3.6.3.1 Parameter Phase
Assuming that the functionality of the provided operation corresponds to the requ
functionality, the differences between the parameters passed to the local operati
(offered parameters) and of the parameters required by the remote operation (req
parameters) can fall into one or more of the following categories:

• Different order of parameters. For example, the first parameter of the local operat
might correspond to the second on the remote operation.

* The term is used loosely and it is up to the user to define what is a “slight” difference in functional

OBJECT
METHOD create_win ( IN botRightX : INT, IN botRightY : INT,

 IN topLeftX : INT, IN topLeftY : INT, IN color : INT ) : INT
METHOD redisplay_all (IN display : DISPLAY) : INT
METHOD get_Position (IN inDevices : IO_DEVICES, IN scaling : INT) : POSITION
METHOD select_Window (IN position : POSITION) : INT

BODY
...
END OBJECT

Figure 3.2 CooL type WINDOW_CONTROL.
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boolean condition TRUE or FALSE can be represented locally by an integer wh
the remote operation the string“TRUE” or “FALSE” might be expected.

• Different semantic representation of the information. For example if we have a Hy
brid array with ten elements indexed from 10 to 19, an equivalent array in CooL
be indexed 1 to 10. Thus an index, say 15, of the Hybrid array should be com
cated as 6 to the CooL cell.

• Different number of parameters. The requested parameters might be more or 
than the offered ones. In this case the parameters offered might include all inf
tion needed or more information might be required.

The IAL anticipates all the above differences and allows the user to specify the n
transformations for handling them.

Migrated parameters

In our example we consider first the operationsnewWindow andcreate_win which have the
same functionality specification. The binding ofnewWindow to create_win is expressed in
IAL as follows:

newWindow : create_win($3, $4, $1, $2, 17 ) ̂  RET ;

OperationnewWindow offers four parameters which are identified by their position wit
positive integer ($1 to $4). Methodcreate_win will be called with these parameters tran
posed. Its first parameter will be the third passed bynewWindow, the second will be the
fourth and so on. The fifth parameter ofcreate_win is an integer that specifies the colour 
the new window. This information does not exists in the offered parameters. Neverth
in this case, we can use a default value using a integer literal, like in the examp
number 17. The returned value fromcreate_win, noted asRET in IAL, is passed back to the
Hybrid cell and becomes the value thatnewWindow will return.

In the above operation binding definition we assume that a relation for the Coo
Hybrid integers exists. That is we assume that on the Hybrid cell we have

CooLCell :: integer => INT ;

and on the CooL cell
HybridCell :: INT => integer ;

This way migration of the parameters and returned values will be handled automat
OperationnewSquareWin does not exist in the interface ofWINDOW_CONTROL but its

functionality can be achieved by operationcreate_win called with specific parameter val
ues. That is we can have

 newSquareWin : create_win (bottomRX($1, $3), bottomRY($2, $3), $1, $2, 17) ̂  RET;

where functionsbottomRX andbottomRY are adaption functions. Adaption functions a
user-defined functions, private to the specific interface adaption. They provide the m
through which the user can adapt the offered parameters to a format compatible to
quested parameters. They can be called with or without parameters. The paramete
passed to the adaption functions can be any of the offered parameters or even the 
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tions are included at the end of the interface adaption definition between@{ and@}. Thus
for the previous example we have the following adaption functions:

@{
bottomRX : (integer : topLeftX, side ) -> integer ;

{ return  (topLeftX + side ) ; }

bottomRY : (integer : topLeftY, side ) -> integer ;
{ return  (topLeftY - side ) ; }

@}

The adaption functions will be invoked locally (i.e. in our example, in the Hybrid c
and their result will be passed as parameter to the remote call (create_win). An adaption
function is effectively a private operation of the inter-class and as such it can access
stance variables or other operations.

Mapped Parameters

When the parameter cannot be migrated to the remote cell, i.e. when there is no
sponding equivalent or translated type, it should be accessed on the local cell. This 
done via amapping of a remote object to the local parameter according to an existing
match. In our example this will need to be done for therefreshDisplay operation and
redisplay_all method.

The parameter passed torefreshDisplay is an object of typedisplay which cannot be
migrated to the CooL cell. Thus it must be accessed on the Hybrid cell via a mapp
the CooL cell. For this a type match must exist on the CooL cell to the Hybriddisplay type.

HybridCell :: DISPLAY -> display { .... } ;

This way the binding ofrefreshDisplay to redisplay_all is expressed as
refreshDisplay : redisplay_all ( $1 : display <- DISPLAY ) ̂  int2bool(RET) ;

meaning that the first parameter of the methodredisplay_all will be an object mapped to the
first parameter passed to the operationrefreshDisplay, according to the specified type matc
on the CooL cell. In addition the returned value ofredisplay_all, which is an integer, is
transformed to a Boolean via the adaption functionint2bool which is defined as follows:

@{
int2bool : ( integer : intval ) -> boolean ;

{ return  ( intval ~=? 0); }
@}

Multi-type mapped parameters

In IAL we also anticipate the case where the functionality of a type is expressed b
composite functionality of more than one type on the remote cell. In our example t
the case for the CooL typeIO_DEVICES, which corresponds to the composite functional
of the Hybrid typesmouse, keyboard andtouchScreen.

HybridCell :: IO_DEVICES -> < keyboard @, mouse @, touchScreen @ > { ... } ;
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keyboard, mouse andtouchScreen objects on the Hybrid cell.
The definition of multi-type match operation bindings is similar to that of single t

match bindings, but with the definition of the operation’s type. If, for example, we as
that typeIO_DEVICES has a methodread_keyboard which corresponds to the operatio
readInput of the Hybrid keyboard type, the binding would be expressed as

read_keyboard : keyboard.readInput (...) ̂  ... ;

In fact this syntax is the general syntax for the definition of an operation binding an
be used in both single- or multi- type matchings. Nevertheless for simplicity in single
matchings the definition of the corresponding type can be omitted since there is on
type involved.

In our example, the binding of the Hybrid operationreadCoordinates to the operation
get_Position will be expressed as

readCoordinates : get_Position (
< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- IO_DEVICES,
$4 ) ̂  RET

assuming that we have on the CooL cell the relation
HybridCell :: POSITION +> point ;

3.6.3.2 Interface Phase
When defining the operation bindings between two types from different environm
there will be cases where the functionality of the local operation is an aggregation 
functionality of more than one remote operation. Adapting a requested operation int
to an offered one might require anything from simple combinations of the operatio
to extensive programming. In order to simplify the user’s task, IAL allows the defin
of simple operation combinations in the type match specification. For example, the
tionality of the Hybrid operationwindowSelected can be obtained with the combination o
the CooL methodsget_Position andselect_Window. The operation binding is thus:

windowSelected : select_Window ( WINDOW_CONTROL.get_Position (
< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- IO_DEVICES, $4 ) ) ̂  RET ;

This defines that the methodget_Position will first be called on the remote CooL cell an
its result will not be returned to the calling Hybrid cell but it will be used as the first pa
eter to theselect_Window method. Since the result of theget_Position method is not re-
turned to the Hybrid cell, there is no need for a type relation of the CooL typePOSITION to
exist on the Hybrid cell.

3.7 Object Mapping

Whereas interface adaption provides the means to express in an implementatio
guage-independent way the relations between heterogeneous interfaces, object m
provides the required language-dependent run-time interoperability support. Th
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task of object mapping is to generate from the interface adaption specifications the
classes at the client side. Instances of an inter-class provide the client with the req
service interface and their principal task is to forward the operation invocation to the 
server according to the specified interface transformations and adaptions.

In the following we describe the functionality of object mapping via the previously
scribed example of interface adaption between the HybridWindowServer and the CooL
WINDOW_CONTROL. In figure 3.3 we present the binding between the operations o
Hybrid inter-object and the CooL server and describe the actions taken when an op
of the windowServer inter-object is called. For our example we consider the opera
readCoordinates, which is called with four parameters — akeyboard object, amouse object,
a touchScreen object and aninteger (figure 3.4) — and which is bound to the metho
get_Position.

readCoordinates : get_Position (
< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- IO_DEVICES,
$4 ) ̂  RET

From the four parameters passed to operationreadCoordinates, the first three (keyboard,
mouse andtouchScreen) cannot be migrated to the CooL cell but must be accessed lo
via a multi-type match of the CooL typeIO_DEVICES. The fourth parameter is an intege
for which an equivalent type exists on the CooL cell and thus it can be migrated to i
object mapping server will thus instantiate on the CooL cell two objects: an inter-obje
typeIO_DEVICES connected to the Hybrid objectskeyboard, mouse andtouchScreen, and
anINT object initialized to the value of the integer parameter (figure 3.5).

CooL cellHybrid cell
Nucleus Membrane Membrane Nucleus

newWindow
create_win

redisplay_all

get_Position

windowServer

WINDOW_CONTROL

select_Window

newSquareWin
refreshDisplay

readCoordinates
windowSelected

Inter-Object

Figure 3.3 Object mapping.
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When the transfer of the parameters has been completed the object mapping ser
proceed with the invocation of the remote operation. The operationget_Position will be in-
voked with theIO_DEVICES inter-object and theINT object (figure 3.6) as parameters. Th

CooL cellHybrid cell
Nucleus Membrane Membrane Nucleus

windowServer
WINDOW_CONTROL

get_Position

readCoordinates

keyboard

mouse

touchScreen

integer

Figure 3.4 Operation call forwarding.

CooL cellHybrid cell
Nucleus Membrane Membrane Nucleus

windowServer
WINDOW_CONTROL

get_Position

readCoordinates

IO_DEVICES
keyboard

mouse

touchScreen

integer

INT

Figure 3.5 Parameter transfer.
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result, an object of typePOSITION, will then need to be returned to the Hybrid caller. B
cause for the CooL typePOSITION there exists a translation to the Hybrid typepoint, the
object mapping server will instantiate an object of typepoint on the Hybrid cell which will
be initialized to the translated value of thePOSITION object. This object will be the resul
returned to the caller of thereadCoordinates operation.

During the transfer of parameters the object mapping server might encounter a ty
which no type relation has been defined. For example, it might be that on the Coo
there is no type relation for the typeIO_DEVICES. In this case when the instantiation of a
IO_DEVICES inter-object is requested, the type-matching server will dynamically req
the definition of the type match. The user will be required to define on the fly a type m
for the IO_DEVICES type. Once this is done the object-mapping server will resume
transfer of the parameters. This way an application can be started even without an
relations defined. The object-mapping server will prompt the user to define all neede
relations during the first run of the application.

3.8 Conclusions and Research Directions

One of the important advantages of object-oriented design and development metho
is the ability to reuse existing software modules. However, the introduction of many
gramming languages with different syntaxes, semantics and paradigms severely re
the reuse of objects programmed in different programming languages. Althoughadhoc

CooL cellHybrid cell
Nucleus Membrane Membrane Nucleus

windowServer
WINDOW_CONTROL

get_Position

keyboard

mouse

touchScreen

readCoordinates

IO_DEVICES

INT

Figure 3.6 Remote operation invocation.
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of objects.

We classify the interoperability support approaches in two ways: first depending o
way that they solve the problem of the different interfaces, and second on the p
which the interoperability support is handled. For the first classification we distinguis
interface standardization approaches, which standardize the interface under which a 
ice (functionality) is offered, and theinterface bridging approaches, which bridge th
differences between interfaces. For the second classification we distinguish theproce-
dure-oriented interoperability approaches, which handle interoperability at the poin
the procedure call, and theobject-oriented interoperability approaches, which handle in
teroperability at the point of the object.

From the above approaches the interface bridging object-oriented interopera
(IB-OOI) approach is the most flexible one since it does not impose predefined inte
and can be applied equally well to both object-oriented and non-object-oriented en
ments. The Cell framework, which we describe in detail, provides an example o
IB-OOI approach.

Because the IB-OOI is by no means incompatible with other interoperability appro
es, its ideas and concepts can be incorporated into other interoperability framework
the CORBA, and significantly enhance their openness and interoperability suppor
thermore the flexibility and generality of the IB-OOI ideas can provide a framewor
the solution of software integration and software evolution problems related to le
systems.

3.8.1 Openness of Interoperability Platforms

One of the major disadvantages of existing interoperability frameworks, the most p
nent of which is CORBA, is that they areclosed to themselves. That is, client and server
applications interacting via the interoperability platform must be implemented ma
use the specific platform interfaces. As a result, taking CORBA as an example, ex
applications cannot be incorporated in the CORBA “world” (non-CORBA clients ca
use CORBA services, and non-CORBA servers cannot offer their services to CO
clients), nor can CORBA applications be moved to a non-CORBA environment.

Designing an interface adaption service for CORBA that will allow C++, for exam
client applications to access CORBA services via their IDL interface will significantly
hance the openness and acceptability of CORBA and will allow almost any applicat
take advantage of the services CORBA offers.

3.8.2 Interoperability and Legacy System Migration

One of the major problems that companies are facing due to the rapid advances of th
puter software and hardware technologies is the migration of their legacy systems to
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has some kind of methodology started appearing [2][3]. However, although the pro
of legacy system migration is in effect an interoperability problem, it has not been r
nized as such. The reason is that most of the work and research done in the area 
operability support focuses on the interoperability support of new applications usin
interface standardization approach and does not consider existing legacy applicatio

A prominent framework for the support of legacy system migration can be prov
with the interface bridging object-oriented interoperability (IB-OOI) approach. A smo
incremental migration of a legacy system can be achieved by identifying its compo
and their interfaces and using an IB-OOI support to replace the legacy componen
new ones, which most probably have a different interface [14]. This way new compo
can be incrementally added to the system without affecting the remaining legacy on
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Annex I: Interface Adaption Language
typeMatchDef : remoteCellId ‘::’ typeMatch ‘;’

typeMatch : localType ‘->’ remoteTypes typeMatchSpec
| localType ‘=>’ remoteType [ ‘:’ transFunction ]
| localType ‘+>’ remoteType [ ‘:’ transFunction ]

remoteTypes : ‘<’ remoteTypeList ‘>’

remoteTypeList : remoteType [‘@’] [‘,’ remoteTypeList]

typeMatchSpec : ‘{’ operMatchList ‘}’ [ adaptDefList ]

adaptDefList : ‘@{’ Program ‘@}’ [adaptDefList]

operMatchList : operMatch [operMatchList]

operMatch : localOpName ‘:’ remoteOpDef ‘(’argMatchList ‘)’ ‘^’ returnValDef ‘;’

remoteOpDef : remoteType ‘.’ remoteOpName

argMatchList : argMatch [‘,’ argMatchList]

argMatch : localArgId
| adaptFunct ‘(’ localArgId ‘)’
| localArgId ‘:’ localType ‘<-’ remoteType
| ‘<’ localArgIdList ‘>’ ‘:’ ‘<’ localTypeList ‘>’ ‘<-’ remoteType
| remoteOpDef ‘(’ argMatchList ‘)’

returnValDef : RET
| adaptFunct ‘(’ RET ‘)’
| RET ‘:’ localType ‘->’ remoteType

localArgIdList : localArgId [‘,’ localArgIdList]

localTypeList : localType [ ‘,’ localTypeList]

localArgId : ‘$’SMALL_INTEGER
| INTEGER_LITERAL

localType : STRING

remoteType : STRING

remoteOpName : STRING

remoteCellId : STRING

transFunction : STRING

adaptFunct : STRING

Program : Program code in Native Language.
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Annex II: Type Match Definition Example
CooLCell :: windowServer -> WINDOW_CONTROL  {
newWindow : create_win($3, $4, $1, $2, 17 ) ^ RET ;
newSquareWin : create_win ( bottomRX($1, $3), bottomRY($2, $3), $1, $2, 17 )

^ RET ;
refreshDisplay : redisplay_all ( $1 : display <- DISPLAY ) ^ int2bool(RET) ;
readCoordinates : get_Position

 (< $2, $1, $3 >  : < keyboard, mouse, touchScreen >  <- IO_DEVICES,
 $ 4 ) ^ RET

windowSelected : select_Window (
WINDOW_CONTROL.get_Position

 ( < $2,  $1, $3 >  : < keyboard, mouse, touchScreen >  <- IO_DEVICES, 1)
 )  ^ RET ;

}
@{

bottomRX : (integer : topLeftX, side ) -> integer ;
{ return (topLeftX + side ) ; }

bottomRY : (integer : topLeftY, side ) -> integer ;
{ return (topLeftY - side ) ; }

int2bool : ( integer : intval ) -> boolean ;
{

return (intval ~=? 0) ;
}

@} ;
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Oscar Nierstrasz

Abstract Previous work on type-theoretic foundations for object-oriented
programming languages has mostly focused on applying or extending
functional type theory to functional “objects.” This approach, while benefiting
from a vast body of existing literature, has the disadvantage of dealing with
state change either in a roundabout way or not at all, and completely side-
stepping issues of concurrency. In particular, dynamic issues of non-uniform
service availability and conformance to protocols are not addressed by
functional types. We propose a new type framework that characterizes objects
as regular (finite state) processes that provide guarantees of service along
public channels. We also propose a new notion of subtyping for active objects,
based on Brinksma’s notion of extension, that extends Wegner and Zdonik’s
“principle of substitutability” to non-uniform service availability. Finally, we
formalize what it means to “satisfy a client’s expectations,” and we show how
regular types can be used to tell when sequential or concurrent clients are
satisfied.

4.1 Introduction

Much of the work on developing type-theoretic foundations for object-oriented prog
ming languages has its roots in typed lambda calculus. In such approaches, an o
viewed as a record of functions together with a hidden representation type [10]. Whi

* This chapter is a revised and corrected version of a previously published paper. ACM. Proceedings
OOPSLA  ’93, Washington DC, Sept. 26 – Oct. 1, 1993, pp. 1–15. Permission to copy without fee all o
of this material is granted provided that the copies are not made or distributed for direct commercial
tage, the ACM copyright notice and the title of the publication and its date appear, and notice is give
copying is by permission of the Association for Computing Machinery. To copy otherwise, or to repu
requires a fee and/or specific permission.
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great deal to say of relevance to OOP about polymorphism and subtyping — see, 
ample, chapter 6 of this book — the fact that objects in real object-oriented lang
change state is typically dealt with in an indirect way.

The mismatch is even more acute in concurrent object-oriented languages. In su
guages, “active objects” may have their own thread of control and may delay the ser
of certain requests according to synchronization constraints [20]. Such objects ma
thermore require a particular protocol to be obeyed (such as an initialization protoco
them to behave properly. Chapter 2 of this book presents a survey of such language
thorough discussion of issues. See also chapter 12 for an example of an object-o
framework in which “gluons” encapsulate protocols to facilitate dynamic interconnec
of components. Existing notions of object types coming from a functional setting d
address the issues of non-uniform service availability or conformance to a service 
col. (Although these issues are also relevant for passive objects and sequential OOP
draw our main motivation from object-based concurrency, and so we will refer in a ge
way to “active” objects.)

We argue that, in order to address these issues, it is essential to start by viewing an
as aprocess, not a function. (See [26] for other reasons.) By “process” we mean an ab
machine that communicates by passing messages along named channels, as in 
CCS [24] or the polyadicπ-calculus [25]. Processes naturally model objects since t
represent pure behaviour (i.e. by message passing). Behaviour and “state” are in
guishable in such an approach, since the current state of a process is just its curren
iour. Unfortunately there has been considerably less research done on type mod
processes than for functions, and the work that has been done focuses primarily on
channels, not processes (see, for example [25] [33]).

Although processes in general may exhibit arbitrary behaviour, we can (normally
pect objects to conform to fairly regular patterns of behaviour. In fact, we propose o
one hand to characterize theservice types associated with an object in terms of types of 
quest and reply messages, and on the other hand to characterize theavailability of these
services byregular types that express the abstract states in which services are ava
and when transitions between abstract states may take place. Services represent c
or “promises” over the message-passing behaviour of the object: in a given state the
will accept certain types of requests over its public channels, and promises to (even
send a reply along a private channel (supplied as part of the request message). Wh
viding a particular service, an object may (non-deterministically) change its abstrac
to alter the availability of selected services.

Subtyping in our framework is based on a generalization of Wegner and Zdonik’s “
ciple of substitutability” [34]: services may be refined as long as the original promise
still upheld (by means of a novel application of intersection types [5] [31]), and reg
types may be refined according to a subtype relation — based on Brinksma’sextension re-
lation for LOTOS processes [7] — that we call “request substitutability.”

In section 4.2 we shall briefly review what we mean by “type” and “subtype,” and 
we may understand the notion ofsubstitutability in the context of active objects. In sectio
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derstood by an object and their associated replies, and we show howintersection over
service types provides us with a means to refine these specifications.

In section 4.4 we definerequest substitutability for transition systems and we demon
strate its relationship to failures equivalence. In section 4.5 we introduceregular types as
a means to specify the protocols of active objects. In section 4.6 we propose to use 
substitutability as a subtype relationship for regular types, and we demonstrate a 
algorithm for checking that one regular type is request substitutable for another. Ne
formalize a client’s expectations in terms ofrequest satisfiability, and we show how regu-
lar types relate to this notion.

In section 4.8 we summarize a number of open issues to be resolved on the way t
tically applying our type framework to real object-oriented languages. We conclude
some remarks on unexplored directions.

4.2 Types, Substitutability and Active Objects

Before we embark on a discussion of what types should do for active objects, we s
be careful to state as precisely as possible (albeit informally) what we believe typ
and what they are for. Historically, types have meant many things from templates fo
structures and interface descriptions, to algebraic theories and retracts over Scott’s 
tic domains. We are interested in viewing types aspartial specifications of behaviour of
values in some domain of discourse. Furthermore, types should express things abo
values that tell us how we may use them safely. Naturally, we would also like these 
fications to (normally) be statically checkable.

Subtyping is a particular kind of type refinement. Theinterpretation of a type for some
value space determines which values satisfy the type. A subtype, then, is simply a s
specification and guarantees that the set of values satisfying the subtype is asubset of
those that satisfy the supertype. IfT is a type (expression) andU is some universal value
space of interest, then we shall writex:T to meanx satisfiesT, and[[T]] to mean{ x  x:T }
(i.e. whereU is understood). Another typeS is a subtype ofT, writtenS≤T, if x:S ⇒ x:T, i.e.
[[S]]⊆[[T]].

But specifically whatkinds of properties should types specify? It is worthwhile to rec
Wegner and Zdonik’s principle of substitutability:

An instance of a subtype can always be used in any context in which an instance 
supertype was expected. [34]

It is important to recognize that “can be used” impliesonly “safely,” and nothing more.
It does not imply, for instance, that an application in which a type has been replac
some subtype will exhibit the same behaviour. We are not concerned with full behav
compatibility, but only with safe usage.

What does type safety mean in an object-oriented setting? First of all, that o
should only be sent messages that they “understand.” We must therefore be able to
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the types of request and reply messages exchanged by objects. If we think of obj
“servers,” then the services they provide are promises that they understand certai
of requests, and that, in response to a particular request, they will eventually send a
type of reply. Subtyping of services can then be defined in a fairly conventional wa
that a subtype at least guarantees the promises of the supertype: at least the same
are understood (possibly more) and consequent replies to those requests are guara
be of the right type.

Services may not always be available, however. If requests must be sent in a cer
der, or if certain services may be temporarily unavailable, then, we argue, the object
should describe this. Type safety, in this case, means that clients (or, more generall
ronments) that interact with such objects do not deadlock because of protocol errors
substitutability is correspondingly defined so that sequences of interactions that ar
for a supertype are also valid for a subtype. A client will never be unexpectedly starv
service because a subtype instance has been substituted.

In order to explain our type approach, we will adopt an object model that views ob
as certain kinds of communicating processes [4][8][17][24]. (Although we could form
ize our model in process-theoretic terms, as in, for example, [30], for the purposes 
presentation we will attempt to be rigorous and precise without being excessively for

Figure 4.1 depicts an object’s behaviour in an idealized fashion. The large circle
resent the object in its various states and the small circles represent its commun
channels, white for input and black for output. The input channels on the left side a
receiving requests. Note that the set of “enabled” input requests changes over time

In our object model, every object receives requests along uniquely identified cha
one per request name. Each request consists of a message containing a number
ments and a unique reply address (also a channel name). The arguments must be o
rect type. (We will not be concerned with what kinds of values may be passed, b

Figure 4.1 Non-uniform service availability.

Accept requests
Send requests

Receive replies
Send reply

Accept requests
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An object, then, accepts requests addressed to it through its (public) request ch

and it may issue requests to other objects it is acquainted with viatheir request channels
All replies, however, are communicated alongprivate channels that are temporarily esta
lished by clients of requests. When an object accepts a request, it implicitlyguarantees to
(eventually) send a reply (of the correct type) to the client. This reply may be deliver
a third party to which the reply address has been forwarded. Furthermore, the obje
vary the requests accepted over time by selectively listening only to certain reques
nels. When an object is ready to accept a message addressed to one of its request c
we say that the request isenabled, and that the corresponding service isavailable. We as-
sume that the complete set of public request channels is finite and fixed in advance
object.

We will now separately discuss the issues of specifying types of services asso
with an object (section 4.3), and specifying when those services are available (s
4.4).

4.3 Intersecting Service Types

We will start by introducing the following syntax for service types:
S ::= all  none  M(V)→V  Ŝ S
V ::= all  none  (V,...)  ...

whereM is a request name andV is a value type (i.e. types for argument and return valu
“→” binds more tightly than “̂”. We assume thatV includes some base types, the typesall

andnone, and tuples over value types.
We will write x : m(A)→R to mean that objectx may receive a valuea of typeA together

with a reply address along a request channelxm and will consequently promise to return
valuer of typeR. We may also writex.m(a) : R to say thatx understands the messagem(a)

and returns a value of typeR. We call the type expressionm(A)→R aservice of x, and we
say thatx offers this service. Note that this does not imply anything about other serv
thatx may or may not offer.

We may refine these expressions by theintersection operator for types (^). Intersection
types have been studied extensively in functional settings (see [31] for a bibliogra
Here we propose to assign an interpretation to them for objects in a process setting
write x:S1^S2, we wish that to mean precisely thatx:S1 andx:S2. In set-theoretic terms,
then:

[[S1^S2]] = [[S1]] ∩ [[S2]]
As specifications, we mean that bothS1 andS2 are true statements aboutx. As we shall

see, this device allows us not only to attribute sets of services to objects, but also p
us to refine their types in interesting ways.



104 Regular Types for Active Objects

The expressionsall andnone represent, respectively, the set of all objects and the empty

s are

hen the
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andon.
set. That is,all tells us nothing about the services of an object, andnone demands so much
that no object can possibly satisfy it. (all andnone are the “top” and “bottom” of our type
hierarchy.)

Let us now briefly look at the subtyping properties of service types. Some fact
clear:

1. T ≤ all (i.e. for any value or service typeT)

2. none ≤ T

3. m(none)→T = all (since no such request can ever be received)

4. R1 ≤ R2 ⇒ m(A)→R1 ≤ m(A)→R2

5. A2 ≤ A1 ⇒ m(A1)→R ≤ m(A2)→R (i.e. a contravariant rule)

Now, considering intersections, the following are straightforward:

6. S1^S2 ≤ S1 andS1^S2 ≤ S2

7. S ≤ S1 andS ≤ S2 ⇒ S ≤ S1^S2

8. S1 ≤ S2 ⇒ (S1^S2) = S1 (follows from (6) and (7))

Now consider:

9. m(A1)→R1 ̂  m(A2)→R2 ≤ m(A1^A2)→(R1^R2)

Normally we may expect to write type expressions like:
put(all)→(Ok) ̂  get()→(all)

but nothing prevents us from writing:
inc(Int)→Int ̂  inc(Real)→Real

or even:
update(Point)→Point ̂  update(Colour)→Colour

If an incoming message satisfies more than one request type in the intersection, t
result must satisfyeach of the result types. Our (informal) semantics of intersection ty
requires thatall applicable service guarantees must hold. In this case, if:

cp:ColouredPoint,

whereColouredPoint = Point^Colour
thenx.update(cp):Point andx.update(cp):Colour. The result, therefore, must have typeCol-

ouredPoint.
Notice that as a corollary of (9), via (6) , (4) and (7), we also have:

10.m(A)→(R1^R2) = m(A)→R1 ̂  m(A)→R2

This also means, however, that we must take care not to intersect services with ab
For example, supposeInt andReal are disjoint types. Then:

size(Point)→Int ̂  size(Colour)→Real
≤ size(ColouredPoint) → (Int^Real)
= size(ColouredPoint) → none
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As a final remark, notice that type-safe covariance is naturally expressed:

update(Point) → Point ̂  update(ColouredPoint) → ColouredPoint

is a subtype of bothupdate(Point)→Point andupdate(ColouredPoint)→ColouredPoint. A cli-
ent supplying an instance ofColouredPoint as an argument can be sure of getting aColoured-

Point back as a result, whereas clients that supplyPoint arguments will only be able to infe
that the result is of the more general typePoint.

4.4 Request Substitutability

Service types tell us what types of requests are understood by an object and what t
reply values it promises to return, but they do not tell uswhen those services are available
In particular, we are interested in specifying when an object’s request channe
enabled. The sequences of requests that an object is capable of servicing consti
object’sprotocol. An object thatconforms to the protocol of another object is safely su
stitutable for that second object, in the sense that clients expecting that protocol to b
ported will receive no “unpleasant surprises.”

Before tackling the issue of how to specify protocols, let us first try to formalize th
propriate substitutability relation.

According to our abstract object model, objects can do four things: accept reque
sue requests, receive replies and send replies. Since the behaviour of objects sh
properly encapsulated, clients should only need to know about the first and the 
these, i.e. the requests accepted and the replies sent. If we can safely assume that 
that accepts requests promises to deliver replies according to service type specific
then the only additional thing a client needs to know about an object’s protocol is w
will accept requests. We therefore adopt an abstract view of an object’s protocol tha
considersrequests received along its request channels, andignores all other messages.
(Later, in section 4.7, we will model clients’ protocols by considering only request
sued.)

In this view we model an object as a transition system where each state of intere
resents astable state of the object, in which it blocks for acceptance of some set o
quests. A transition takes places upon the receipt of some request and leads to a ne
state. If an object in statex can accept a requestr leading to a new statex′, we would write:

x →r  x′
Note that we ignore all intervening communications leading to the new state. If 

communications are purely internal to the object, we can view it as a closed system
some of these communications are with external acquaintances, then an element 
determinism is introduced, since the transitions to new stable states may depend u
current state of the environment. In cases like this, we feel it is correct to view the ob
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protocol as inherently non-deterministic, since it would be unreasonable to expect clients
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to monitor the environment to know the state of an object’s protocol.
Clients are typically interested not just in issuing a single request, but in issuing 

of related requests. Supposes is such a sequencer1,r2,... of requests. If an object in statex
can accept such a sequence, leading to statex′, then we write:

x ⇒s x′
An important part of the protocol of an object is the set of sequences of requests

may accept. This is conventionally captured by the notion of set oftraces[8] of a transition
system:

Defini t ion 1 traces(x) ≡ { s  ∃x′, x ⇒s x′ }.
Suppose we wish to express that an object in statex isrequest substitutable for an object

in statey, which we will writex:<y. Then clearly we must havetraces(y) ⊆ traces(x), for if
a client ofy expectsy to accept a sequence of requestss, and we substitutex for y, thenx
must accept the same sequences. x may accept additional sequences, but since the cl
does not expect* them, they are of no concern to us.

But the inclusion of traces is not enough to guarantee request substitutability, fo
pose that after a sequence of requestss, y will move to statey′, butx will move to either
statex′ orx′′. Furthermore, suppose that statex′ is identical toy′ — i.e. behaviour from that
point on is identical — andx′ permits a requestr to be accepted, butx′′ denies it. Then it is
possible thattraces(y) ⊆ traces(x), but nevertheless the client may receive a nasty surp
if x is substituted fory and the requestr is refused after the sequences. Traces tell us what
sequences are acceptable, but they do not tell us if they arenecessarily acceptable! For
this, we need the help of a finer notion offailures [8].

First, we need to define theinitials of an object — the requests which are initially en
bled:

Defini t ion 2 init(x) ≡ { r  ∃x′, x →r  x′ }.
Defini t ion 3 The set offailures of an object x is

failures(x) ≡ { (s,R)  ∃x′, x ⇒s x′, R is finite, R ∩ init(x′) = ∅ }.

That is,(s,R) is a failure ofx if x may simultaneously refuse all of the requests in the
R after accepting the sequences. It may be the case thatx will reach a state in which some
or all of the requests inR will be accepted, but we know that it ispossible that they will all
be refused. (NB: It is also important that the statex′ be stable for the setR to be well-
defined, but we have already assumed that.)

Now, suppose that we wantx:<y and we know that(s,R) is a failure ofx. Furthermore,
suppose thats is a sequence of requests intraces(y). Then a client will be satisfiedonly if
it expected that(s,R) was also a failure ofy. Note that ifs isnot a sequence in the protoco
of y, then the client is unconcerned whether(s,R) is a failure ofx or not, since it is in any

* Although we have not yet formalized clients’ expectations, we are implicitly assuming here that c
aresequential, i.e. they only issue a single request at a time. Later, when we definerequest satisfiability, we
will see how request substitutability relates to concurrent clients.
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Defini t ion 4 The set ofrelative failures of an object in statex with respect to an objec
in statey is: failuresy(x) ≡ { (s,R) ∈ failures(x) s ∈ traces(y)}.

Now we come to the definition of request substitutability:

Defini t ion 5 An object in statex isrequest substitutable for an object in statey, written
x:<y iff: (i) traces(y) ⊆ traces(x)

(ii) failuresy(x) ⊆ failures(y).

(This turns out to be identical to theextension relation introduced by Brinksma [7]. Se
also Cusack [13] for a discussion of various conformance relations, including exten
in the context of CSP [8].)

That is, a client expectingx to follow the protocol ofy will expect that all sequences o
requests supported byy will also be accepted byx, and that any requests refused byx after
accepting one of those sequences might also have been refused byy. Note thatx may (1)
accept additional sequences of requests that the client does not expect and theref
not use, and (2) may eliminate some non-determinism iny by providingfewer possible
transitions between states. On the other hand,x may introduce new transitions and stat
as long as they can be explained from the viewpoint ofy. In general, eitherx ory may have
more or less states or transitions.

Note also that the set of failures of an object tells us all we need to know in order
termine request substitutability, since the traces can be derived from the failures 
projections, and relative failures can be determined from the failures of one object a
traces of another.

Proposit ion 1 Request substitutability is a pre-order.

Proof
(i) :< is reflexive: ∀x, x:<x — immediate, since failuresx(x) = failures(x).
(ii) :< is transitive: Supposex:<y andy:<z. Thentraces(z) ⊆ traces(y) ⊆ traces(x).

Next, suppose(s,R) ∈ failuresz(x). Thens ∈ traces(z) ⊆ traces(y),
so(s,R) ∈ failuresy(x) ⊆ failures(y). But then(s,R) ∈ failuresz(y) ⊆ failures(z),
so we concludex:<z. ❑

There exists a vast literature on process equivalences and pre-orders (see, for e
[1][14] for some interesting comparisons). Interestingly, the equivalence induces b
quest substitutability is the same as failures equivalence [7][8].

Defini t ion 6 Objects in statesx and y are failures equivalent iff failures(x) =
failures(y).

Proposit ion 2 x andy are failures equivalent iffx:<y andy:<x.

Proof
⇒) failures(x) = failures(y) ⇒ traces(x) = traces(y)

⇒ failures(x) = failuresy(x) = failuresx(y) = failures(y) ⇒ x:<y andy:<x.
⇐) x:<y andy:<x ⇒ traces(x) = traces(y).
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Hencefailuresy(x) = failures(x) ⊆ failures(y).
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By symmetry,failures(x) = failures(y). ❑

Although failures equivalence is exactly request equivalence, the inclusion of fai
sets does not imply request substitutability, nor vice versa. It suffices to consider:

It is easy to see that x:<y (but not the reverse, sincey does not permita.b) andfailures(y) ⊆
failures(x) (but not the reverse, since(a.b,{a,b}) is a failure ofx but not ofy). See also Brin-
skma [7] for a detailed discussion.

4.5 Viewing Objects as Regular Processes

We now have a plausible definition of protocol conformance in terms of request sub
ability — what we still need is a way to specify protocols, and a way to check that an o
conforms to a protocol, or that one protocol conforms to another. In the most genera
unfortunately, request substitutability will be undecidable since failures equivalen
undecidable in general [18]. (If request substitutability were decidable, we could u
decision procedure to check if two processes were failures equivalent according to 
sition 2.)

We therefore propose to specify protocols asregular processes, i.e. processes with a fi-
nite number of “states” or behaviours [6][11][15][23]. A regular process is essentia
finite state machine (hence the adjective “regular”), where transitions take place
communications with other processes. We will call the specification of such a proc
regular type, since we intend to use it to specify object protocols. It turns out that b
stricting ourselves to finite state protocols, request substitutability is decidable by a s
procedure.

Furthermore, although we cannot specify all protocols exactly with a finite numb
states, we canapproximate infinite state protocols by non-deterministic regular process
These approximations can then be used in many cases to check request substituta

Let us consider a few canonical examples using various kinds of “container” ob
(bounded buffers, stacks, variables) each supporting (at least)put andget requests. We can
associate with these objects a number of abstract states, each corresponding to a s
rently enabled requests. Since we assume that the total set of possible services is
finite number of abstract states suffices to characterize all the possible combinations
abled requests (and normally only a few of these combinations should be needed)
the client’s point of view, transitions may take place when services are provided (sinc
is all the client may observe).

a b a

a

x = y =
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First, consider a one-slot bounded buffer.
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It has two abstract states: one in which only aput is accepted, and one in which only aget
is allowed. Upon accepting aput or aget request, the object changes state. We express
by the protocol (regular type)Buf.

Now consider an uninitialized variable with the protocolVar.

Its protocol requires that aput must first be requested, but thenput andget requests may be
interleaved arbitrarily. In this case, we see thatVar:<Buf since a client that expects an obje
to obey theBuf protocol will never be “disappointed” if an object obeyingVar is substitut-
ed. The reverse does not hold, becauseBuf will refuse the sequenceput.get.get, whereasVar
will not.

In these two cases, the transitions are deterministic, sinceBuf andVar are really finite
state protocols.

Now consider a stack (with put andget instead ofpush andpop). Initially only aput is
possible. Then bothput andget are enabled. Furtherput requests will not change this, bu
aget may bring us back to the initial state. The corresponding regular type is specifie
low asNDStack.

It resemblesVar except that after aget, we do not necessarily know what state we are
Clearly, such a description is an approximation because we are attempting to expr
service availability of a deterministic process (the object) by means of a non-determ
one (the regular type).

We can try to add another intermediate state, as inNDStack2:

but after twoput requests and aget we again do not know what state we are in. In fact, 
would need an infinite number of states to describe completely theStack protocol.

As we argued before, however, non-determinism is inherent in some protocols, be
objects are not, in general, closed systems. Furthermore, the non-deterministic r

put

get

Buf =

put

put, getVar =

put

put, get

get

NDStack =

put

get

put

get

NDStack2 =

put, get
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types are still useful to us. We can determine, for example, that an object conforming to
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theNDStack regular type also conforms toBuf sinceNDStack:<Buf.
Choosing a simpleand readable syntax for specifying regular types is somewhat p

lematic. For the purpose of this chapter we will opt for simplicity. We specify a reg
type by a pair, (x1,E) consisting of a finite system of equationsE of the form:

E = { x=t, ...}
wherex1 is a distinguished start state, and thet are regular type expressions of the form

t ::= r.x  t + t
r is a request name andx is a state name. Everyx used inE must have exactly one defining
equation inE (except fornil, which stands for a dead state with no transitions). Reg
types have the following interpretation as transition systems:

1. init(nil) = ∅
2. r.nil →r nil

3. x=t ∈ E ⇒ r.x →r t

4. t1 →r1 t1′ ⇒ t1+t2 →r1 t1′
5. t2 →r2 t2′ ⇒ t1+t2 →r2 t2′
With this simple syntax, then, we could specify the various regular types we have

as follows:
Buf = (b1, { b1=put.b2, b2=get.b1 })
Var = (v1, { v1=put.v2, v2=put.v2+get.v2 })
NDStack = (s1, { s1=put.s2, s2=put.s2+get.s2+get.s1 })
NDStack2 = (s1, { s1=put.s2, s2=put.s3+get.s1,

s3=put.s3+get.s2+get.s3 })

At this point the reader may wonder why we cannot simply use regular expressio
specify regular types. The reason is that regular expressions stand for regularlanguages,
i.e. sets of strings, not regular processes. Regular expressions can consequently
about the traces of a transition system but not its failures. Consider, for example, th
ular typesVar andNDStack. If we consider any state to be a valid final state, then they 
ognize exactly the same regular language, namely:

ε + put.(put+get)*
But this does not tell us that after accepting aput followed by aget, NDStack mayrefuse
anotherget, whereasVar never will. (A similar argument is elaborated in [16] to introdu
the difference between language and process equivalence.) For precisely the same
it is not generally possible to convert a non-deterministic regular process into a dete
istic one without losing information.

4.6 Subtyping Regular Types

We now propose to use request substitutability as asubtyping relationship over regular
types. We are justified in this since we have shown that request substitutability is 
order, so ifVar:<NDStack andNDStack:<Buf, then we can conclude thatVar:<Buf.
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The fact that regular types have finite states means that a simple algorithm exists for
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checking the subtype relationship (not surprisingly, the algorithm is similar to tha
checking equivalence of finite state automata [2]). To derive the algorithm, we must
duce a multi-state variant of request substitutability. First let us extendinit() and→ to
work with sets of states:

Defini t ion 7 init(X) ≡ { r  ∃x∈X, x′, x →r  x′ }.

Defini t ion 8 X →r  X′ iff X′ = { x′  ∃x∈X, x →r  x′ }.
Note in particular that→ for sets of states is afunction, not just a relation. In effect, we

are turning a non-deterministic transition system into a deterministic one in the tradi
way by expanding single states into sets of reachable states [2].

Now let us consider the following definition:

Defini t ion 9 A set of object statesX is multi-state request substitutable for a set of
statesY, writtenX:<<Y, iff:

(i) init(Y) ⊆ init(X)
(ii) ∀x∈X, ∃y∈Y, init(y) ⊆ init(x)

(iii) ∀r∈init(Y), if X →r  X′ andY →r  Y′, thenX′:<<Y′.
Condition (i) guarantees that all transitions possible from some state ofY are also pos-

sible from some state ofX. Condition (ii) says that any failure possible in some state oX
can be explained by a failure of some corresponding state ofY (somey has the same or few
er initial transitions possible). Condition (iii) is simply the recursive case.

Proposit ion 3 { x } :<< { y } ⇔ x:<y.

Proof
⇒ ) Suppose that{ x } :<< { y }, thentraces(y) ⊆ traces(x) by 9(i) and 9(iii).

Next, suppose (s,R) ∈ failuresy(x). Then∃x′, x ⇒s x′, init(x′) ∩ R =∅ and∃y′, y ⇒s y′,
init(y′) ⊆ init(x′) by 9.ii and 9.iii so (s,R) ∈ failures(y) and failuresy(x) ⊆ failures(y)
hencex:<y.
⇐ ) Similar argument in reverse. ❑

Note that this result is independent of whether we restrict our attention to finite
transition systems or not. If the sets of reachable states are finite, however, i.e. ifx andy are
regular types, then proposition 3 provides us with a simple procedure to check w
x:<y by simply generating all the sets of states reachable from{x} and{y} by transitions in
traces(y) and checking conditions 9(i) and 9(ii) for all the comparable sets. Since the
space is finite, the set of reachable state sets must also be finite, and so the com
must terminate in finite time.

The following iterative algorithm suggests itself: we maintain a LIST of compar
sets of states and possible transitions, of the form (X,Y,R), whereX andY are the sets of
states ofx andy reachable from some common traces of y, andR is the set of possible tran
sitions (requests) fromY that the algorithm must traverse. We follow each possible req
to new comparable state sets until we have exhausted all transitions and checked a
parable state sets, or until we fail to satisfy one of the conditions in definition 9.
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1. Verify thatinit(y) ⊆ init(x), else FAIL
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2. Add ({x},{ y}, init(y)) to LIST

3. If possible, select some (X,Y,R) from LIST whereR is not empty, else SUCCEED

4. Select somer in R and replace (X,Y,R) by (X,Y,R\{r}) in LIST

5. ComputeX′ andY′, whereX →r X′ andY →r Y′
6. If (X′,Y′,R′) for someR′ is already in LIST, then go to step 3, else continue

7. If init(Y′) ⊆ init(X′), then continue, else FAIL

8. If for eachxi ∈ X′ there exists someyj ∈ Y′ such that
init(yj) ⊆ init(xi), then continue, else FAIL

9. Add (X′,Y′,init(Y′)) to LIST and go to step 3.

Note that steps 2 and 7 guarantee thatX′ generated in step 5 will never be empty.
Since there is a finite number of reachable setsX andY to compare, the algorithm clearly

terminates. In the worst case, there will be (2n–1)×(2m–1) comparisons (i.e. the size o
LIST), wheren andm are the number of states reachable fromx andy respectively, but nor-
mally there will be far fewer, since not all subsets of states will be generated, and 
possible combinations will need to be compared. In the special case that one compa
deterministic regular types, the maximum number of comparisons is justn×m, but may be
even as little asm (in case of success, that is).

Let us briefly look at an example that comparesBuf to the regular type of a stack tha
supports an additionalswap operation:

NewNDStack = (s1, { s1=put.s2,
s2=put.s2+get.s2+get.s1+swap.s2 })

We wish to check whetherNewNDStack:<Buf. We start with:({s1},{b1},{put}). Boths1 and
b1 permit aput, and they have the same requests enabled, so we can add this to our

({s1},{b1},{put})

The only possible transition isput, so we remove it from LIST and generat
({s2},{b2},{get}). s2 enables at least the requests thatb2 enables, so we add this to our list:

({s1},{b1},{put})
({s2},{b2},{get})

Now only aget is possible, so we generate:({s1,s2},{b1},{put}). We verify thats1 ands2 each
enable at least the requests ofb1 and add this to our list:

({s1},{b1},{put})
({s2},{b2},{get})
({s1,s2},{b1},{put})

put put, get, swap

get

s1 s2
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Now we can perform aput, but this just generates({s2},{b2},{get}), which is already repre-
sented in the list. There is nothing left to check, so we SUCCEED. (In the reverse dir
we would quickly FAIL in step 7 after a singleput becauseb2 enables neitherput norswap.)
Note that the total number of comparisons (3) is far less than the worst case possib

Note thatNewNDStack is request substitutable forBuf even though it is, in a sense,less
deterministic thanBuf. The key point is that it is safe to use wherever we are expectingBuf-
like behaviour.

Figure 4.2 shows the subtype relationships between a few of the regular types w
seen. Curiously,NDStack andNDStack2 are not related (to see why, consider the seque
put.get.get, which is in traces(NDStack) but not in traces(NDStack2), and the failure
(put.put.get,{get}), which is infailures(NDStack), but not infailures(NDStack2)).

4.7 Request Satisfiability

Up to now our discussion has focused on the protocols of service providers. Reque
stitutability tells us when an object obeying some protocol can be safely substitut
some second object, assuming that the first object satisfies the client’s expectatio
we have not yet formalized what it means to satisfy a client. It turns out that we need
fine a new relation, calledrequest satisfiability, which expresses this idea.

Figure 4.2 Some subtype relationships between regular types.

put
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Buf =
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put, getNDStack =

put, getNDStack2 =

Buf2 =

put
put, get,swap
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NewNDStack =

put, getFaultyStack =

get

put

get
put
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put
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put
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put
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put
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If the protocol of a service provider expresses when its services are available, then the
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protocol of its client expresses when those services are requested. We propose that
issatisfied if its requests are always honoured. Up to now we have implicitly assumed
clients issue at most one request at a time. In general, however, a client may issue m
requests simultaneously (particularly if the “client” is actually an environment consis
of multiple concurrent clients) — in such cases, we do not ask that all of the reque
honoured together, just that the client be guaranteed to make progress, i.e. at least
quest must always be accepted. Since the current state of the client may not necess
deterministic, the object must be prepared for the client to be in any one of its reac
states. The object is allowed to terminate (i.e. refuse all further requests) only if it c
sure that the client will issue no more requests. In short, we must ensure that an obj
only fail if the client makes no moreoffers.

We can formalize this as follows:

Defini t ion 10 The set ofoffers of a transition systemc is:

offers(c) ≡ { (s,R)  ∃c′, c ⇒s c′, R = init (c′) }.
So, if (s,R) is an offer ofc, then we know thatc may issue the sequence of requestss and
then may issue the set of requestsR. It is also possible thatc may issue some other set o
requestsR′, if (s,R′) is also an offer ofc.

Defini t ion 11 An objectx is request satisfiable for a clientc, writtenx  c, iff:
(s,R) ∈ failures(x)∩offers(c) ⇒ R = ∅

If both client and server protocols are specified as regular types, then request satisfi
can be determined by an algorithm along the lines of the one we demonstrated for 
ing request substitutability.

4.7.1 Sequential Clients

How does request substitutability relate to request satisfiability? Clearly, we would e
that ifx:<y andy  c, thenx  c. It turns out that ifc is sequential, then this is in fact the cas

Defini t ion 12 A clientc is sequential if (s,R)∈offers(c) ⇒ |R| ≤ 1.
Lemma 4 If c is sequential, theny  c⇒ traces(c) ⊆ traces(y).

Proof By induction on the length of traces ofc. ❑

Proposit ion 5 If c is sequential, thenx:<y andy  c ⇒ x  c.

Proof (s,R) ∈ failures(x)∩offers(c) ⇒ s ∈ traces(c) ⊆ traces(y)
⇒ (s,R) ∈ failuresy(x) ⊆ failures(y) ⇒ R = ∅. ❑

We are taking advantage of the fact thatc is sequential to conclude thaty completely sat-
isfies the expectations ofc. (Note that it also suffices to require thattraces(c) ⊆ traces(y)
for the same result to go through.) But if there are different ways of satisfying a client
ticularly a concurrent one), then it is no longer true that the client will necessarily b
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isfied by a request substitutable service provider. Some additional preconditions must be
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4.7.2 Concurrent Clients

Let us consider a simple example of a concurrent client consisting of a producer and
sumer connected by a bounded buffer. The producer and the consumer each have th
view of the buffer, but we are interested in the requirements posed by their conc
composition.

Presently we might separately specify expectations of the producer and consum
spectively as:

We might write their concurrent composition asProd&Cons, where:
c1 →r  c1′ ⇒ c1&c2 →r  c1′&c2

and
c2 →r  c2′ ⇒ c1&c2 →r  c1&c2′

So we can conclude:

Note thatProd&Cons isnot sequential according to definition 12.
It is easy to check thatBuf  Prod&Cons, sinceBuf never refuses bothput andget. But

what is the role of request substitutability now? Since we know thatVar:<Buf can we
necessarily conclude also thatVar  Prod&Cons? Unfortunately this is not quite right. Th
reason is that a regular subtype may introduce additional behaviour that can pertu
client’s expectations. Consider, for example, a deletable buffer:

It is clear thatDelBuf:<Buf. But suppose that we now compose the producer and con
er with a malevolent object whose only goal is to try to delete the buffer:

Now Buf  Prod&Cons&Del but it is not the case thatDelBuf  Prod&Cons&Del. In the first
case onlyDel will be starved out becauseBuf provides no delete operation, but the client
whole will still be satisfied sinceProd&Cons continues to make progress.

putProd = getCons =

put, getProd&Cons =

put

get

DelBuf =
del

Del =
del
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In the second case, however, the delete operation may succeed, then causing the client
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as a whole to deadlock, and thus remain unsatisfied.
What we need to do in order to be sure thatDelBuf can be safely substituted forBuf is to

restrict its behaviour to that allowed byBuf:

Defini t ion 13 x/Y →r  x′/Y′ iff x →r  x′ andY →r  Y′.
What we mean to capture byx/Y is that some object in statex is restricted to accept only
the requests allowed by a second object whose state is somey∈Y. We do not know precise-
ly which state the second object is in, so we keep track of the set of possible states

Usually the initial state of the second object is known, so we will simply writex/y in-
stead ofx/{y}.

Proposit ion 6 x:<y ⇒ x/y :< y.

Proof
(i) traces(x/y) = traces(x) ∩ traces(y). Butx:<y ⇒ traces(y) ⊆ traces(x),

sotraces(x/y) = traces(y).

(ii) (s,R) ∈ failures(x/y) ⇒ ∃x′, x ⇒s x′, { y } ⇒s Y′, such thatR ∩ init(x′) ∩ init(Y′) = ∅
⇒ R ∩ init(x′) ∩ ∪{ init(y′)  y′∈Y′} = ∪ { R ∩ init(x′) ∩ init(y′)  y′∈Y′} = ∅.
But x:<y ⇒ { x } :<< { y } ⇒ ∃y′ ∈ Y′, init(y′) ⊆ init(x′)
⇒ ∃y′ ∈ Y′, R ∩ init(y′) = ∅ ⇒ (s,R) ∈ failures(y) ⇒ failures(x/y) ⊆ failures(y).
But failuresy(x/y) = failures(x/y), sox/y :< y. ❑

Finally, the result we want:

Proposit ion 7 x:<y andy  c⇒ x/y  c.

Proof x:<y ⇒ x/y :< y (by proposition 6), sofailures(x/y) ⊆ failures(y).
Now (s,R) ∈ failures(x/y) ∩ offers(c) ⇒ (s,R) ∈ failures(y) ∩ offers(c) ⇒ R = ∅.
Hencex/y  c. ❑

So, for example, we can conclude that:
DelBuf/Buf  Prod&Cons&Del

since we effectivelyhide the additional behaviour introduced byDelBuf from the client.
This is not as strong a result as we might have hoped for, but it is a natural conseq

of the fact that multiple concurrent clients may interfere with one another if their exp
tions are not consistent. This is essentially the observation of Liskov and Wing [22
propose a new definition of subtyping that requires view consistency. Briefly, the id
that a type that extends the behaviour of another type may only be considered a sub
the second if the additional behaviour can always be explained in terms of behavio
wasalready there in the supertype.

In some cases we may get this consistency for free. Note, for example, that if th
type’s behaviour is properly included in the supertype’s, in the sense thatfailures(x) = fail-
ures(x/y), then the subtype will be request substitutable for the supertype. We must be
though, that the subtype behaviour is consistent with the restriction imposed by the 
type. This leads to the following result:
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failures(x) ⊆ failures(y), then y  c ⇒ x  c.

Proof Follows from proposition 7 since
failures(x) = failures(x/y). ❑

It may still be the case that a subtype provides additional behaviour that doesnot perturb
the client. But to be sure that the subtype is truly substitutable, it is necessary to know
about the client’s expectations. We have previously exploredinteraction equivalence with
respect to the expectations of particular sets of observers, and found that equivalen
respect to all possible observers (also) reduces to failures equivalence [27]. We exp
relativizing request substitutability with respect to the expectations of specific class
clients will lead to more general and more useful results for the case of multiple co
rent clients.

4.8 Open Problems

We have proposed service types as a means of characterizing the services an ob
vides, and regular types as a means to express non-uniform service availability. I
cases we have presented an approach to subtyping. Furthermore, we have formaliz
it means to satisfy a client’s expectations, and we have shown the role that subtypin
in determining substitutability.

Although regular types appear to be a novel and promising approach for reas
about some of the dynamic (type) properties of concurrent object-oriented prog
there remains much to be studied before we can claim to have a pragmatically acc
approach for type-checking object-oriented languages. Let us briefly summarize so
these considerations.

4.8.1 Regular Service Types

So far we have treated the typing of services and their availability as orthogonal i
Service types express types of requests and replies, and regular types tell us when 
are enabled. There is nothing to prevent us from proposing a syntax for regular s
types that simply expands request names in regular types to the complete servic
specification corresponding to that request. For example, an integer variable could
signed the regular service type:

IntVar = (v1, { v1 = put(Int)→Ok.v2,
v2 = put(Int)→Ok.v2 + get→Int.v2 })

Since this is somewhat verbose (the type of theput service must be given twice), i
seems more desirable to keep the type specifications of services and their protoco
rate.



118 Regular Types for Active Objects

It is conceivable, however, that the type of a service may itself change with time. In par-
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ticular, the result types associated with certain requests may depend on the argume
of earlier requests (as is the case with all of the container objects we have seen). To
this case, it would seem necessary to introduce term variables into regular types to e
the dependencies between services in the protocol (i.e. à la “dependent types” [32
not clear, however, what effect this would have on the determination of request sub
ability.

It may also be interesting to consider bounded polymorphism in our framework, 
the integration of intersection types and bounded polymorphism has been previousl
ied [31], but only in a functional setting. Finally, we have not considered the issue 
cursively defined types, in which the regular type of an object may contain services w
argument and return types refer to the object’s own type. Previous work on “F-boun
quantification [9] addresses subtyping for such types [3], and is likely to be relevant 
framework.

4.8.2 Applying Regular Types to Object-Oriented Languages

We have presented our type model without giving any concrete interpretation for t
The objects to which we wish to assign types have been described only informa
means of a very general model of objects as transition systems. The next step wou
provide a concrete syntax for objects, either in terms of a programming languag
process calculus that can model objects in a straightforward way.

We have been working towards anobject calculus that incorporates those features 
process calculi that are most needed for expressing the semantics of concurrent 
oriented languages [28]. We intend to use the object calculus as an (executable) a
machine for apattern language for (typed) active objects [29], and assign regular types t
the expressions of this language.

Since the type expressions we are dealing with can become rather unwieldy, it is
cially important that we be able to do as much typeinference as possible. In languages tha
directly represent abstract states of objects (such as ACT++ [20]) this job will be e
The main difficulty will be in determining what transitions between the abstract state
possible.

We have already pointed out that objects may satisfy many different regular types
since regular types are only approximations, in some cases they may be refinedad nause-
am. In order to assign regular types automatically to objects, it is necessary to ge
some type assignment which is perhaps not the finest possible but which assigns 
one abstract state to every reachable subset of available services. (Recall that our fiND-
Stack was such a minimal representation, whereasNDStack2 had two distinct states with
the same services available.)

Another consideration, however, is whether a deterministic regular type can b
signed to an object. If such a type specification exists (e.g.Var andBuf), then this is in any
case to be preferred to a non-deterministic regular type that may have less state



Concluding Remarks 119

types not only completely describe service availability for an object, but are well-behaved
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during type-checking since the sets of reachable nodes for a given trace are always
tons. (So LIST stays small.)

4.9 Concluding Remarks

We have proposed a type framework for object-oriented languages that expresses tserv-
ices of an object as an intersection ofservice types characterizing request and reply me
sages, andnon-uniform service availability in terms ofregular types over a finite number
of abstract states associated with subsets of services. Subtyping of regular types is
by introducingrequest substitutability, a novel pre-order over processes that has spe
interest for object-oriented applications. Subtyping is easy to determine for regular 
and a simple algorithm is presented. Satisfaction of client’s expectations is formaliz
request satisfiability, and we show how request substitutability relates to it.

A number of technical issues must first be resolved before the framework can be
tically applied to real object-oriented languages. In particular, we seek some resul
will simplify reasoning about substitutability with respect to multiple concurrent clie

We expect that it will be easier to reason about regular types in the presence of c
rency if we interpret them either using a temporal logic or a modal process logic (su
Hennessy–Milner logic with recursion [21]). A logical characterization of the conc
we have presented will be the topic of further research.

Despite a number of open research problems, the approach seems to hold a grea
promise, since numerous tools and algorithms exist not only for analysing propert
finite state processes [11][15][23] but also for reasoning about processes in g
[12][19]. This suggests that regular types may be more generally useful for reas
about temporal properties of concurrent objects.

We have concentrated on client–server-based protocols in which requests eve
entail replies. Can we accommodate other kinds of communication protocols (to su
for example, transactions)? If so, must we modify our model of regular types to inc
rate bidirectional communications (instead of just enabling of request channels)? C
easily accommodateexceptions in our framework by, for example, allowing replies to b
union types?

Finally, our approach considers only objects with fixed sets of known services. C
accommodatereflective objects that acquire new services with time? In such a set
would we have to consider not only services, but also types as first-class values?
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A Temporal Perspective of
Composite Objects

Constantin Arapis

Abstract For the development of object-oriented applications, the description
of temporal aspects of object behaviour often turns out to be an important issue.
We present a collection of notions and concepts intended for the description of
the temporal order in which messages are sent to and received from an object.
We also propose notions for the description of the temporal order of messages
exchanged between cooperating objects related with part-of relationships.
Using propositional temporal logic as the underlying formalism of our approach,
we show how to verify the consistency of object specifications.

5.1 Introduction

The increasing popularity of object-oriented systems [7] [12] [18] [22] over the past
ade, within both the research and commercial/industrial computer science commu
have promoted the use of the object-oriented approach for requirements analysis a
tem design. Thus, several object-oriented analysis and design methodologies [4] 
[15] [20] [21] [23] [24] are currently available to assist the early phases of the objec
ented application development process.

An important activity during object-oriented design often turns out to be the descri
of temporal aspects of object behaviour. Indeed, the design of many applications ma
tain objects whose behaviour exhibits important temporal traits. As Booch states [4
some objects, this time ordering of operations is so pervasive that we can best fo
characterize the behaviour of an object in terms of a finite state machine.” It mu
stressed that even for applications which are not designed for processing tempora
mation, their development requires several objects whose behaviour exhibits imp
temporal aspects. Yet the description of temporal properties of objects, either cons
in isolation or in cooperation with other objects, is not exclusively relevant to concu
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environments. Often, the description of temporal properties of objects is deemed critical
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and even mandatory in sequential environments.

5.1.1 Specifying Temporal Aspects of Object Behaviour

A number of object-oriented design methodologies [4] [20] [21] integrate notions
concepts for the description of temporal properties of objects. We will call thetemporal
component of an object-oriented design method the collection of notions and conc
intended for the description of temporal aspects of object behaviour. The underlyin
malisms upon which the various temporal components of object-oriented design me
ologies are founded are finite state machines (FSMs) or extensions of FSMs [13
preponderance of FSMs over other formalisms is attributed to the following two rea
first, FSMs are easy to understand, and second, a FSM can be easily depicted by m
a state transition diagram.

In general, object-oriented design methodologies use FSMs in the following w
FSMMc models temporal aspects of the behaviour of an instance of classC. Transitions of
Mc are labelled with operations that an instance ofC is expected to carry out. States ofMc
correspond to the various possible states of an instance ofC. A transition ofMc, labelledp,
from states1 to states2, models the fact that operationp can be requested of an instanceo
of C when the current state ofo is s1. After p is carried out, the current state ofo becomes
s2. Thus, by means of FSMs, temporal aspects of object behaviour are ultimate
scribed in terms of sequences of pairs: (state, operation).

Note that the role of the temporal component of an object-oriented design method
is limited to the description of sequences of operations and state transitions of objec
temporal component is not designed for specifying how an object will carry out an o
tion. In addition, the design and integration of a temporal component within
object-oriented design methodology should guarantee harmonious synergy betwe
various other parts of the methodology. The above requirement suggests that the te
component should be complementary and orthogonal to the fundamental principles
object-oriented approach.

We will present a temporal component which has been designed independently 
design methodology and is founded on the theory of propositional temporal logic (P
The aim of the temporal component is to enhance existing design methodologies la
or offering limited support for the description of temporal properties of objects. We 
introduce the temporal component in terms of a specification model called the Tem
Specification Object Model (TSOM). The specification model blends fundame
notions of the object-oriented approach and temporal notions, thus illustrating th
pendence and/or orthogonality existing between them.

In contrast with temporal components founded on FSMs, TSOM emphasizes th
scription of temporal properties of an objecto in terms of sequences of messages wh
are sent to and received fromo. Thus, the user is not compelled to devise states that ar
necessarily relevant to the description of an object’s behaviour and whose only purp
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to complete the FSM under development. However, TSOM provides the concept ofat-
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tribute by means of which the user may introduce states he considers relevant for t
scription of an object’s behaviour and may also describe the various conditions that s
be verified for enabling state transitions to occur.

Another important point that TSOM emphasizes is the description of the tempor
der of messages exchanged between a collection of cooperating objects related bypart-of
relationships. The temporal order of messages exchanged between a composite ob
its constituent objects provides a temporal perspective of what has been called the
ioural composition of objects. Promoted as a fundamental feature of object-ori
design methodologies, behavioural composition consists of combining and coordin
the functionality of existing objects to create new objects [8] [14] [19]. A composite ob
in TSOM encapsulates and coordinates a collection of objects that cooperate in o
reach some goal or perform some task. The composite object plays the role of a co
tor taking into account the various temporal properties and constraints specifie
constituent objects. Furthermore, TSOM enables an incremental specification of 
coordination. In particular, a composite object may become a constituent of an
composite object, which in turn may become a constituent of another composite o
and so on.

5.1.2 Design Choices for TSOM

First and foremost, let us justify our decision for TSOM to be founded on a formal th
rather than developing a temporal component founded on some informal basis, for
ple a natural language. Establishing a formal basis upon which a temporal compo
founded permits us not only to test the consistency of the various notions it integrat
also to test the consistency of user-provided specifications. Indeed, the early detect
correction of design errors is critical for the whole application development activity. 
ing to correct design errors causes their harmful effects to be amplified and dissem
throughout the subsequent stages of the application development process.

From a number of candidate formalisms the language of PTL appears as the mo
able formalism for TSOM. Indeed, temporal properties can be very easily specifi
means of PTL formulas. Formalisms like FSMs and Petri nets have been character
low level in the following sense: by means of FSMs and Petri nets we can specify 
system operates and then verify which properties are satisfied by the modelled sys
temporal logic the contrary is done. The desirable properties of a system are specifie
A system satisfying the specified properties is derived subsequently.

Another important argument in favour of PTL is the fact that it has been used as a
dation for various investigations performed in the area of concurrent systems, conc
the synthesis of a collection of parallel communicating processes [9] [17]. Synthe
communicating processes bears many similarities with object behaviour compositio
collection of communicating processes can be seen as a collection of cooperating 
which should be synchronized in order to perform a particular task. We have borrow
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main ideas proposed for synthesizing communicating processes from [17] whilst we have
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adapted and tailored them when necessary to meet our specific needs.
We have acknowledged the verification of specifications to be an important and e

mandatory activity of the design process. However, verifying specifications is in ge
a difficult and lengthy process carried out without computer assistance. Automated su
port for the verification of specifications, relieving users from laborious and error-p
procedures, has been selected among the most important requirements. An ap
property of PTL is the existence of algorithms for testing the satisfiability of a temp
logic formula [2] [16] [17]. These algorithms may be used in a straightforward mann
provide an automated procedure for verifying the consistency of object specifica
The decidability of PTL outweighed substantial arguments for choosing a more pow
formalism, in particular predicate temporal logic [1]. Since the satisfiability test of pr
cate temporal logic is no longer decidable the design of an automated procedure fo
fying specifications could be seriously compromised.

5.1.3 Layout

In the following section we provide a brief introduction to the temporal logic system
shall be using. In section 5.3 we describe the specification of temporal properties 
jects in TSOM. Section 5.4 presents the verification procedure of object specifica
The last section presents our concluding remarks.

5.2 Propositional Temporal Logic

PTL is an extension of propositional logic (PL) in which atomic propositions h
time-varying truth value assignments. The time-varying truth value assignment i
tained by associating each time-point with aworld. A world is a particular interpretation
in the sense of classical PL. Thus, the truth value of an atomic propositionp at instantt
would be the truth value assigned top in the world associated witht.

Several temporal logical systems have been developed. They differ in the proper
tributed to time, i.e. whether it is discrete or continuous, with or without start or end po
or viewed as containing linear or branching past and future. The logical system we
use considers time to be discrete, with a starting point, and linear [11].

Another important extension characterizing PTL is the collection of temporal oper
which, in addition to the usual operators of PL, are used for forming PTL formulas.
ferent collections of temporal operators may be encountered depending on the logic
tem used. The logical system we have chosen to use has the following temporal ope

❑ f called the always in thefuture operator, meaning thatf is satisfied* in the
current and all future worlds,

* We say that an atomic propositionp or a formulaf is satisfied in a worldw if p or f is assigned the truth
valuetrue in w.
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◊ f called the eventually in thefuture operator, meaning thatf is satisfied in

s

ra-
rators

he

ak
been

ce

s

each
the current or in some future world,
❍ f called the next operator, meaning thatf is satisfied in the next world,
f1 U f2 called the until operator, meaning that eitherf1 is satisfied in the current

and all future worlds orf1 is satisfied in the current and all future world
until the world whenf2 is satisfied.

The first three operators are unary, while the last is binary. Note that for theuntil opera-
tor we do not claimf2 will eventually be satisfied in some future world. The above ope
tors deal only with future situations. We can extend the system with symmetric ope
for the past:

■ f called the always in thepast operator, meaning thatf is satisfied in the
current and all previous worlds,

◆ f called the eventually in thepast operator, meaning thatf is satisfied in the
current or in some past world,

● f called the previous operator, meaning that the current world is not t
starting point andf is satisfied in the previous world,

◗ f called the weak-previous operator, meaning that eitherf is satisfied in the
previous world or the current world is the starting point; the we
previous operator has no symmetric future operator and has 
included because of our assumption that time has a starting point,

f1 S f2 called the since operator, meaning that eitherf1 is satisfied in the current
and all past worlds orf1 is satisfied in the current and all past worlds sin
the world whenf2 was satisfied.

Figure 5.1 illustrates the meaning of each temporal operator over the time axiτ. A
time-pointt which is labelled with a PTL formulaf means thatf is satisfied att. Operators
until andsince require two alternative time axes for representing their meaning, so 
pair of time axes is enclosed within a rectangular box.

5.2.1 Syntax of PTL

Given:

1. P = {p1, p2, p3, …} the set of atomic propositions

2. non-temporal operators:¬, ∧, ∨, ⇒, ⇔
3. temporal operators:❑, ◊, ❍, U, ■, ◆, ●, ◗, S

formulas are formed as follows:

1. An atomic proposition is a formula.

2. If f1 andf2 are formulas then

(f1), ¬f1, f1 ∧ f2, f1 ∨ f2, f1 ⇒ f2, f1 ⇔ f2 are formulas, and
❑ f1, ◊ f1, ❍ f1, f1 U f2, ■ f1, ◆ f1, ● f1, ◗ f1, f1 S f2 are formulas.

3. Every formula is obtained by application of the above two rules.
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f ff f f ff f …
Examples of well-formed formulas (wff) of PTL include:

❑ f

◊ f

f

❍ f

f

■ f

f ff f ff

◆ f

f

● f

f

f1 s f2

f2 f1 f1f1

◗ f ⇔ true

f1 u f2

f1 f1f1 f1
τ

τ

τ

τ

τ

τ

τ

τ

τ

f1 u f2

f1 f1f1 f1 f2
τ

f1 s f2

f1 f1f1 f1 f1f1
τ

f1 f1f1 f1 …

or

or

Figure 5.1 The meaning of temporal operators over the time axis.
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❑ ((p ∧ q) ∨ r)

d

mean-
bility
To be
❑ (p ⇒ ◆ q)

❍ (r U (p ∧ q))

The first wff says that in all time-points eitherp andq are satisfied orr is satisfied. The
second wff says that for any time-pointtp in whichp is satisfied,q must have been satisfie
in some time-pointt, t ≤ tp. The last wff says that from the next time-pointtnext eitherr is
satisfied for all time-pointst ≥ tnext or there exists a time-point tp ∧ q, tp ∧ q ≥ tnext, where
q ∧ p is satisfied and for allt, tnext ≤ t < tp ∧ q, r is satisfied.

5.2.2 Semantics of PTL

The time-varying truth value assignment of atomic propositions and the time-based 
ing attributed to temporal operators leads to a definition of the notion of satisfia
where the truth or falsity of PTL formulas is evaluated over sequences of worlds. 
more precise, letσ = w0, w1, w2, w3, … be an infinite sequence of worlds, eachwi ∈ W be-
ing an element of the powerset2P, W the set of all worlds andP the set of atomic proposi-
tions.

The satisfiability of a formulaf in a world wi ∈ W of a sequenceσ is denoted by
(σ, wi) f and can be deduced by the following rules:

(σ, wi) p iff p ∈ wi
(σ, wi) p iff p ∉ wi
(σ, wi) f1 ∧ f2 iff ( σ, wi) f1 and (σ, wi) f2
(σ, wi) f1 ∨ f2 iff ( σ, wi) f1 or (σ, wi) f2
(σ, wi) ¬f1 iff not (σ, wi) f1
(σ, wi) f1⇒ f2 iff ( σ, wi) (¬f1) ∧ f2
(σ, wi) f1⇔ f2 iff ( σ, wi) (f1 ⇒ f2) ∧ (f2⇒ f1)
(σ, wi) ❑ f1 iff ∀ j, j ≥ i, (σ, wj) f1
(σ, wi) ◊ f1 iff ∃ j, j ≥ i, (σ, wj) f1
(σ, wi) ❍ f1 iff ( σ, wi+1) f1
(σ, wi) f1 U f2 iff either ∀ j, j ≥ i, (σ, wj) f1

or ∃ j, j ≥ i, (σ, wj) f2 and∀ k, i ≤ k < j, (σ, wk) f1
(σ, wi) ■ f1 iff ∀ j, 0 ≤ j ≤ i, (σ, wj) f1
(σ, wi) ◆ f1 iff ∃ j, 0 ≤ j ≤ i, (σ, wj) f1
(σ, wi) ● f1 iff i > 0 and (σ,wi-1) f1
(σ, wi) ◗ f1 iff i > 0 and (σ,wi-1) f1 or i = 0
(σ, wi) f1 S f2 iff either ∀ j, 0 ≤ j ≤ i, (σ, wj) f1

or ∃ j, 0 ≤ j ≤ i, (σ, wj) f2 and∀ k, j < k ≤ i, (σ, wk) f1
A formula f is initially satisfied or simplysatisfied by a sequenceσ iff (σ, w0) f. A

formulaf issatisfiable iff there exists a sequence satisfyingf. Such a sequence is amodel
of f. A formula isvalid iff it is satisfiable by all possible sequences.
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In order to check the satisfiability of PTL formulas we can use one of the tableau-based
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algorithms presented in [2] [16] or [17]. Such algorithms we will callsatisfiability algo-
rithms. The algorithm takes as input a formulaF and outputs a graph representing all mo
els satisfyingF. Such a graph we will call asatisfiability graph. If F is not satisfiable the
algorithm signals that it is unable to produce a graph.

The main idea of the algorithm presented in [2] consists of building up the satisfia
graph in the following way. Start with an initial node labelled with the input formulaF. For
the initial node and all other nodes the following procedure is applied until no more n
remain unprocessed. The formula labelling a nodeN is decomposed into disjunctive nor
mal form, each disjunct being of the form:

current-instant-formula ∧ ❍ next-instant-formula ∧ ● previous-instant-formula

The previous-instant-formula specifies what should have been verified the previ
time-point. For any nodeN´ from which an edge points toN, the formula labellingN´
should satisfyprevious-instant-formula. Otherwise nodeN and all edges pointing toN
should be deleted. Thenext-instant-formula specifies what should be verified the next tim
point. LetN´´ be the node labelled withnext-instant-formula. If there exists no node labelled
with next-instant-formula then a new node N´´ is created with labelnext-instant-formula. Then
an edge fromN to N´´ labelled withcurrent-instant-formula is introduced in the graph. The
current-instant-formula specifies what should be verified the current time-point and
always a formula of PL. Thus edges are labelled with formulas of PL while node
labelled with formulas of PTL. The following remark ensures that the process s
When transforming a formulaf into disjunctive normal form, each conjunct within a di
junct is a conjunction of either subformulas off or negated subformulas off. Thus the max-
imum number of nodes that possibly will be generated equals the number of formula
are conjunctions of either subformulas ofF or negated subformulas ofF.

Given a satisfiability graph corresponding to a formulaF, a possible modelµ of F is
identified by traversing the graph. Initiallyµ is empty. Starting at the initial node, eac
time an edge is traversed, a world satisfying the formula labelling that edge is conca
ed to the sequence of worlds forming the modelµ. In general, several worlds may satis
a formula but a single world should be chosen to be concatenated inµ. In other words, a
formula labelling an edge identifies a worldwi of some modelµ. The formula labelling
each node identifies the rest of the sequence of worlds ofµ, that iswi+1, wi+2, … Note that
the graph produced from the satisfiability algorithm may not be minimal in the sens
the models of the input formula could be identified with a graph with less nodes and e.

The satisfiability graph corresponding to the formula❑ ((p ∧ q) ⇒ ❍ r) is shown in fig-
ure 5.2. Each node is divided into two parts: the lower part of the node contains the fo
in disjunctive normal form equivalent to the formula labelling the upper part of the n
The node drawn with a thick line is the initial node. Note that thecurrent-instant-formula is
missing from the second disjunct of the formula labelling the lower part of the initial n
In such cases any non-contradictory PL formula can be taken as thecurrent-instant-formula.
We use the symbol⊥ to denote any non-contradictory PL formula. The various worlds 
isfying the formulas labelling the edges of the satisfiability graph are:
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[{ p}, { q}, { r}, { p, r}, { q, r}] satisfy the formula¬ (p ∧ q),
[{ r}, { p, r}, { q, r}, { p, q, r}] satisfy the formular,
[{ r}, { p, r}, { q, r}] satisfy the formula¬ (p ∧ q) ∧ r,

[{ p}, { q}, { r}, { p, q}, { p, r}, { q, r}, { p, q, r}] satisfy ⊥
Each world is represented by enclosing within curly brackets the atomic proposition
ing truth valuetrue and assuming that all other propositions have truth valuefalse.

Figure 5.3 shows three sequences of worlds relative to the formula❑ ((p ∧ q) ⇒ ❍ r).
Sequences (a) and (b) satisfy the formula❑ ((p ∧ q) ⇒ ❍ r). Sequence (c) does not satis
❑ ((p ∧ q) ⇒ ❍ r). The world which causes the sequence to be excluded from the 
models of❑ ((p ∧ q) ⇒ ❍ r) is the third one in which the atomic propositionr is not satis-
fied while in the previous world the formula (p ∧ q) was satisfied.

¬ (p ∧ q)

❑ ((p ∧ q) ⇒ ❍ r) ❑ ((p ∧ q) ⇒ ❍ r) ∧ r

⊥

¬ (p ∧ q) ∧ r

r

[¬(p ∧ q) ∧ ❍ ❑ (¬(p ∧ q) ∨ ❍ r)] ∨
[❍ r ∧ ❍ ❑ (¬(p ∧ q) ∨ ❍ r)]

[r ∧ ¬(p ∧ q) ∧ ❍ ❑ (¬(p ∧ q) ∨ ❍ r)] ∨
[r ∧ ❍ r ∧ ❍ ❑ (¬(p ∧ q) ∨ ❍ r)]

Figure 5.2 Satisfiability graph corresponding to the formula ❑ ((p ∧ q) ⇒ ❍ r).

{p, q}

{p, q, r}

{r}

{r, q} {r}

{r}

{p, q}

{r}

{p, q}

{p, q, r} {r}

{r} {q, r}

{p, r} {p, r} {q, r}

{p, q}

{p, q, r}

{p}

{r, q} {r}

{r} {p, q}

(a)

(b)

(c)

Figure 5.3 Sequences (a) and (b) satisfy ❑((p ∧ q) ⇒ ❍r);
Sequence (c) does not satisfy ❑((p ∧ q) ⇒ ❍r)).
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5.3 The Specification of Temporal Properties
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In TSOM objects are intended for modelling the various entities of an application. 
object is associated with a unique object identifier (oid) permitting one to identify
object independently of its behaviour and the values of its instance variables. An 
communicates with other objects by sending and receiving messages. Messages se
an object (sender) to another object (receiver) may be interpreted as requests for
ceiver to perform some task or simply as requests to send back some information
sender. The reaction of the receiver may result in a modification of its internal st
number of messages being sent to other objects, the return of a value to the sender,
combination of the above cases. The internal state of an object stored in its instanc
ables and how it reacts to messages is assumed to be hidden from other objects.

Although we qualify TSOM as object-oriented, the notion of inheritance is not pa
it. TSOM is the object-based part of the specification model presented in [2] and [3
shall not discuss any further the absence of inheritance in TSOM. However, the inte
reader is referred to [2] where the notions of role and role playing can replace, 
specification level, the notion of inheritance.

We distinguish betweenelementary objects andcomposite objects. The difference be-
tween the two kinds of objects lies in the definition of their structural aspects. An ele
tary object is defined independently of other objects. A composite object consis
references to one or several elementary objects or composite objects. When a com
objecto references an objectz we say thatz is acomponent of o. Note that a composite
object is not the exclusive owner of its components. A component may be shared a
several composite objects.

Objects are instantiated from classes. A class definition comprises the following i
• Public messages, which can be sent to and received from an instance of the clas

indicate whether a message is to be sent to (incoming message) or received from (out-
going message) an instance, the message identifier is suffixed with a left← or
right → arrow respectively. In an object-oriented system, the effect of an incom
message defined in a classC would be implemented by an operation defined inC. The
effect of an outgoing messagemsg of C is expected to be implemented by an ope
tion defined in another classC´. The definition ofmsg as outgoing message inC sim-
ply affirms that an instance ofC will send messagemsg to an instance ofC´.

• Attributes of an instanceo store values representing either abstract states or sim
characteristic aspects whicho wishes advertise to other objects. Each attribute is
sociated with a finite domain from which it can be assigned values. For exampl
classCAR two attributes can be defined,speed andengine_status with associated do-
mains {stopped, moving_slowly, moving_fast} and {turned_on, turned_off} respectively.

• Public constraints describe the set of legal sequences of public messages an
tribute-value assignments.
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ed with a classC, notedκ: C, requiring the value ofκ to be a reference to an instanc
of C.

• Component messages which can be exchanged between the composite object an
components. As with public messages we distinguish between incoming and
going component messages.

• Component constraints describe the set of legal sequences of public messages, 
ponent messages and attribute-value assignments.

• Implementationis the part of the class definition containing the various programs
plementing the behaviour of instances of the class.

All items listed above, with the exception of attributes, should be present in the d
tion of a composite object class. Items components, component messages andcomponent
constraints are absent from the class definition of elementary objects. In the remain
this section we will describe in more detail each of the above items with the except
theimplementation item.

5.3.1 Public Messages

An example of a class definition of elementary objects is given in figure 5.4. C
CTRL_TOWER models the control tower of an airport. Public messagesreq_take_off and
req_land have been defined as incoming messages. They model requests for tak
and landing which can be addressed to the control tower by some object. Mes
perm_take_off andperm_land have been defined as outgoing messages. They mode
missions for taking off and landing which are granted to those objects that had prev
made a corresponding request to the control tower.

In most object-oriented systems it is recommended forsuppliers of classes to hide out-
going messages of objects from theirclients* . We decided to allow the definition of outgo
ing messages in an object’s interface to ease the design of objects cooperating on t
of asynchronous communication. Indeed, many real-world situations are naturally
elled as a collection of objects asynchronously communicating between them. Thus
chronous communication has been reported as an important object cooperation tec
which should be directly supported by object-oriented design methodologies. Defin
outgoing messagemsg for an objecto implies thato is expected to cooperate with some o
jectz which definesmsg as an incoming message and to whicho will sendmsg. Most often,
o is informed which object will be the receiver ofmsg, by assigning the oid ofz to some
parameter of an incoming message ofo.

The ability to include outgoing messages among public messages of a classC does not
imply that all messages exchanged with an instanceo of C have to be defined as public
Only messages that are part of the interface ofo should be included in the list of publi

* For a classC, we use the termsupplier for naming the person who has defined and implementedC. We
use the termclient for indicating the person or object using the services ofC.
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messages. For example, assuming thato is an instance ofCTRL_TOWER, the four public
messages defined in classCTRL_TOWER are all meaningful for clients ofo. The imple-
mentation ofo could use a hidden component,plane_list, having the functionality of type
LIST. The usefulness ofplane_list would be to represent the list of aeroplanes that h
made a request for taking off or landing and for which the corresponding permissio
not been yet granted. In contrast with the collection of public messages ofCTRL_TOWER,
messages exchanged betweeno andplane_list, like insert_into_list anddelete_from_list, are
meaningless for clients ofo and should not appear in the list of public messages of c
CTRL_TOWER.

5.3.2 Public Constraints

Public constraints associated with a class are specified in a language resemblin
More precisely, for a classC, we associate with each public messagep an atomic proposi-
tionp in PTL. We model the fact that a public incoming (outgoing) messagep is sent to (re-
ceived from) an instance ofC at time-pointt by associating witht a world wherep is
satisfied. Mapping messages to atomic propositions implies that the distinction be
incoming and outgoing messages is essentially informative for the user since it is n
captured nor enforced in PTL. However, the relevance for distinguishing between th
kinds of messages will be fully appreciated when the notion of composite object 
scribed in detail.

Concerning the specification of constraints we assume that only one message a
can be sent to or received from an object. In other words, in each world of a seque
worlds we require that exactly one atomic proposition is satisfied and all others are 

class CTRL_TOWER {
public messages

req_take_off ←, req_land ←,
perm_take_off →, perm_land →

public constraints
req_take_off ∨ req_land;
❑ (req_take_off ⇒ (◊ perm_take_off));
❑ (req_land ⇒ (◊ perm_land));

implementation
req_take_off (perm_receiver: oid, …)
{ … };
req_land (perm_receiver: oid, …)
{ … };
…

}

Figure 5.4 Class CTRL_TOWER modelling the lifecycle of a control tower of an airport.
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isfied. Assuming thatn messagesmsgi are defined in a class, the above requiremen
expressed in PTL with the formula:

 Public constraints defined in classCTRL_TOWER (figure 5.4) formally describe the be
haviour of a control tower. Leto be an instance ofCTRL_TOWER. The first constraint says
that the first message to be sent too must be eitherreq_take_off or req_land. The second
constraint says that whenever messagereq_take_off is sent too, then sometime in the future
messageperm_take_off will be received from o. The last constraint says that whenev
messagereq_land is sent too, then sometime in the future messageperm_land will be re-
ceived from o. Figure 5.5 shows two sequences of public messages satisfying the tem
constraints defined in classCTRL_TOWER.

Class CTRL_TOWER constitutes an example of a class definition expecting to coope
with its clients on the basis of asynchronous communication. Indeed, an instanco of
CTRL_TOWER will send messageperm_land to those objects whose oid has been assig
to some parameter, e.g.perm_receiver, of the incoming messagereq_land. Similarly, the
parameter perm_receiver of req_take_off will be used for determining the receivers 
perm_take_off messages. Note, however, that the above relationships involving se
and receivers of messages, and parameters of messages cannot be described in
therefore they cannot be explicitly specified in the constraint definition language w
proposing. They have to be annotated as comments. Nevertheless, in the case of co
objects (see below), messages exchanged with internal components are prefixed w
identifier of the involved component, thus allowing at least some form of constraint 
ification on internal messages.

Whether public constraints associated with a class are or are not violated is t
sponsibility of both the supplier and the client. For example, not receiving mes
perm_take_off from an instanceCTRL_TOWER after having sent messagereq_take_off is the

❑ ((∨ msgk) ∧ ( ∧ ¬(msgi ∧ msgj))
1 ≤ k ≤ n 1 ≤ i ≠ j ≤ n

perm_take_off

req_take_off

req_land

perm_land perm_take_off

perm_land

(a)

(b)

req_take_off

req_land

req_land

perm_land

req_take_off

perm_take_off

Figure 5.5 Sequences of public and state messages relative to the class CTRL_TOWER.
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responsibility of the supplier. Consider now the class definitionPLANE (figure 5.6),
modelling the lifecycle of an aeroplane. Its public constraints require the two inco
messagestake_off and land to be sent to an instanceo of PLANE alternately, the first mes-
sage beingtake_off. In this case it is the responsibility of the client to ensure thattake_off
and land messages will be send too in the specified order.

5.3.3 Shifting from Local Time to Global Time

Public constraints specify the temporal behaviour of an objecto in local time, i.e.
time-points are identified with messages that are sent to and received fromo. However, the
specification of public constraints in local time does not take into account thato may
cooperate with a collection of objects. More precisely,o may become a component of 
composite object, the various cooperating objects being the composite object and it
ponents. In that case, between any pair of messages defined ino, one or several message
defined in other cooperating objects may be interleaved. In other words, public cons
of o should have been specified inglobal time in which case time-points are identified wit
messages that are sent to and received from any of the cooperating objects. Fortu
constraints specified in local time can be easily transformed to constraints in globa
in such a way that their initial meaning is “preserved.” The transformation of public 
straints from local time to global time is calleduniversalization and will be formally de-
scribed in subsection 5.4.2.1. There are two reasons for preferring the definition of 
constraints in local time rather than the definition in global time. First, it is easier to sp
constraints in local time than in global time, and second, the resulting constraints ar
pler and easier to understand.

Even though the universalization of constraints preserves their initial meaning, s
times the user wishes to specify a constraint directly in global time rather than in
time. TSOM provides the user with such a facility. Enclosing a formula or a subformf
within angle brackets “<” and “>” excludesf from the transformation process of unive
salization.

class PLANE {
public messages

land ←, take_off ←;
public constraints

take_off;
❑(take_off ⇒ (❍ land));
❑(land ⇒ (❍ take_off));

implementation
 …

}

Figure 5.6 Specification of class PLANE.
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Let us elucidate with an example of both the usefulness for providing the above fa
and the meaning of “preserves” in the definition of universalization. Consider the
straint❑ (p ⇒ ❍ q) defined in a classC requiring every messagep to beimmediately fol-
lowed by messageq. The universalization of the above constraint would require aftep,
the next messageamong those defined inC to beq, yet permitting zero or more messag
msgi to be interleaved betweenp andq, provided that messagesmsgi have not been defined
in C. Thus when specifying a formula❑ (p ⇒ ❍ q) in public constraints, its meaning in
global time would be the second one, i.e. the meaning corresponding to its univers
version. However, specifying the constraint❑ <(p ⇒ ❍ q)> will ensure,even in global
time, that every messagep beimmediately followed by messageq, without allowing any
message be interleaved betweenp andq.

5.3.4 Attributes

Figure 5.7 presents a more elaborate version of the classPLANE presented in subsection
5.3.2 (figure 5.6). Its definition includes an attributepl_status with associated domain {op-
erational, maintenance}. Value maintenance is assigned topl_status during a maintenance
period for the aeroplane. Valueoperational assigned topl_status indicates that the aero
plane can travel.

The main reason for providing attributes in class definitions is to enhance the rea
ity of constraints and ease their specification. Indeed, attributes are very useful wh
want to express the fact that one or several actions on a particular object can be und
depending on the current values of one or several attributes of that object.

Let o be an instance ofPLANE. The first of the public constraints says that the attrib
pl_status should be assigned either the valueoperational or the valuemaintenance* . The sec-
ond constraint says that whenevero receives messagetake_off the value ofpl_status should

class PLANE {
attributes

pl_status: {operational, maintenance};
public messages

land ←, take_off ←;
public constraints

pl_status := (operational ∨ maintenance);
❑(take_off ⇒ ((pl_status == operational) ∧ ❍ land));
❑(land ⇒ (● take_off ∧ ❍ ((pl_status := maintenance) ∨ take_off)));
❑((pl_status == maintenance) ⇒ (❍ (pl_status := operational)));

implementation
 …

}

Figure 5.7 Enhanced version of class definition PLANE.
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thato may receive messageland if the previous message received istake_off. In addition,
whenever messageland is received, then either the next message to be sent too should be
take_off or the attributepl_status should be assigned the valuemaintenance. In other words,
after a flight the aeroplane can either continue travelling or begin a maintenance p
The last constraint says that if the value of attributepl_status ismaintenance, then the next
action should be the assignment of valueoperational topl_status.

In order to treat attributes and messages within the same framework we associa
each valueval belonging in the domain of attributeat a messageassign_at_val. Let us call
these messages assignment messages. Sending the assignment messageassign_at_val to
an objecto models the assignment of valueval to the attributeat of o. Thus, whenever an
assignment of the format := val appears within constraint definitions, it is intended a
shorthand for the assignment message identifierassign_at_val. In addition, whenever a tes
equality of the format == vali appears within constraint definitions it is intended as a sh
hand for the formula

where {val1, …, valn} is supposed to be the domain associated withat. This expresses tha
at a given instant the current value of attributeat isvali.

What differentiates an assignment message from a public message is that the sen
receiver of an assignment message should be the same object. It is not possible for 
jects to exchange any assignment message, which implies that values of attributes 
in an objecto can only be updated byo itself. Attribute-value updates constitute an exa
ple where the supplier of a classC is responsible for providing an implementation ofC that
satisfies the temporal order of attribute assignment defined inC’s public constraints.

Figure 5.8 shows two sequences of public and assignment messages relative to t
PLANE. The first is a legal sequence satisfying the temporal constraints in figure 5.7
second is an illegal sequence since messagetake_off follows the assignment of valuemain-
tenance to attributepl_status thus violating the second and fourth public constraints.

5.3.5 Components

An example of a class definition of a composite object modelling the flight of an aero
is given in figure 5.9. Class FLIGHT contains three components:pl, ctt andctl. Component
pl is constrained to be assigned an instance ofPLANE modelling the aeroplane making 
trip. Componentsctt andctl are constrained to be assigned instances ofCTRL_TOWER.

*  If y is an attribute with associated domain {x1, …,xn} then
y := (x1 ∨ … ∨ xk) with k ≤ n is a shorthand fory := x1 ∨ … ∨ y := xk and
y == (x1 ∨ … ∨ xk) with k ≤ n is a shorthand fory == x1 ∨ … ∨ y == xk

“ :=” is used for assigning a value to an attribute
“==” is the test-equal-value operator

(◆ assign_at_vali) ∧ (¬ (∨ assign_at_valj) S assign_at_vali)
1 ≤ i ≠ j ≤ n
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They represent the control towers of airports from which the plane respectively tak
and lands.

Even though an objectw may be a shared component of several composite objecw

cannot be referenced from two different componentsκ1 andκ2 of the same composite ob
ject. Indeed, PTL does not permit us to distinguish whether the sender or receiver of
sage referenced by componentsκ1 andκ2 is the same object or not. Thus TSOM assum
that different components of a composite object reference distinct objects.

Let us call theenvironment of a composite objecto the set of all objects existing at a giv
en point in time excludingo and its components. Public messages, attributes and p
constraints are considered to be the interface of a composite object for its environ
Public messages are exchanged between the composite object and the environme
composite object. Public constraints may not contain component message identifier
describe the behaviour of a composite object as if the communication between itse
its components has been filtered out. For example, an instanceo of FLIGHT may receive
messagesstart_flight anddispl_report from its environment. The effect of thestart_flight

message would be to set up a cooperation between the aeroplane and the two con
ers necessary for an aeroplane to make a trip. The effect of thedispl_report message would
be to display a complete report once the flight has been completed. Messagesstart_flight

anddispl_report can be sent too depending on the current abstract state ofo. Domain values
of attributefl_status model the various abstract states ofo, which are:comp_pb when there
is a problem encountered with some ofo’s components and the flight cannot be carri
out;ready when there is no problem with any ofo’s components and the coordination pro
ess between components can be started;started when the plane has taken off but not y
landed;completed when the plane has landed.

take_off land take_off land landtake_off

take_off land take_off

(a)

(b)

assign_
pl_status_

assign_
pl_status_

operational

operational

assign_
pl_status_
maintenance

Figure 5.8 Sequences of public and state messages relative to the class PLANE
((a) legal sequence; (b) illegal sequence).
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5.3.6 Component Messages

Component messages are exchanged between the composite object and its comp
The definition of each component messagemsg should indicate the component which 
the sender or receiver ofmsg. This is achieved by prefixing the message identifier with 
component identifier and separating the two identifiers with the character “$”. For e
ple, the definition of component messagectt$req_take_off means that message req_take_off

can be sent from an instance ofFLIGHT to componentctt. In addition, assuming the com
ponent definitionκ: C, each incoming (outgoing) component messageκ$msg, should
match an outgoing (incoming) public messagemsg defined in classC. For example, for the
definition of the incoming component messagectl$perm_land ← in classFLIGHT, the

class FLIGHT {
attributes

fl_status: {comp_pb, ready, started, completed};
public messages

start_flight ←, displ_report ←
public constraints

fl_status := (ready ∨ comp_pb)
❑ (start_flight ⇒

[(fl_status == ready) ∧ ❍ ((fl_status := started) ∧
 ((fl_status == started) U (fl_status := completed)))]);

❑ (displ_report ⇒ (fl_status == completed));
❑ ((fl_status == (completed ∨ pl_maintenance)) ⇒

¬ (fl_status := (started ∨ comp_pb ∨ ready ∨ completed)));
components

ctt: CTRL_TOWER;
ctl: CTRL_TOWER;
pl: PLANE;

component messages
ctt$req_take_off →, ctt$perm_take_off ←,
ctl$req_land →, ctl$perm_land ←,
pl$take_off →, pl$land →;

component constraints
…

implementation
perm_take_off(sender: oid, …)
{ … };
perm_land(sender: oid, …)
{ … };
…

}

Figure 5.9 Class FLIGHT modelling the flight of an aeroplane.
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CTRL_TOWER.
Implementing a component incoming messageκ$msg would require certifying that the

sender ofmsg isκ, therefore necessitating a comparison between the sender’s oid aκ’s
oid. However, in most object-oriented systems, the sender of a message is not know
receiver of the message. A simple solution for identifying the sender of an incoming
ponent messageκ$msg ← would be the assignment of the sender’s oid to a particular
rameter ofmsg. In particular, for any outgoing public messagemsg defined in a classC, it
would be a good practice to anticipate a parameter for the sender ofmsg. Indeed, a com-
ponent definitionκ: C in a classCC enables the definition of the incoming compone
messageκ$msg ←. The implementation ofmsg in CC needs the oid of the sender ofmsg.
An example of the above strategy is illustrated with the implementation of mes
perm_take_off and perm_land in class FLIGHT (Figure 5.9). Messageperm_take_off
(perm_land) uses the parametersender for identifying the sender of the message while e
pecting instances ofCTRL_TOWER to assign their oid tosender when sending
perm_take_off (perm_land).

5.3.7 Component Constraints

Component constraints specify the legal sequences of public and component me
exchanged between the composite object, components of the composite object and
vironment of the composite object. For all component messages the composite ob
involved either as sender or receiver. A direct communication between two compone
a composite object cannot be defined. From the above restriction it becomes obvio
a composite object acts as a coordinator for its components. Temporal dependen
volving different components must be described by means of messages exchang
the composite object. Component constraints in figure 5.10 describing the com
cation between an instanceo of FLIGHT ando’s componentspl, ctl andctt, constitute an
example of such a dependency.

The first component constraint requires attributefl_status to be initialized either with
valueready or pl_maintenance depending on the value assigned to the attribute pl_status of
component pl. More precisely, fl_status will be initialized to ready (comp_pb) if pl_status is
assigned valueoperational (maintenance). The second constraint says that messa
start_flight may be sent too if the current value offl_status is ready. In addition, ifstart_flight
is sent too then the next instant component messagereq_take_off should be sent to compo
nentctt from the composite object. The purpose of the communication between the
posite object and componentctt is to grant permission to take off. Once the permission
take off is granted, the command to take off for the aeroplane is issued from the com
object. This is expressed by the third component constraint. It says that whenever m
perm_take_off is received from componentctt, then the next message to be sent istake_off
with sender the composite object and receiverpl. In addition, attributefl_status is assigned
valuestarted immediately after messagepl$take_off has been sent topl. The fourth and fifth
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component constraints specify an analogous communication between the compos
ject and componentctl. More precisely, the fourth constraint requires that component m
sagereq_land to be sent toctl sometime in the future after the value offl_status is started.
The fifth constraint specifies that once the permission to land is granted (componen
sageperm_land is sent to the composite object from componentctl), the command to land
(component messagepl$land) for the aeroplane is issued from the composite object
addition, for indicating that the aeroplane has landed the valuecompleted is assigned to
attributefl_status. The sixth constraint says that messagedisp_report may be sent too if the
current value offl_status is completed. Finally, the last component constraint ensures t
oncefl_status has been assigned one of the valuescomp_pb or completed it cannot be later
updated.

Let us now clarify the rationale for introducing both public constraints and compo
constraints in composite object class definitions. To test consistency of a compos
ject’s specification, the specification of the temporal behaviour of its components m
taken into account. As we will describe in the next section, this is achieved by testin
satisfiability of the logical conjunction of public constraints of components and com
nent constraints of the composite object. Taking the conjunction of public constr
without regard to component constraints of a componentv of a composite objecto permits
irrelevant details of the eventual composition ofv from other objects to be abstracte
away. Ifo is in turn a component of a composite objectz, the satisfiability of the conjunc-
tion of component constraints ofz and public constraints ofo should be tested in order to
confirm either the consistency or inconsistency ofz’s specifications.

Figure 5.11 depicts the use of public and component constraints for composing o
Ovals represent class definitions. An edge labelledκ connecting a classC with a classC´

class FLIGHT {
...

component constraints
((pl$pl_status == operational) ⇒ (fl_status := ready)) ∧

((¬ (pl$pl_status == operational)) ⇒ (fl_status := comp_pb));

❑ (start_flight ⇒ ((fl_status == ready) ∧ ❍ ctt$req_take_off));
❑ (ctt$perm_take_off ⇒ ❍ (pl$take_off ∧ ❍ (fl_status := started)));

❑ ((fl_status == started) ⇒ ◊ ctl$req_land)));
❑ (ctl$perm_land ⇒ ❍ (pl$land ∧ ❍ (fl_status := completed)));

❑ (displ_report ⇒ (fl_status == completed));
❑ ((fl_status == (completed ∨ pl_maintenance)) ⇒

¬ (fl_status := (started ∨ comp_pb ∨ ready ∨ completed)));
…

}

Figure 5.10 Component constraints of class FLIGHT.
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indicates that componentκ: C´ is defined within the definition ofC. For classC4 the con-
junction of component constraints ofC4 with public constraints of classesC1, C2 andC3
should be made. Then for the composition ofC6 the conjunction of public constraints o
classes ofC4 andC5 with the component constraints ofC6 should be made.

The above schema of object composition requires public and component constra
the same object to be related by some compatibility rule. In fact, we must ensure t
any sequenceσ satisfying component constraints there exists a sequenceσ´ of public mes-
sages satisfying public constraints such that when component messages are elim
fromσ we get a sequence identical toσ´. We will call the above compatibility rule betwee
component constraints and public constraints of the same composite object thecorre-

Component constraints

Public constraints Public constraints Public constraints

Public constraints

C1 C2 C3

C4

C5

C6

... ... ...

. . .

κ4
κ5

κ1 κ2 κ3

Component constraints
Public constraints

Component constraints
Public constraints

C4 composition  =

C6 composition = public-constraints-C 4 ∧

public-constraints-C 5

component-constraints-C 6 ∧

public-constraints-C 1 ∧

public-constraints-C 2 ∧ public-constraints-C 3

component-constraints-C 4 ∧

Figure 5.11 Using public and component constraints to compose objects.
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formula:
component constraints ⇒ universalized public constraints

The universalization of public constraints is necessary for taking into account that o
several component messages can be interleaved between any pair of public mess
other words the universalization of public constraints corresponds to a shift from 
time to global time. In this case time-points in local time are identified with the comp
object’s public and assignment messages whereas time-points in global time are ide
with the composite object’s component, public, and assignment messages.

5.4 Verification

To verify the consistency of object specifications we make the following assumptions
cerning the object model of TSOM. Each classC owns an infinite number of oids. An oid
o becomes an instance ofC when it receives the predefined messagecreate_C. An instance
o of C is deleted wheno receives the predefined messagedelete_C. The deletion ofo is
modelled by restrictingo to only be able to acceptdelete_C messages.

5.4.1 Verification of Elementary Objects

The consistency of a class definitionC, from which elementary objects are instantiate
can be verified by giving as input to the satisfiability algorithm the formula:

(¬ (delete_C ∨ m1 ∨ … ∨ mn) U create_C) ∧ (4.1)
❑ (create_C ⇒ ❍ public_constraint_C) ∧ (4.2)

❑ (create_C ⇒ (❍ ❑ ¬ create_C)) ∧ (4.3)
❑ (delete_C ⇒ ❍ delete_C) (4.4)

In the previous formulam1, …, mn is assumed to be the set of public and assignment m
sages defined inC* . public_constraint_C stands for the conjunction of constraints defined
classC. Conjunct (4.1) says that no public message nor thedelete_C message can be sen
to an object prior to its creation. Conjunct (4.2) says that after the creation of an obj
public constraints must be verified. Conjunct (4.3) forbids an object to be created
than once. Finally conjunct (4.4) ensures that after accepting adelete_C message, an ob-
ject will then only be able to accept furtherdelete_C messages.

For a classC we will nameLCpublic_C† the conjunction of (4.1), (4.2), (4.3) and (4.4
The output of the satisfiability algorithm corresponding to the formulaLCpublic_C deter-
mines the consistency ofC. If no graph is produced, the definition ofC is inconsistent. If a
satisfiability graph is produced, the definition ofC is consistent. This satisfiability graph

* Assignment messages are indirectly defined via attribute definitions.
† LCpublic stands for lifecycle according to public constraints.
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then represents all legal sequences of public and assignment messages that can b
and received from an instance ofC.

5.4.2 Verification of Composite Objects

To describe the verification of a composite object’s specification let us assume the
tion presented in figure 5.12. An object is depicted by a rectangle. A rectangle corres
ing to an elementary object is labelled with a formula describing its public constra
Rectangles corresponding to composite objects are divided into two horizontal part
upper part is used for listing the public constraints of the composite object. The lowe
is used for listing the list of component messages and component constraints.

A grey arrow connecting two rectangles is drawn when the two objects are assum
exchange messages. A black arrow connecting two rectanglesx andy, leavingx and lead-
ing toy, is drawn wheny is a component ofx. Thusco in figure 5.12 is assumed to be a com
posite object having two componentsχ andξ. Let componentsχ andξ be assigned
instances of classesC1 andC2 respectively.co is assumed to be an instance ofCC.

Component constraints ofco say that the first message to be sent toco must be the public
messagestart. Immediately after the reception ofstart, messages p andq should be sent to
componentsχ andξ alternately, starting with ap message. Public constraints of comp
nents are very simple. Componentχ expects always to receive messagep. Componentξ
expects always to receive either messageq or messager.

❑ p

❑ (q ∨ r)

component messagesco: CC

χ: C1

ξ: C2

Environment of co

…

component constraints
     start ∧ ❍ (χ$p ∧ ❑ ((χ$p ∧ ❍ ξ$q) ∨ (ξ$q ∧ ❍ χ$p)))

     χ$p, ξ$q

Figure 5.12 A composite object and component specifications.
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The basic idea for testing the consistency of a composite object’s specification is to give
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as input to the satisfiability algorithm the conjunction of the object’s and its compon
specifications. If a class definitionCC contains the definitions of componentsκi: Ci,
i = 1, …, n, the input to the satisfiability algorithm would be the formula:

LCpublic_C1 ∧ … ∧ LCpublic_Cn ∧ LCcomponent_CC ∧ (4.5)
(¬ create_CC U create_C1) ∧ … ∧ (¬ create_CC U create_Cn) ∧ (4.6)

❑ (¬ (s1 ∨ … ∨ sj)) (4.7)
ConjunctsLCpublic_C1, …, LCpublic_Cn specify lifecycles corresponding to componen
κi: Ci, i = 1, …, n, respectively. ConjunctLCcomponent_CC*  specifies the lifecycle of the
composite object and stands for the formula:

(¬ (delete_C ∨ m1 ∨ … ∨ mn) U create_CC) ∧
❑ (create_CC ⇒ ❍ component_constraint_CC) ∧

❑ (create_CC ⇒ (❍ ❑ ¬ create_CC)) ∧
❑ (delete_CC ⇒ ❍ delete_CC) ∧

wherem1, …, mn is assumed to be the list of public, assignment and component mes
defined inCC andcomponent_constraint_CC stands for the conjunction of component co
straints defined inCC. Conjuncts¬ create_CC U create_Ci, i = 1, …, n, say that all compo-
nents must have been created before the creation of the composite object. T
conjunct says that component messages not defined inCC cannot be exchanged. Thus,si,
i = 1, …, j, are all such messages identifiers of the formκ$msg such that the componen
definition κ: C appears inCC, msg is a public message defined inC and κ$msg does not
appear in the list of component messages ofCC.

The constraint on component creation we have expressed with conjunct (4.6) is m
introduced for expository reasons. Its omission would not represent any significant b
for the description of object lifecycles at the specification level but additional comple
for the various formulas formalizing the notions we are proposing. Indeed, modellin
uations where an objectz could be created either before or after a composite objecto and
thenz be assigned to a component ofo requires the introduction of lengthy and complica
ed formulas.

For the composite objectco in figure 5.12, the input to the satisfiability algorithm wou
be the formula:

LCpublic_C1 ∧ LCpublic_C2 ∧ LCcomponent_CC ∧ (4.8)
(¬ create_CC U create_C1) ∧ (¬ create_CC U create_C2) ∧ (4.9)

❑ (¬ ξ$r) (4.10)
ConjunctsLCpublic_C1, LCpublic_C2 andLCcomponent_CC correspond to componentsχ,
ξ and to the composite objectco respectively.

However, the conjunctions of formulas (4.5), (4.6) and (4.7) cannot be directly giv
input to the satisfiability algorithm. A number of transformations must be applied in
vance. The rationale for these transformations and their exact nature is the subjec

* LCcomponent stands for lifecycle according to component constraints.
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following subsections. The various transformations can be carried out automatically,
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meaning that the whole verification process can be automated.
The output of the algorithm will determine the consistency of the composite ob

specification. If no graph is produced, the specification is inconsistent. If a satisfia
graph is produced, the specification is consistent. The graph produced represents 
sequences of public, assignment and component messages exchanged between 
posite object, the various components of the composite object and the environmen
composite object.

5.4.2.1 Transformations on Component Definitions
In this subsection we describe the various transformations that should be perform
conjunctsLCpublic_C1, …, LCpublic_Cn of formula (4.5).

Message Renaming

To achieve the matching between component messages defined for a composite ob
public messages of componentκ: Ci each messagemsg appearing within conjunct
LCpublic_Ci of (4.5) should be renamedκ$msg. Thus, if a class specification contains th
component definitionsκ1: C andκ2: C (i.e. both componentsκ1 andκ2 are associated
with the same classC), the component which is the sender or receiver ofmsg can be distin-
guished sincemsg is renamed eitherκ1$msg or κ2$msg. The formula resulting from that
transformation will be namedκ$LCpublic_Ci. For example, according to the public co
straints of componentχ in figure 5.12,χ$LCpublic_C1 stands for the formula:

(¬ (χ$delete_C1 ∨ χ$p) U χ$create_C1) ∧
❑ (χ$create_C1 ⇒ ❍ ❑ χ$p) ∧

❑ (χ$create_C1 ⇒ (❍ ❑ ¬ χ$create_C1)) ∧
❑ (χ$delete_C1 ⇒ ❍ χ$delete_C1)

Sharing Components

To take into account that componentκ: Ci may be shared between the composite objec co

and the environment ofco, each messageκ$msg within the conjunctκ$LCpublic_Ci,
should be replaced by the formula:

κ$msg ∨ env$κ$msg (4.11)
Messages exchanged between a component and the environment (namedenvironment
messages) are prefixed with “env$”. Messages exchanged between a component and
composite object are not renamed. Replacing a messageκ$msg with the formula (4.11)
implies that the sender or receiver of a messagemsg could be eitherco or an object from
the environment ofco. The resulting formula from that transformation is nam
env$κ$LCpublic_Ci.

For example, for componentχ in figure 5.12, env$χ$LCpublic_C1 would stand for the
formula:
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(¬ (χ$delete_C1 ∨ env$χ$delete_C1 ∨ χ$p ∨ env$χ$p) U env$χ$create_C1) ∧
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❑ (env$χ$create_C1 ⇒ ❍ ❑ (χ$p ∨ env$χ$p)) ∧
❑ (env$χ$create_C1 ⇒ (❍ ❑ ¬ env$χ$create_C1)) ∧

❑ ((χ$delete_C1 ∨ env$χ$delete_C1) ⇒ ❍ (χ$delete_C1 ∨ env$χ$delete_C1))
Recall that assignment messages cannot be exchanged between objects. Theref

environment-assignment messages can exist since a composite object cannot be th
er of an assignment message to any of its components. Thus, any assignment m
κ$msg should be simply renamedenv$κ$msg. In addition, the composite object cann
send a creation message to a componentκ: C, since components should exist before t
creation of the composite object. Therefore anyκ$create_C must be simply renamed
env$κ$create_C.

Universalization of Public Constraints of Components

Let us assume thatm1, …, mn is the collection of public messages defined in a classC and
that κ: C is a component definition appearing in a class definition for composite obj
Then we introduce the following shorthand expressions:

public_msg_C ≡ m1 ∨ … ∨ mn ∨ delete_C
κ$public_msg_C ≡ κ$m1 ∨ … ∨ κ$mn ∨ κ$delete_C
env$κ$public_msg_C ≡ env$κ$m1 ∨ … ∨ env$κ$mn ∨ env$κ$delete_C
κ$env_pub_msg_C ≡ κ$public_msg ∨ env$κ$public_msg ∨ κ$create_C

The rationale for the universalization of conjunctenv$κ$LCpublic_C corresponding to
componentκ: C has been described in subsection 5.3.1. The universalization consi
the following transformations:

replace p by ¬ κ$env_pub_msg_C U p
replace ❍ f by ¬ κ$env_pub_msg_C U (κ$env_pub_msg_C ∧ ❍ f)
replace ● f by ¬ κ$env_pub_msg_C S (κ$env_pub_msg_C ∧ ● f)

wherep is an atomic proposition andf a wff of PTL appearing withinenv$κ$LCpublic_C.
Applying the universalization ofenv$χ$LCpublic_C1 we will obtain the following for-

mula:

(¬((¬ χ$env_pub_msg_C1 U
(χ$delete_C1 ∨ env$χ$delete_C1 ∨ χ$p ∨ env$χ$p)) U

(¬ χ$env_pub_msg_C1 U env$χ$create_C1)) ∧
❑ (¬ χ$env_pub_msg_C1 U env$χ$create_C1 ⇒

(¬ χ$env_pub_msg_C1 U
(χ$env_pub_msg_C1 ∧

❍ ❑ (¬ χ$env_pub_msg_C1 U (χ$p ∨ env$χ$p))))) ∧
❑ (¬ χ$env_pub_msg_C1 U env$χ$create_C1 ⇒

(¬ χ$env_pub_msg_C1 U
(χ$env_pub_msg_C1 ∧

❍ ❑ (¬ χ$env_pub_msg_C1 U ¬ env$χ$create_C1)))) ∧
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❑ ((¬ χ$env_pub_msg_C1 U (χ$delete_C1 ∨ env$χ$delete_C1)) ⇒
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(¬ χ$env_pub_msg_C1 U
(χ$env_pub_msg_C1 ∧

❍ (¬ χ$env_pub_msg_C1 U (χ$delete_C1 ∨ env$χ$delete_C1))))))
In the above formula we have used the equivalence:

f U (f1 ∨ f2) ⇔ (f U f1) ∨ (f U f2)

while χ$env_pub_msg_C1 is the shorthand for the formula:
χ$delete_C1 ∨ env$χ$delete_C1 ∨ χ$p ∨ env$χ$p ∨ env$χ$create_C1

5.4.2.2 Universalization of Component Constraints of Composite
Objects

Let us assume thatq1, …, qp are the various component messages defined in a clasCC.
Then we introduce the following shorthand expressions:

component_msg_CC ≡ q1 ∨ … ∨ qp
msg_CC ≡ public_msg_CC ∨ component_msg_CC ∨ create_CC
The universalization of conjunctLCcomponent_CC in (4.5) is required to take into ac

count that one or several environment messages may be interleaved between a
component, assignment or public messages in which the composite object is eith
sender or the receiver. The universalization ofLCcomponent_CC consists of the following
transformations:

replace p by ¬ msg_CC U p
replace ❍ f by ¬ msg_CC U (msg_CC ∧ ❍ f)
replace ● f by ¬ msg_CC S (msg_CC ∧ ● f)

wherep is an atomic proposition andf a wff of PTL appearing withinLCcomponent_CC.

5.4.2.3 Verification of the Correspondence Property
According to the shorthand expressions we have already introduced, the correspo
property for a classCC for composite objects is easily formalized by requiring the follo
ing formula to be valid:

component_constraint_CC ⇒ (universalization of public_constraint_CC)

The universalization ofpublic_constraint_CC consists of the following transformations:
replace p by ¬ public_msg_CC U p
replace ❍ f by ¬ public_msg_CC U (public_msg_CC ∧ ❍ f)
replace ● f by ¬ public_msg_CC S (public_msg_CC ∧ ● f)

wherep is an atomic proposition andf a wff of PTL appearing withinpublic_constraint_CC.
As an example consider a composite object for which one public messagep and one

component messageκ$q have been defined, the formula❑ p being its public constraint
and the formula

❑ ((p ∧ ❍ κ$q) ∨ (κ$q ∧ ❍ p))

its component constraint. The correspondence property requires us to test the val
the formula:
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❑ ((p ∧ ❍ κ$q) ∨ (κ$q ∧ ❍ p)) ⇒ ❑ (¬ p U p)
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Using the satisfiability algorithm of PTL, the validity of the above formula is easily v
fied.

5.5 Concluding Remarks

We have presented a formal approach, founded on PTL, for the description of tem
aspects of an object’s behaviour and its composition with other objects. An object’s
poral properties are specified by means of a collection of component and public
straints. The former specify the temporal order of messages exchanged betw
composite object and its components. The latter specify the behaviour of an object a
communication between it and its internal components has been filtered out. We des
an automated procedure for verifying the consistency of object specifications based
satisfiability algorithm of PTL.

A significant source of influence for the various ideas we have presented has be
work of Manna and Wolper who investigated the composition of synchronized collec
of concurrent processes [17]. For Manna and Wolper a process specification (an ob
our approach) consists of a collection of PTL formulas (public constraints) describin
temporal order of its input/output communication operations (incoming/outgoing m
sages). The consistency of a concurrent system consisting of a synchronizer proceS (a
composite object) communicating with a collection of processesPi, 1 ≤ i ≤ n (components
of a composite object), is verified by giving as input to the satisfiability algorithm of 
the composition ofS andPi specifications. Even though one may find strong similarit
concerning both the behaviour specification of a process (object) and the verific
procedure for consistency, the two approaches are characterized by different mod
prerequisites and divergent objectives. An important prerequisite emphasized in o
proach is the ability of specifying composite objects having a nested structure of arb
depth (composite objects having components that are other composite objects). Th
ed structure of composite objects necessitated the distinction between public and c
nent constraints and the validation of the correspondence property. In addition, th
that an object may be a shared component of several composite objects led us to in
“env” messages. None of the above modelling issues have been investigated in [17].
ly, there is an important distinction concerning the objectives of the two approaches.
approach we ended up with a procedure for verifying an object’s temporal specifica
In [17] the satisfiability graph corresponding to the composition ofS andPi specifications
is further used for deriving the synchronization parts of code ofS and thePi’s. More pre-
cisely, for each process,Pi andS, Manna and Wolper derive from the set of all possible 
quences of communication operations a subset which satisfies the specified constr

Several improvements can be envisaged for TSOM along various directions. Fir
foremost, there is a need for providing the specifier with assistance for translating T
specifications into some object-oriented language. Assessing the various alternati
providing higher-level assistance than that of guidelines, we ended up investigatin
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directly support most of the notions integrated in TSOM. Further evidence to suppo
validity of this approach is given by Nierstrasz (see chapter 4). There, a type system 
ject-oriented languages is proposed which enables users to describe temporal as
object behaviour and provides rules for analyzing the type-consistency of such de
tions. Even though the formalism upon which that type system has been developed
ferent from PTL, it is likely that most of the ideas and results could also be applie
PTL. Thus, the proposed type system could serve as the starting point for enhanc
ject-oriented languages with constructs directly supporting most of TSOM’s notions

Another important direction along which additional efforts are necessary for impro
TSOM concerns the verification procedure. The satisfiability algorithm of PTL, u
which the verification procedure is based, may generate a number of nodes that gro
ponentially with the number of temporal operators of the input formula. By operatin
algorithm the way we have described, i.e. applying the algorithm to each object spe
tion separately and not to the composition of all constraints of those objects particip
in a whole part-of hierarchy, the size of input formulas is considerably minimized. H
ever, the exponential nature of the satisfiability algorithm still remains a serious effic
handicap for its computer implementation. Restricted forms of PTL may reduc
number of nodes of the satisfiability algorithm to polynomial size [10]. However, whe
such restrictions of PTL are still suitable for TSOM remains to be investigated.
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Functions, Records and
Compatibility in the λN
Calculus

Laurent Dami

Abstract Subtyping, a fundamental notion for software reusability, establishes a
classification of data according to a compatibility relationship. This relationship is
usually associated with records. However, compatibility can be defined in other
situations, involving for example enumerated types or concrete data types. We
argue that the basic requirement for supporting compatibility is an interaction
protocol between software components using names instead of positions.
Based on this principle, an extension of the lambda calculus is proposed, which
combines de Bruijn indices with names. In the extended calculus various
subtyping situations mentioned above can be modelled; in particular, records
are encoded in a straightforward way. Compatibility is formally defined in terms
of an operational lattice based on observation of error generation. Unlike many
usual orderings, errors are not identified with divergence; as a matter of fact,
both are even opposite since they respectively correspond to the bottom and
top elements of the lattice. Finally, we briefly explore a second extension of the
calculus, providing meet and join operators through a simple operational
definition, and opening interesting perspectives for type checking and
concurrency.

6.1 Introduction

The lambda calculus is a widely used tool for studying the semantics of program
languages. However, there are at least two categories of programming features that
be modelled in the lambda calculus. One isconcurrent programming, in which the non-
determinism introduced by operations taking place in parallel cannot be captur
lambda expressions. The other issubtyping, which plays a prominent role in object
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oriented systems, and is interesting for software reuse in general. Subtyping is based on a
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classification of data according to collections of valid operations; an operation val
one type is also valid for its subtypes. The termplug compatibility is sometimes used to
express this relationship. In the lambda calculus, functional application is the only o
tion, and provides no support for such a classification. Therefore, the lambda ca
must be extended to deal with subtyping: the common approach is to userecords [9][10].
In this paper we argue that subtyping does not reduce to record systems. We prop
extended lambda calculusλN (lambda calculus with names) which can encode record
and therefore objects as well — but is more general since it also supports plug comp
ity on enumerated types and concrete data types.

Our calculus is based on the observation that reusability in record systems is main
to the use ofnames for accessing fields, instead ofpositionsin simple Cartesian products
the difference is important when considering extensibility. A product type can be ex
ed in one direction, by adding a new component in the last position: any projections
for the original product are still valid for the extended product. In that view, the type(Int ×
Int) can be seen as a supertype of(Int × Int× Colour) . However, this ordering based on pos
tions can only have a tree structure. By contrast, an ordering based on names can
partial order. A well-known example is the ordering of various types of points in a re
system:

Like Cartesian products, functions use positional information to identify parame
this is the basis for thecurrying property, which allows any function ofn arguments to be
encoded as a hierarchy ofn lambda abstractions, with one single argument at each abs
tion level. However, functions cannot be ordered in a tree structure: there is no plug
patibility relationship between a function with three arguments and a function with 
two arguments. This can be illustrated with a simple example: consider the Church e
ing of Booleans and thenot function in standardλ calculus[5]:

True = λt.λf.t
False = λt.λf.f
Not = λb.λt.λf.b f t

and imagine we now want a three-valued logic, with anunknown value. We must add a
new argument, and everything has to be recoded:

TrueU = λt.λf.λu.t
FalseU = λt.λf.λu.f
UnknownU= λt.λf.λu.u
NotU = λb.λt.λf.λu.b f t u

The new encoding is incompatible with the previous one. In particular, it does not 
sense to applyNotU to True: it can only be applied toTrueU. In a software reusability per-

2DPoint = (x: Int; y: Int)

3DPoint = (x: Int; y: Int; z: Int) 2DColouredPoint = (x: Int; y: Int; c: Colour)

3DColouredPoint = (x: Int; y: Int; z: Int; c: Colour)
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spective, this implies that any existing component producingTrue orFalse values needs to

nsion
ltiple
eir
nal ap-
ames
 argu-
t

ctions,

da
culty
e-
nd fur-
raction

 the
t,

-

ine
sily, by
sen-
pter,
 high-

ic-
deri-
be modified to be usable with the new logic.
In order to get a compatibility relationship on functions, we propose a simple exte

of the lambda calculus, inspired from records: functions are allowed to have mu
parametersat the same abstraction level, and those parameters are distinguished by th
name. It then becomes necessary to specify which name is being bound in a functio
plication, but this is precisely the basis for reusability and subtyping: binding more n
than those actually used by the function does no harm, and therefore a function with
ments (x y) is compatible with a function with arguments (x y z), because both can accep
a sequence of bindings on namesx, yandz.

A consequence of this approach is that names participate in the semantics of fun
and it is no longer possible to consider lambda expressions moduloα-equivalence (re-
naming of bound variables). However,α-renaming is important in the standard lamb
calculus to avoid the well-known problem of name capture in substitutions. The diffi
is avoided by usingde Bruijn indices [8] to indicate unambiguously the relationship b
tween an applied occurrence of a variable and its corresponding abstraction level, a
thermore using names to distinguish between multiple variables at the same abst
level. A variable, then, is a pair containing both a name and an index.TheλN encoding of
Booleans is:

True = λ (t, 0)
False = λ (f, 0)
Not = λλ (b, 1)(t→(f, 0))(f→(t, 0))!

For example,(t, 0) in True is a variable. The 0 index tells that this variable is bound by
closest abstraction level (the closest ‘λ’). The other component of the pair tells tha
among the parameters associated with that abstraction level, the one with namet is to be
chosen. Parameter binding is done through the notationa(x→b), wherea andb are terms,
andx is a name. So in theNot function, the variable(b, 1), which refers to the outermost ab
straction level, receives two bindings on parameterst andf. The exclamation mark at the
end “closes” the sequence of bindings and removes an abstraction level.

As for the de Bruijn calculus, notation involving indices is convenient for mach
manipulations, but hard for humans to read. Fortunately, indices can be hidden ea
using a higher-level syntax with a simple translation function into the low-level repre
tation. This higher-level syntax will be used for all programming examples in this cha
while the low-level syntax is retained for presenting the semantics of the calculus. In
level syntax, the expressions above become:

True  = λ(t) t
False  = λ(f) f
Not = λ(b) λ(t, f) b(t→f)(f→t)!

Informally, the names in parenthesis following aλ are parameters, so now they are expl
itly declared instead of being implicitly recovered from indices. As an example of a 
vation, consider the application ofNot toTrue:

Not(b→True)! = (λ(b) λ (t, f) b(t→f)(f→t)!) (b→λ(t) t)!
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removingb from the parameter list:
(λ() λ(t, f) (λ(t) t)(t→f)(f→t)!)!

Then, by reducing the outermost ‘!’, one abstraction level (one ‘λ’) is removed:
λ(t, f) (λ(t) t)(t→f)(f→t)!

The binding ont substitutest by f and removest from the parameter list:
λ(t, f) (λ() f)(f→t)!

The binding onf is simply dropped, because the abstraction to which it is applied hasf
parameter:

λ(t, f) (λ() f)!

Finally, one ‘λ’ is removed because of the ‘!’:
λ(t, f) f

and although this final result declares botht andf as parameters instead of onlyf, it is
equivalent toFalse, because its translation into low-level syntax with indices is also λ(f, 0).

Now the interesting point about this calculus is that, in order to get an augmented
we just write:

Unknown = λ(u) u
NotU = λ(b) λ(t f u) b(t→f)(f→t)(u→u)!

Not is recoded (which is normal), but we can keep the original encodings ofTrue andFalse.
This cannot be done in the standard lambda calculus, and is interesting forreusability: any
other module based on the original encoding is still compatible with our new logic
does not need modification.

To the best of our knowledge, the idea of using names in a lambda calculus settin
not studied much in the literature. Two related systems are John Lamping’sunified system
of parameterization [19] and Garrigue and Aït-Kaci’slabel-selective lambda calculus
[3][16]. However, both calculi treat names (or “labels”) and variables as orthogonal
cepts, whereas we unify them through the use of de Bruijn indices.

6.2 A Lambda Calculus with Named Parameters

It is well known that names in the standard lambda calculus are only useful to exp
relationship between binding occurrences and applied occurrences of variables. On
relationship is established, i.e. with bound variables, names can be replaced by
names throughα substitution, or can even be removed altogether: in [8] de Bruijn p
posed a modified lambda calculus in which variables are simply denoted byindices.A de
Bruijn index is a non-negative integer expressing the distance between an applied
rence of a variable and the abstraction level to which it refers. For example, thenot func-
tion, written

Not = λb.λt.λf.b f t
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in the standard calculus, becomes
Not = λλλ 2 0 1

in de Bruijn notation (here we start indices with 0, while some authors start with 1; th
ference is not significant). There is a straightforward translation from usual lambd
pressions to their de Bruijn version. The de Bruijn notation provides acanonical
representation: allα-equivalent lambda expressions have the same translation. Fu
more, the well-known problem ofname capture is avoided. Both in standard and de Brui
calculi, each abstraction level (each ‘λ’) introduces exactly one variable. Our proposal
to allowseveral variables at the same abstraction level. To do so, de Bruijn indices a
tained, but in additionnames are used to distinguish between different variables at
same level. This section defines the calculus; the next section shows that this ex
provides support for plug-compatibility.

6.2.1 Abstract (Low-level) Syntax

Figure 6.1 presents the abstract syntax ofλN. The language is built over a (finite) set 
names.

An abstraction corresponds to the traditional notion of abstraction. Like in the
Bruijn lambda calculus, abstractions need not introduce names for their paramete
connection between variables and their corresponding abstraction level directly c
from the indices associated with variables (see below).

A variable is a name together with a de Bruijn index. This means that an abstractio
have several parameters, all with the same index, which are distinguished by their
The index indicates the abstraction level (which ‘λ’) a variable is referring to: an index o
0 refers to the closest abstraction, and higher numbers refer to farther abstraction l

A bind operation partly corresponds to the usual notion of application. However, s
an abstraction may have several parameters, it is necessary to specify which of t
bound in the expression. Therefore the constructa(x->b) means: “bindb to the parameter

x, y, z∈ Names
i, j ∈ Nat
a, b, ...∈ Terms

a := λ a abstraction
| (x, i) variable
| a(x→b) bind operation
| a! close operation

Figure 6.1 Abstract syntax.
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with namex in a” , or, expressed differently: “substituteb for every occurrence of (x, 0) in
a (modulo index renumbering, as defined below)” . The parameters of an abstraction m
be bound separately, and in any order.

A close operation closes a sequence of bindings, and removes an abstraction lev
moves one ‘λ’).

Notions of parameters, free and bound variables are as in the de Bruijn calculus
mal definition is given in figure 6.2.

6.2.2 Reduction Rules

In the de Bruijn calculus,β-reduction involves some renumbering of indices: whene
the number of ‘λ’s above a subterm changes, its free variables have to be adapted i
sequence. One way to express it is

(λa) b →β ↓0[a [0 :=↑0[b]]

where ‘↑’ (lift) is an operation incrementing all free variables by 1,‘↓’  (unlift) is the re-
verse operation, anda[i := b] is the substitution ofb for all occurrences ofi in a (again
modulo index renumbering).

The reduction rules forλN, given in figure 6.3, are very similar, since they also invo
index manipulation operations. There are two kinds of reductions, calledbind reduction
(β) andclose reduction (γ). Basically, the operations performed byβ-reduction in the
standard lambda calculus have been split in two: binding reductions substitute valu
variables, and close reductions “remove the lambda” and unlift the result, i.e. they re
an abstraction level. The definitions for lifting and substitution operations are given i
ure 6.4

FVk((x, i)) = if i = k then {(x, i)} else {}
FVk(λa) = {(x, i) | (x, i+1)∈ FVk+1(a)}
FVk(a(x→b)) = FVk(a)∪ FVk(b)
FVk(a!) = FVk(a)

FV(a) = ∪
k ≥ 0 FVk(a)

parameters(λa) = FV0(a)

aclosed ⇔ FV(a) = {}

Figure 6.2 Free and bound variables .
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Careful readers will have noticed that inλN we may need to unlift a 0 index, a situatio
which never occurs in the de Bruijn calculus. Consider de Bruijn’sβ-reduction rule above:
all 0 indices are substituted ina, so the expression passed to ‘↓’ contains no 0 index. By
contrast, theλN expression(λ (x, 0))! reduces to↓0[ (x, 0) ], which intuitively corresponds
to an error (we are trying to access a parameter that has not been bound). As a m
fact, in such situations the definition of ‘↓’ yields err, a specific term representing error
This will be discussed in detail in section 6.4; for the time being it suffices to know therr
is not an additional syntactic construct, but rather is defined as a usual term in th
guage, with the property that further binding or close operations onerr  yielderr  again.

A binding reduction can never introduce new parameters in an abstraction, becau
term passed in the substitution is lifted. Therefore if several successive bindings are
the final result does not depend on the order of the substitutions. This amounts to s
bindings are commutative, i.e. expressions of the form

a(x→b)(y→c) and a(y→c)(x→b)
derive to the same thing, provided thatx andy aredifferent names. If x andy are the same

(λa)(x→b) →β λ(a[(x, 0) : =↑0[b]])
(λa)! →γ ↓0[a]

Figure 6.3 Reduction rules.

Lifting/Unlifting
↑k[(x, i)] = if (i < k) then (x, i) else (x, i+1)
↓k[(x, i)] = if (i < k) then (x, i) else if (i=k) thenerr  else (x, i-1)

k [λa] = λ (k+1 [a])
k [a(x→b)] = k [a](x→k [b])
k [a!] = (k [a])! where‘’ is either‘↓’  or ‘↑’

err =def E(x→E)! whereE = λλ (x, 1)(x→(x, 1))!

Substitution
(y, j)[(x, i) := b] = if ((x, i) = (y,j)) then b else (y, j)
(λa) [(x, i) := b] = λ(a[(x, i+1) :=↑0[b]])
(a(y→c)) [(x, i) := b] = (a[(x, i) := b])(y→c[(x, i) := b])
(a!)[(x, i) := b] = (a[(x, i) := b])!

Figure 6.4 Lifting and substitution operations.



160 Functions, Records and Compatibility in the λN Calculus

name, all references to that name are substituted in the first binding, so the second binding

es).
eration

meter.
he se-
t
ould

nt from
ession
that re-

-

 work
, in

ion
this
is just ignored, and those bindings are not commutative.

6.2.3 Reduction Example

For illustrating the rules, we use again the expressionNot(b→True)!. The derivation was
given in an informal way in the introduction, using high-level syntax (without indic
Here, the low-level syntax is used; at each step, the lambda and the bind or close op
involved in the next reduction step are underlined.

1 (λλ (arg, 1) (true→(false, 0))(false→(true, 0))!)(arg→λ(true, 0))!
2 (λλ (λ(true, 0))(true→(false, 0))(false→(true, 0))!) !
3 λ (λ(true, 0))(true→(false, 0))(false→(true, 0))!
4 λ (λ(false, 1))(false→(true, 0))!
5 λ (λ(false, 1)) !
6 λ (false, 0)

The final result isFalse. Notice at line 4 that the binding offalse simply gets eliminated:
this is because the abstraction(λ(false, 1)) hasno parameter calledfalse; it indeed uses a
variable with that name, but since the index is not 0 this is a free variable, not a para

 At some intermediate stages (e.g. at line 2) several reductions could occur; t
quence shown here corresponds tonormal-order reduction (choosing leftmost outermos
redex first). It is therefore legitimate to ask whether a different reduction sequence w
yield the same result (whether the language is confluent). The answer isyes, and has been
established in [13]. So, as in the standard lambda calculus, results are independe
the reduction sequences through which they were obtained; furthermore, if an expr
does have a result, then the normal-order reduction strategy is guaranteed to yield 
sult (i.e. not to diverge).

Notice that if we “forget” to supply an argument toNot before applying a close opera
tion, as inNot!, we have the reduction

(λλ (arg, 1) (true→(false, 0))(false→(true, 0))!) !
λ err  (true→(false, 0))(false→(true, 0))!
λ err  (false→(true, 0))!
λ err !
λ err

which is equivalent toerr, i.e. an error is produced.

6.2.4 Higher-level Syntax

Indices were necessary for defining the calculus, but are difficult to read. In order to
practically with the calculus, we will use a higher-level syntax, given in figure 6.5
which the indices need not be explicitly written. There is a straightforward translatT
from this syntax into the original syntax, which is formally defined in figure 6.6. In 
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new notation, the parameters of an abstraction aredeclared as a list of names in parenthe
sis. A variable is written simply as a name: the index is recovered by looking for the c
abstraction which declares the same name. In case the same name is used at se
straction levels, and one wants to override the default variable matching scheme, th
of the variable can be preceded by a collection of backslashes. This tells the tran
function to start looking for a declaration, not at the next abstraction level, but one o
eral levels higher (according to the number of backslashes). The parameter list foll
a lambda can be empty, as in

λ() Not(arg→True)!

This is like a closure, i.e. a function that needs no arguments but is not evaluated y
suming a lazy interpretation as in section 6.4.1). Forcing evaluation is then done w
‘!’ operator.

The translationT from this syntax into the original syntax is like translating the stand
lambda calculus into de Bruijn notation (see [12]). The first argument to the trans
function is a set of currently declared variables; at each abstraction level this set is 
ed. The translation is defined for closed terms by taking the initially empty set of varia
Variables which are not declared at any level are translated into an error by thematchVar
function. As an example of a translation, consider the expression

v := x simple variable
|  \v “outer” variable

a := λ(x1 … xn) a abstraction
| v variable
| a(x→b) bind operation
| a! close operation

Figure 6.5 Higher-level syntax.

TV [λ(x1 … xn) a]  = λ (TV' [a])
where V' ={(x, i+1) |  (x, i)∈ V} ∪ {(x1, 0), ..., (xn, 0)}

TV [\...\x ] = matchVarV (x, i) wherei is the number of‘\’
TV [a(x→b)] = TV [a](x→ TV [b])
TV [a!] = (TV [a])!
matchVar V (x, i) = let J={j | (x, j)∈ V, j ≥ i} in

if (J = {}) then err
else (x,min (J))

Figure 6.6 Translation function.
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(assuming that infix addition is part of the language). After crossing the two abstra
levels, the set V of declared variables is

V={(x, 1), (y, 1), (x, 0), (z, 0)}

and therefore the translation is
λλ (x, 0) + (y, 1) + (z, 0) + (x, 1) + (y, 1) + err  + err

This shows how the backslash can be used to distinguish between parameters w
same name, but at different levels. Notice thatx and \x are different variables, while both
y and \y are translated into (y, 1), because there is noy parameter at the inner abstractio
level. Furthermore, both \z and \\x are translated intoerr, because no corresponding varia
ble declaration can be found.

6.3 The Calculus at Work

In this section we show how several common programming constructs are encodedλN.
To make the examples more appealing, we assume that integers, Booleans and
have been added to the language, with corresponding operations (integer arithmetiif ex-
pression, etc.). Such extensions are common for the lambda calculus and can be s
be conservative, i.e. expressions in the extended language are always convertible 
original language. As a matter of fact, an encoding of Booleans has been seen alrea
an encoding of integers is given in section 6.3.4. In consequence, the semantics of 
guage does not change. We start with a discussion on functions and recursion, just
a clearer map of the relationship betweenλN and the standard lambda calculus. Then 
specificity ofλN, namely the encoding of extensible constructs, is demonstrated thr
enumerated types, concrete data types and records.

6.3.1 Functions

It can be seen easily thatλN contains the usual lambda calculus. Any expressioneof the
pure lambda calculus can be encoded in a straightforward way, by choosing a sing
trary name (sayarg) to be associated with variables:

• Take the de Bruijn encoding ofe.
• Replace every application MN by M(arg→N)!, i.e. a binding ofarg  immediately fol-

lowed by a close operation.
• Replace every variablei by (arg , i).

For example, the lambda expression λf x y. f(x + y) has de Bruijn encoding λλλ 2(1+0) and
becomes here

λλλ(arg, 2)(arg→(arg, 1)+(arg, 0))!

which corresponds to
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in the higher-level notation. Now how does this compare to the expression:
λ(f x y) f(arg→(x+y))!

which intuitively seems more natural? In both formulations, the arguments can be b
and the final result evaluated. The difference appears with partial bindings. When
ments are declared at the same abstraction level, as we do in the second formulati
can be bound separately, in any order, and even if all arguments are supplied, the 
expression is not evaluated until a close operation takes place. This can be usefu
will see later, for building lazy data structures. Furthermore, such functions are 
morphic, in the sense that any context which binds more arguments than justf, xandy will
accept this abstraction without generating an error. However, if we want to do partial
ings, leaving the other arguments open, the close operation cannot be inserted, wh
plies that we lose the currying property, i.e. the possibility to bind one single argume
get in return another function over the remaining arguments. This is because usua
tional application corresponds here to a bindingand a close operation. When writing 
function, there is therefore a choice to make about how to organize its argument
methodological issues involved in such choices have not been explored yet. Our c
in the coming examples are guided by some heuristics acquired during our vario
periences in using the system.

6.3.2 Recursion

A fixed-point operation over a functionalλ(x)a yields a recursive function, as in the lam
da calculus; however, the namex must be taken into account in the fixed-point operati
So for each namex we define a corresponding fixed-point operator

Yx = λ(x) (λ(x) \x(x→x(x→x)!)!)(x→ (λ(x) \x(x→x(x→x)!)!))!

This is like the usual combinator Y, specialized to bind namex. It can be checked that fo
f=λ(x)a we have

Yx(x→f)! →* f(x→Yx(x→f)!)!

In order to facilitate such recursive definitions we introduce some syntactic sug
expression with recursion over parameterx is writtenµ(x)a and is translated into

Yx(x→λ(x)a)!

With this extension we can write
 Factorial = µ(f) λ(arg) if (arg > 1) then arg*f(arg→(arg-1))! else 1

6.3.3 Extensible Enumerated Types and Case Selection

We already have seen an encoding of Boolean values, which is a simple enumerat
with two values. The approach can be generalized ton-ary enumerated types:
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Orange = λ(orange) orange
Red = λ(red) red

Each colour in the encoding above is a kind of identity function on a particular name
way to use such values is to performcase selection:

trafficLight = λ(colour) colour(green→Go)(orange→Stop)(red→Stop)!

Here we assume two defined driving actionsGo andStop. Depending on the colour, the
appropriate driving action is chosen. Observe that case selection is just a sequence 
ings. The set of colours can be extended easily:

Blue = λ(blue) blue
Violet = λ(violet) violet
Yellow = λ(yellow) yellow

complement = λ(colour) colour(green→Red)(blue→Orange)(violet→Yellow)
(red→Green)(orange→Blue)(yellow→Violet)!

so the first three colours are “reused” here in a different context, without breaking the
inal encoding oftrafficLight. As explained in the introduction, this cannot be done in the
standard lambda calculus.

6.3.4 Extensible Concrete Data Types

A direct extension from previous section is the encoding of concrete data types. Co
data types are built through a finite number ofconstructors, which can take arguments
Functions using such data types then have to perform case selection over the const
We will consider the example of natural numbers, with two constructors:

Zero = λ(zero) zero
Succ = λ(n) λ(positive) positive(pred→n)!

The nameszero andpositive are used to distinguish constructors. Case selection is do
with enumerated types, except that constructors with arguments must be able to p
corresponding values to the function using the data type, so there must be a conven
tween the constructor and its users about which name to use for that purpose. In t
of Succ, the conventional name ispred. An example of using the data type is the additi
function:

Add = µ(add) λ(left right) left
(zero→right)
(positive→λ(pred) add(left→pred)(right→Succ(n→right)!)!)!

which proceeds by decomposition of the left argument.
The encoding can be extended easily to include negative numbers as well:

Pred= λ(n) λ(negative) negative(succ→n)!

Inc= λ(n) n(zero→Succ(n→n)!)(positive→Succ(n→n)!)(negative→λ(succ)succ)!

Dec= λ(n) n(zero→Pred(n→n)!)(positive→λ(pred)pred)(negative→Pred(n→n)!)!
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(positive→λ(pred) add(left→pred)(right→Inc(n→right)!)!)
(negative→λ(succ) add(left→succ)(right→Dec(n→right)!)!)!

Again, functions using only positive numbers neednot be recoded because of that exte
sion.

Generally speaking, the encoding of data types given here is pretty low-level. How
syntactic sugar for data type constructors and pattern matching, as in most moder
tional languages, could be added easily.

6.3.5 Records

A more interesting example of extensibility and polymorphism is the encoding of rec
We extend the syntax with a record constructor and a field selection operation; the
lation of these constructs is given in figure 6.7. The translation can be understood

easily through a comparison with the encoding of binary products (pairs) in the sta
lambda calculus:

(a, b) = λsel. sel a b
fst = λpair. pair (λfirst. λsecond. first)
snd = λpair. pair (λfirst. λsecond. second)

The encoding of a pair is a function which takes aselector and then binds both member
of the pair to that selector. A selector is just a function taking two arguments and retu
one of them, so thefst projection function applies a selector which extracts the first a
ment, while thesnd function applies a selector which extracts the second argument. 
ilarly, a record inλN is a function which takes a selector, and binds all fields
corresponding named parameters in that selector. Since one abstraction level wa
because of thesel argument, all internal fields are lifted in order to protect free variab
from being captured. A selector for fieldx is just an identity function on that name, so
field selection operation simply binds the appropriate selector to thesel argument of the
record. Here are some examples:

{x=5} = λ(sel) sel(x→5)!
{x=3 y=2} = λ(sel) sel(x→3)(y→2)!
{x=5}.x = (λ(sel) sel(x→5)!)(sel→(λ(x)x))! →* 5
{x=3 y=2}.x = (λ(sel) sel(x→3)(y→2)!)(sel→(λ(x)x))!→* 3
{x=3 y=2}.z = (λ(sel) sel(x→3)(y→2)!)(sel→(λ(z)z))!→* (λ(z)z)! → err

T [{x 1=a1 … xn=an}] = λ(sel) sel(x1→↑0[a1])…(xn→↑0[an])!
T [a.x] = a(sel→λ(x)x)!

Figure 6.7 Records
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We see that“.x” is a polymorphic operation that can be applied to any record containi
least anx field.

The same encoding can support more general operations on records, like a form 
ecute in context” operation, similar to quoted expressions in LISP or to the bloc
Smalltalk: for example an expression like

r.[x + y +z] = r(sel→λ(x y z)x + y + z)!

asks recordr to add its fieldsx, y andz and return the result.
Moreover recursion can be used to get recursive records:

Seasons= µ(rec) { spring= {name=”spring” next= rec.summer}
summer= {name=”summer” next= rec.autumn}
autumn= {name=”autumn” next= rec.winter}
winter= {name=”winter” next= rec.spring}

}

so for exampleSeasons.autumn.next.next.name yields “spring”.Seasons can be seen as a
recursive record, but also as a memory with four locations. Expressions likerec.summer
work as “pointers” in the memory fixed bySeasons. Here we have a flat space of memo
locations, but the approach can be easily extended to define hierarchical memory 
with corresponding fixed-point operations at different levels. Pointers in the hierarc
space simply would use variables with different indices (using the ‘\’ syntax).

6.3.6 Updatable Records (Memories)

The next step is to define updatable records, or, seen differently, writable memories
can be done using the previous constructs, as pictured in figure 6.8. An updatable record
is a recursive function, with one named parameter for each field; internally it consis
simple record with aget field, which returns the internal values, and aset field, which re-

T [〈x1 … xn〉] = µ(rec)λ(x1 … xn) {
get={x1=x1 … xn=xn}
set={x1= λ(arg) rec(x1→arg)(x2→x2)…(xn→xn)!

…
xi= λ(arg) rec(x1→x1)…(xi→arg)…(xn→xn)!
…
xn= λ(arg) rec(x1→x1)…(xi→xi)…(xn→arg)!
}

}
T [〈x1=a1 … xn=an〉] = (T [〈x1 … xn〉])(x1→a1)…(xn→an)!
T [a〈x := b〉] = a.set.x(arg→b)!

Figure 6.8 Updatable records.
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and uses recursion to return the same updatable record, in which all fields are bo
their current values except the one being updated which takes the new value. Upd
record consists of selecting the appropriate update function, and binding the new v
its arg parameter. Functions using this encoding are naturally polymorphic: the func

ZeroX = λ(aRecord) aRecord〈x := 0〉

can be applied toany record containing anx field and returns the original record, with on
field x being updated.

Updatable records give full flexibility for modelling local state of objects and ob
identifiers. In languages using a flat domain of object identifiers, like Smalltalk or O
tive-C, each object would have its own updatable record, representing local state, an
all objects would be stored in a global record, representing the space of object iden
Some other languages have a more complex structure: for example in C++, an obj
be contained in the memory space of another object (so the implementation struct
flects the “has-a” relationship). Modelling such structures inλN would involve hierarchi-
cal updatable records, in which some fields contain sub-records.

6.3.7 Field Overwriting

The encoding presented in the previous subsection supports modification of an e
field, but not addition of new fields. An alternative approach to updatable records is t
sider field overwriting. Here is how it can be done:

r[x←a] = λ(sel) r(sel→sel(x→a))!

This creates a new record fromr in which fieldx has valuea, whether or notx was already
present inr. Observe that the encoding is based on the fact that the selector receive
parameter is immediately bound toa on namex, without a close operation, before being
passed to the recordr. This explains why any binding onx in r will be ignored. Given a
field overwriting operation, it is possible to implement record concatenation “for fr
following Rémy’s technique [26]: one would start with an empty record

λ(sel) sel!

and then consider each record as a “record-modifying function”, adding the desired 
such functions can be combined by functional composition.

6.4 Compatibility Relationship

Several examples of extensible and reusable constructs have been shown, but so
have no formal definition of a compatibility relationship. In this section such a rela
ship is studied, through an observational classification ofλΝ expressions. In the standar
lambda calculus, the only observable property of terms is their termination beha
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errors never occur, since all values are functions. Here, we have seen that errors
generated during a computation, and therefore errors also represent a valuable o
tion. So, as a complement to the usual approximation ordering, which compares te
the basis of convergence, we also consider a compatibility ordering, comparing ter
the basis of error generation. This section is mainly inspired from operational orderin
Scott Smith’s work [28], who himself draws from a vast body of literature on observa
al relations (see for example [20][1]). However, Smith identifies errors with diverge
whereas we treat them as distinct observations.

6.4.1 Errors and Lazy Operational Semantics

Now it is time to justify our encoding of errors, as it was given in figure 6.4. The com
expression definingerr  could be written, in high-level notation, asµ(x) λ() x, i.e. as an
abstraction without any parameters, containing itself. Such a term can consum
sequence of bind or close operations, but always reduces back to itself. In a cla
lambda calculus, a similar behaviour is displayed by the term

(λx.λy.xx)(λx.λy.xx)

which consumes any input without ever using it. Under a usual interpretation, this i
identified with the bottom element (divergence); however, in a lazy interpretation, 
comes the top element. Boudol [7] calls this an “ogre”, while Abramsky and Ong [1
“a term of order∞”. Usually the “ogre” is not considered very interesting, because it d
not interact with its environment. However, this is precisely the behaviour of a run-
error: once it occurs, the “continuation” of the program is ignored, and the final res
the error. So the ogre is a natural choice for representing run-time errors. In conseq
we define in figure 6.9 a lazy convergence relation, wherea⇓b @m means “a converges
tob in m steps of computation”. We simply writea⇓ if there area', m such thata⇓ a' @m,
and a⇑ if ¬(a⇓).

λa ⇓ λa @ 0

Figure 6.9 Convergence to weak normal form.

a(x→b) ⇓ λ(a' [(x, 0) :=↑0[b]]) @ m+1

a ⇓ λa' @m

a! ⇓ c @m+n+1

a ⇓ λb@m ↓0[b] ⇓ c @n
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Defini t ion 14 A terma iserroneous (writtena?) iff it converges and any binding or
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close operation on it yields an erroneous term again. Formally:

a? ⇔ a⇓ and (a!)? and∀b. (a(x→b))?

Another way to state this is to say thata is erroneous iff∀o, ao⇓, whereo is a
sequence of bind or close operations. We writea¿ whenever¬(a?). It is an easy
exercise to check that (err?).

6.4.2 Approximation and Compatibility

Defini t ion 15 The approximation ordering, written≤⊥, is

a ≤⊥ b ⇔ ∀C[–]. C[a]⇓ ⇒ C[b]⇓

where acontext C[–] is a term with “holes”, which can be filled by another terma
through the context-filling operation C[a].

Defini t ion 16 The compatibility ordering, written≤err, is

a ≤err b ⇔ ∀C[–]. C[b]¿⇒ C[a]¿

Observe that herea andb are in reverse order in the implication. The first preord
states that whenevera converges,b also converges. The second preorder states 
wheneverb does not generate an error,a does not either. It may seem strange th
these definitions are in opposite directions, but this corresponds to standard p
in semantic domains and subtype orderings. In semantic domains, the least d
element (representing the divergent program) is at the bottom, and more d
elements are higher up in the ordering. In type systems, the least defined type
of anything) is usually at the top, and more refined types are lower. It can be che
for example, thatNotU ≤err Not , i.e. our extended version of thenot operation for a
three-valued logic, is indeed compatible with thenot operation on Boolean value
only.

In [14] we have defined similar orderings for a pure lambda calculus with records
without extensible records), and we have shown that both orderings coincide, i.e. ap
ma and compatibility are the same whenerr  is chosen as the top element. The proof can
transposed toλN without difficulty. So we have a formal framework for reasoning not o
about equivalence of software components, as in usual semantics, but also abo
plug-compatibility relationships. Some consequences of this result are discussed
rest of this section.
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6.4.3 Lattice Structure
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Define ⊥ = µ(x) x. This is the divergent term [observe the difference witherr  = µ(x) λ() x].
⊥ is smaller than any term: a divergent term never generates an error, and never red
a WNF in any relevant context. On the other hand,err  is a greatest element in both orde
ings, since it never diverges and is an error. This implies that the order is alatticewith top
elementerr and bottom element⊥.

The fact that we get a lattice is interesting in many respects. Lattices were orig
considered by Scott for solving domain equations. Then the presence of a top eleme
criticized, in particular by Plotkin [25], because this element fails to satisfy some intu
ly natural identities about the conditional function: for example we expect a phrase 

if a then b else c

always to give eitherb orc; however, this does not hold whena is the top element, and it is
not clear then what the answer should be: it could be TOP itself, or it could be the 
bound ofb andc, but none of these solutions seems to make sense in usual interpreta
Therefore the semantics community moved to algebraic CPO models instead of lat

Since our approach is purely operational, there is no reason here to argue for or 
a particular model. Nevertheless, it is worth noticing that the operational lattice has
natural properties. In particular, interpreting the top element as an error, it is quite n
that we should have

if err then b else c = err

The answer is neitherb norc, but this does not contradict our intuitive understanding
the conditional statement: if the first argument is an error, then the whole statemen
duces an error.

A more recent discussion about lattice models was written by Bloom [6], part
based on Plotkin’s previous work. Bloom supports the view that, despite the fact th
tices are mathematically more tractable than CPOs, they have several defects whe
as models for programming languages. One of his main criticisms to lattice models 
they are not single-valued: for example if we choose the second solution for the cond
al statement above, namely

if  TOP then b else c = b c

we get the upper bound ofb andc, which, if not TOP itself, is a “multiple value”. However
the justification for taking single-valuedness as an essential criterion is not strongly 
lished. Therefore Boudol [7] criticizes Bloom’s position, and argues that under a diffe
notion of observation, multiple values make perfect sense. Parallel functions in Bou
paper yield a lattice model. Similarly, powerdomains used for modelling concurrency
have a lattice structure. These observations lead us to another extension of the c
which completes the operational structure by introducing all meets and joins. Full d
opment of these constructs would go beyond the scope of this paper; however, a b
petizer will be given.
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6.4.4 Meets and Joins

Figure 6.10 introduces twon-ary constructs calledcombination andalternation. The
reduction rules are exactly the same for both: any binding or close operation is s
distributed to the internal members. Therefore they can be seen as an array of no
municating processors accepting common operations, in a kind of SIMD archite
The difference between combinations and alternations comes observationally fro
definition of convergence: combinations converge if all their members converge, wh
ternations converge if at least one member converges. Since convergence is at the 
tion of our approximation/compatibility relationship, we have the following propertie

• The combination is aglb (greatest lower bound, meet) operator.
• The alternation is alub (least upper bound, join) operator.

This has many interesting applications, all related to various possible uses ofsets of
values.

The alternation operator can be interpreted to model non-determinism. A very s
proposal has been made by Boudol under the nameparallel functions [7]. Boudol mainly
discusses the use of parallel functions for solving the full abstraction problem (relatin

Syntax
a := ... |

&(a1 … an) | combination
|(a1 … an) | alternation

Convergence

Figure 6.10 Combinations and alternations.

|(a1 … an)⇓ |(a1 … ai-1 b  ai+1…an)@m+1

∃ai. ai ⇓ b @m

&(a1 … an)⇓ &(b1 … bn)@(m1+ … mn + 1)

∀ai. ai ⇓ bi @mi

θ(a1 … an)!⇓ a' @ m+1

θ(a1!… an!)⇓ a' @ m

θ(a1 … an)(x→b)⇓ a' @ m+1

θ(a1(x→b) … an(x→b))⇓ a' @ m

whereθ is either ‘|’ or ‘&’
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modelling, where all possible outcomes of a computation are grouped together in an
nation, on which further processes can compute: in [13] we discuss an encoding of 
memory, processes and synchronization primitives using alternations. Yet another
bility is to interpret an alternation as a type, “containing” all its member terms. This o
very interesting perspectives for typing, since the notions of type membership and su
relationship are both captured by the approximation/compatibility ordering, and ther
values and types are merged into one single concept. Finally, since we deal with 
values we can directly apply Scott Smith’s results [28] for proving theorems like fi
point induction in a purely operational setting, without going to semantic domains.

Applications of the combination construct, which in a sense is an “overdetermin
operator, are less intuitive. Remembering thaterr  is the top element, combinations can b
used to remove errors in a computation, by taking the lower bound of a set of values
can be applied for operations such asrecord concatenation [10][17]. Moreover, following
the idea of unifying types and values, combinations have the same properties asinter-
section types[4][24]. Interestingly, a connection between record concatenation and i
section types as also been proposed by John Reynolds in his Forsythe language[2

6.5 Conclusion

A lambda calculus with name-based interaction has been described. A few system
similar ideas have been mentioned in the introduction [19][16]; the original aspect oλN
is the unification of names with variables through the use of de Bruijn indices. Not o
this more practical; it also allows us to directly import most of the results establishe
the standard lambda calculus. Extensible functions inλN are a good basis for studyin
reusability mechanisms (in particular inheritance and subtyping), and the econo
constructs compares advantageously to other approaches based on records ([9][17
tensible methods [23].

The other extension (alternations and combinations) is perhaps more ventur
touches several hot research areas, like observational equivalences and full abstrac
lambda models [1], parallel functions [7], extensible records [17], and semantics o
currency. Most of these issues require further investigation. An exciting challenge is
how theπ-calculus[21], also based on names, relates toλN.

The issue of typing was mentioned very briefly, and the development of a full type
ory for the calculus is under investigation [13][15]. Using the term ordering as a sem
basis for types seems a promising direction, and has some similarities with type th
based on the Curry–Howard isomorphism (identification of types with logical prop
tions)[29], in which the usual distinction between terms and types is also blu
Including name-based interaction in such theories would be a promising step towa
object-oriented logic, and would relate to what Aït-Kaci callsfeatures [2]. Related to this,
the term ordering inλN can be useful for object-oriented databases, since it gives a q
language for free!
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Apart from those foundational issues, there are several practical directions in which this
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work can be extended. One, which in fact was the original motivation for developin
calculus, is to use it for explaining the differences between various forms of inheri
and delegation in object-oriented languages. In addition, many other aspects of pro
ming languages, like modularity, state manipulation or restricted islands of memory
tions [18] can be studied in this framework. Ultimately, it is of course tempting to b
higher-level syntactic constructs on top of the calculus and make it a full program
language integrating these various aspects.

Finally, it is worth considering implementation issues for this calculus, and perha
design a name-based abstract functional machine. As noted by Garrigue [16], nam
be translated into offsets in a machine implementation; however, their combination
de Bruijn indices probably raises some technical problems. Combinations and al
tions are more challenging. Evaluating a combination can be done by sequentially 
ating all of its members, but evaluating an alternation must be done in some fo
parallelism, to be consistent with our notion of WNF.
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Component Classification
in the Software Information
Base

Panos Constantopoulos and Martin Dörr

Abstract A key component in a reuse-oriented software development
environment is an appropriate software repository. We present a repository
system which supports the entire software development lifecycle, providing for
the integrated and consistent representation, organization, storage, and
management of reusable artefacts. The system can support multiple
development and representation models and is dynamically adaptable to
new ones. The chapter focuses on the facilities offered by the system for
component classification, an important technique for retrieving reusable
software. It is demonstrated that the inherently delicate and complex process
of classification is streamlined and considerably facilitated by integrating it into
a wider documentation environment and, especially, by connecting it with
software static analysis. The benefits in terms of precision, consistency and ease
of use can be significant for large scale applications.*

7.1 Introduction

Software reuse is a promising way of increasing productivity, assuring quality and 
ing deadlines in software development. There are several, non-exclusive approache
use, including organizational support, software libraries, object-oriented programm
AI-based methods for design reuse and process analysis.

* Work on the SIB was partly funded by the European Commission through ESPRIT project ITHAC
Partners in ITHACA were: Siemens-Nixdorf (Germany), University of Geneva (Switzerland), FORT
(Greece), Bull (France), TAO (Spain) and Datamont (Italy).
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A common theme in all these approaches is that reuse concerns not only software code,
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but also design, requirements specifications and development processes. Suppor
communication of all these aspects of software development between the original 
oper and the reuser, and, furthermore, the cooperation within communities of softwa
velopers (“software communities” [14]), is a basic concern of reuse technology. Sof
repositories are key components in reuse-oriented software development environ
[9] supporting the organization and management of software and of related inform
as well as the selection and comprehension of relevant software and of developmen
esses. In an orthogonal manner, object-oriented languages facilitate the developm
reusable software components through encapsulation, data abstraction, instantiat
heritance, genericity and strong typing. For broad, comprehensive surveys of reu
reader is referred to [5] [18]. Krueger presents in [18] a taxonomy of reuse metho
terms of their ability to abstract, select, specialize (adapt) and integrate software arte

In this chapter we assume that applications are developed using object-oriented
nology, and that the software components of interest are mainly classes specifie
object-oriented programming language. As pointed out in [14], the management of
class collections introduces a number of problems concerning the representation o
es, in particular, the expression of structural and descriptive information, the repre
tion of relationships and dependencies among classes in a collection, the selecti
understanding of classes by appropriate querying and browsing facilities, and the s
of class evolution.

Small to medium size collections of software classes can be organized by fairly s
schemes in the style of Smalltalk-80 [15]. Classes are hierarchically organized by in
ance and are grouped by functionality into possibly overlapping categories. The
browser allows the selection and exploration of reusable classes.

Various approaches have been proposed for addressing the selection problems
in large collections. One such is the faceted classification scheme developed by 
Diaz and Freeman [23]. In this scheme, components are classified according 
descriptors (“facets”), the values of which are hierarchically organized and on wh
conceptual distance is defined. A variant of the faceted classification scheme, bette
for object-oriented software, was developed within the ESPRIT REBOOT project 
Other approaches to organizing software collections include: library cataloguing 
hypertext (DIF, [13]); object-oriented libraries (Eiffel [20], Objective-C); ER and exte
ed models (IBM Repository [19], Lassie of AT&T [11]); and hybrid approaches (e.g.
[8]).

The Software Information Base (SIB) is a repository system, developed within the
PRIT ITHACA project, that stores information about the entire software lifecycle. 
SIB offers a uniform representation scheme for the various artefacts and conce
volved in the different stages of the software lifecycle; the scheme can be extended
commodate new ones. It also supports multiple forms of presentation, depending 
tool using the particular artefact. Finally, it provides querying, browsing and filte
mechanisms for selecting and understanding artefacts, and interfaces to other softw
velopment tools.
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In this chapter we first give an overview of the SIB and of its concepts in section 7.2. We
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examine the querying and browsing capabilities of the SIB in section 7.3. The SIB’s
sification scheme is described in section 7.4; section 7.5 explains how the classifica
software artefacts is automated, whereas section 7.6 reports on our experiences w
SIB. We conclude with perspectives for future work.

7.2 The Software Information Base

7.2.1 General Concepts

The SIB is structured as an attributed directed graph, with nodes and links respe
representing descriptions of software artefacts (objects) and relations between
There are three kinds of descriptions, namely:

1. requirements descriptions (RD);

2. design descriptions (DD); and

3. implementation descriptions (ID).

These descriptions provide three corresponding views of a software object:

1. an application view, according to a requirements specification model (e.g. SA

2. a system view, according to a design specification model (e.g. DFD); and

3. an implementation view, according to an implementation model (e.g. set of
classes along with documentation).

Descriptions can be simple or composite, consisting of other descriptions. The tede-
scriptions reflects the fact that these entities only describe software objects. The o
themselves reside outside the SIB (e.g. in a Unix file storing a C++ program), acce
from the corresponding descriptions.

There are several kinds of relationship between descriptions or parts of descri
serving a variety of purposes:

• Flexibility in definingor modifying types of artefacts and relationships, or even 
scription models, accomplished through multiple instantiation and a series of in
tiation levels.

• Classification of artefacts and relationships ingeneralization/specialization hierar-
chies supporting multiple strict inheritance.

• expression ofsemantic andstructural relationships between artefacts, including a
gregation, correspondence, genericity and similarity.

• expression ofuser-defined andinformal links— including links for hypertext navi-
gation, annotations, and for defining version derivation graphs.

• grouping of software artefacts descriptions into larger functional units.
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An important concept in the SIB is theapplication frame (AF). Application frames rep-
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resent complete systems or families of systems and comprise (hasPart) at least one imple-
mentation and optional design and requirements descriptions. AFs are fu
distinguished into specific and generic (SAFs and GAFs) while the RDs, DDs and I
an AF should be considered as groupings of such descriptions (i.e. other associatio

A SAF describes a complete system (be it a linear programming package, a text p
sor or an airline reservation system) and includes exactly one ID. A GAF is an abstr
of a collection of systems pertinent to a particular application and includes one RD, o
more DDs and one or more IDs for each DD. Application frames play a key role i
reuse-oriented software development lifecycle envisaged in ITHACA. Generic com
nents and applications are produced byapplication engineers. These are represented b
GAFs and constitute a core of, presumably good quality, components and applic
which are configured and adapted to fit particular needs byapplication developers. Such
derived, specific systems are represented by SAFs. For more on the ITHACA appli
development methodology and the role of application frames see [10] [9].

The representation language employed in the SIB is Telos [21]: a conceptual mod
language in the family of entity–relationship models [7]. The main reason for choo
Telos over other E-R extensions, such as those used by the PCTE+ OMS or th
Repository Manager, MVS, is that it supports unlimited instantiation levels and trea
tributes as objects in their own right (which, therefore, can also have attributes). The
tures account for great expressiveness and easy schema extension, and are fully e
in the SIB.

7.2.2 Relationships Between Software Artefacts

Relationships are essential for the classification and retrieval of software artefact
therefore elaborate on each kind of link and indicate, when appropriate, how they su
the querying and browsing activities in the SIB.

Attribution

Attribution is represented byattribute links. This is a general, rather unconstrained rep
sentation of semantic relations, whereby the attributes of a description are defined
instances of other descriptions. An attribute can have zero or more values. Consid
following example:

Description SoftwareObject with
attributes

author : Person
version : VersionNumber

SoftwareObject has attributesauthor andversion whose values are instances ofPerson and
VersionNumber respectively. Dynamic properties, such as ‘calls’ relations of methods
procedures, also fall into this category.
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Aggregation is represented byhasPart links. This relates an object to its components. F
example:

Description SoftwareObject with
...
 hasPart

 components: SoftwareObject

The components of an object have a distinct role in the function of the object and an
sible changes to them affect the aggregate object as well (e.g. new version).

Classification

Classification (converseinstantiation) is represented byinstanceOf links. Objects sharing
common properties can be grouped into classes. An object can belong to more th
class. Classes themselves are treated as generic objects, which, in turn, will be in
of other, more generic objects (so-called “meta-classes”). In fact, every SIB object 
be declared as an instance of at least one class. Effectively, an infinite classificatio
archy is established starting with objects that have no instances of their own, called t
Instantiation of a class involves instantiating all the associated semantic relations
relations are treated as objects themselves. For example:

Description BankIS instanceOf SoftwareObject with
author : Panos
version : 0.1

 components : CustomerAccounts, Credit, Investments

Theattribute andhasPart links of BankIS are instances of the correspondingattribute and
components links ofSoftwareObject.

Classification is perhaps the most important modelling mechanism in the SIB.
gives a detailed account of the construction of models and descriptions in the SIB.

Generalization

Generalization (conversespecialization) is represented byisA links. This allows multiple,
strict inheritance of properties between classes leading to the creation of multiple 
alization hierarchies. A class inherits all the attributes of its superclasses (possibly
than one — multiple inheritance); however, inherited properties can only be constra
not overridden (strict inheritance).

Correspondence

Correspondence is represented bycorrespondsTo links. A software object can have zer
or more associated requirements, design and implementation descriptions. Corre
ence relations concern the identity of an object described by different descriptions a
have as parts other correspondence relations between parts of the corresponding 
tions. Correspondence links actually indicate that the descriptions they link tog
describe the same object from different perspectives. The correspondences of th
need not be one-to-one. For instance, a requirements specification may corresp
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more than one design and a design may have more than one alternative implementation.
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Similarly, a single implementation could correspond to more than one design entity
plication Frames are an important type of controlled correspondence in the SIB.

Similarity

Similarity links represent similarity relationships among software objects and prov
foundation for approximate retrieval from the SIB. Similarity has been studied in psy
ogy [32] and AI, most relevantly to this work in case-based reasoning [4]. Within the
text of object-oriented systems, similarity has been viewed as a form of generaliz
[34]. Alternatively, it has been interpreted as degree of affinity with respect to variou
lations, providing the foundation for the dynamically changing presentation of relate
jects within a browser (see chapter 9). Its applications include the support ofapproximate
retrieval with respect to a software repository as well as the re-engineering of sof
systems [27].

We are primarily interested in similarity links that can be computed automatic
from information that is loaded into the SIB. For added flexibility, however, user-defi
similarity links are also supported. Similarity is computed with respect to similarity
teria and expressed in terms of corresponding similarity measures, which are num
the range [0,1]. An aggregate similarity measure with respect to a set of criteria c
obtained as a weighted aggregate function of single-criterion similarity measure
weights expressing the relative importance of the individual criteria in the set. This m
ure may be symmetric or directed. For example, similarity with respect to generaliz
may be defined as symmetric, whereas similarity with respect to type compatibility o
parameters of two C routines may be defined as directed.

Similarity can be used to define task-specific partial orders on the SIB, thus facilit
the search and evaluation of reusable software objects. Moreover, subsets of the S
be treated as equivalence classes with respect to a particular symmetric similarity
ure, provided all pairs of the class are more similar than a given threshold. Such sim
equivalence classes may span different application domains, thus supporting 
domain reuse. For details on the similarity analysis of SIB descriptions see [29].

Genericity

Genericity is represented byspecialCaseOf links. This relation is defined only betwee
application frames to denote that one application frame is less parameterized than a
For example, a bank accounting and a hotel accounting application frame could b
derived from a more general, parametric accounting application frame.

Informal and user-defined links

When users have foreseeable needs for other types of links they can define them u
attribute definition facility of Telos. For instance, versioning can be modelled by sp
correspondence links labelledderivedFrom. Furthermore, random needs for represen
tion and reference can be served by informal links, such as hypertext links which allo
attachment of multimedia annotations to SIB objects.
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Association is an encapsulation mechanism intended to allow the grouping of descri
that together play a functional role [6]. It associates a set of descriptions with a par
symbol table:

Association = (setOfDescriptions, symbolTable)

The contents of an association can only be accessed through the entry points s
in its symbol table. For example, we may define as an association the descriptio
constitute a design specification for a hotel information system, or all the classe
define an implementation of that same system. The SIB itself is a global associatio
taining all objects included in any association. Its symbol table contains all the ex
names of every object. Name conflicts can be resolved by a precedence rule.

Associations can be derived from other associations through queries or set oper
Furthermore, associations can be considered as materialized views. Non-mater
views, or simplyviews, differ from associations in that they cannot be updated directly
rather, through updates of the associations which they are derived from.

7.3 Information Retrieval and User Interface

7.3.1 Querying and Browsing

The selection of software descriptions from the SIB is accomplished through theselection
tool (ST) in terms of an iterative process consisting of retrieval and browsing s
Browsing is usually the final and sometimes the only step required for selection. The
tional difference between the retrieval and the browsing mode is that the former su
the retrieval of an arbitrary subset of the SIB and presumes some knowledge of th
contents, while the latter supports local exploratory searches within a given subset
SIB without any prior knowledge. Operationally, both selection modes evaluate qu
against the SIB.

The basic selection functions of the SIB are:
Retrieve: Queries × Associations → P (Descriptions × Weights)
 Browse: Identifiers × P (Links × Depths) × Associations → Views

TheRetrieve function takes as input a (compound, in general non-Boolean) query
an association, and returns a subset of the associated descriptions with weights a
indicating the degree to which each description in the answer set matches the quer
Boolean queries are based on similarity. Queries are formulated in terms of the 
primitives offered by the Programmatic Query Interface. A set of queries of particula
nificance can be preformulated and offered as menu options, thus providing max
ease-of-use and efficiency for frequent retrieval operations.

Browsing begins with a particular SIB description which is the current focus of a
tion (called thecurrent object) and produces a view of aneighbourhood of the current ob-
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of the current object is defined in terms of incoming and outgoing links of interest. M
over, the size of the neighbourhood can also be controlled. Thus, theBrowse function
takes as input the identifier (name) of the current object, a list of names of link cl
paired with depth control parameter values and an association, and determines 
view centred around the current object.

When the depth control parameters are all equal to 1, astar view results, showing the
current object at the centre surrounded by objects directly connected to it through li
the selected types. This is the simplest and smallest neighbourhood of an object, i
logical terms, with a controllable population. Effectively, theBrowse function provides a
moving window with controllable filters and size, which allows navigational search 
subsets of the SIB network.

When the depth control parameters are assigned values greater than 1,Browse displays
all objects connected to the current object via paths consisting of links of the se
types (possibly mixed), where each type of link appears in a path up to a number o
specified by the corresponding depth parameter. This results in a directed graph ro
the current object. Finally, when the depth parameters are assigned the value ALL
nite), the transitive closure of the current object with respect to one or more link typ
displayed. Such a browse operation can display, for example, the call graph (forw
backward) of a given routine.

Queries to the SIB can be classified from a user’s point of view asexplicit or implicit.
An explicit query involves an arbitrary predicate explicitly formulated in a query langu
or through an appropriate form interface. Animplicit query, on the other hand, is gener
ted through navigational commands in the browsing mode, or through a button or 
option, for frequently used, “canned” queries. Browsing commands and explicit qu
can also be issued through appropriate interfaces from external tools.

7.3.2 Implementation

An application-scale SIB system has been implemented at the Institute of Compute
ence, FORTH, and is available to other sites for experimentation* (see figure 7.1).

The user interface supports menu-guided and forms-based query formulation
graphical and textual presentation of the answer sets, as well as graphical browsi
hypertext-like manner. A hypertext annotation mechanism is also provided. Menu 
menu layout and domain-specific queries are user-configurable.

A forms-based interactive data entry facility is available for entering data and sc
information in a uniform manner. This facility automatically adapts itself to the struc
of the various classes and subclasses byemploying the schema information. Furthe
it is customizable to application-specific tasks, such as classification of items, addit
descriptive elements, etc.

* For details, consult the WWW page for this book (see the preface).



Information Retrieval and User Interface 185

ideo,
tically
, which

 data,
n rela-
eries

ctures,
ess by
odes

 SIB in
ders of
 with

 3 min-
ith real
Any item in the SIB may reference a multimedia object, comprising images, v
sound or text, stored externally. The SIB recognizes such references and automa
generates calls to the appropriate presentation tools with the respective parameters
results in a synchronous display of the multimedia object.

The SIB is optimized for referential access and large amounts of highly structured
especially for network structures consisting of a large variety of classes, rather tha
tively few classes with large populations per class (typical in a DBMS). Recursive qu
on aggregational hierarchies, classification hierarchies, and retrieval of graph stru
such as flow-charts or state-transition diagrams, play a more important role than acc
value conditions. A transitive closure with cycle detection of a binary tree with 1024 n
can be retrieved in 2 seconds on a Sun SPARC Station. The performance of the
look-up and traversal exceeds that of modern relational systems by one and two or
magnitude respectively. This allows for real-time queries that would be prohibitive
traditional databases.

Data entry speed is acceptable: 10,000 references are loaded in batch mode in
utes, and 500,000 in 2.5 hours on a SPARC. Both examples were measured w

Figure 7.1 SIB static analyzer and class management system.
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plication (2.5 million code lines). The theoretical capacity limit is 1 billion referenc
The design of the internal catalogue structures is fully scalable.

For more on the SIB, the interested reader is referred to [8] [9].

7.4 The Classification Scheme

7.4.1 Principles

Given a set of entities (objects, concepts) represented by descriptors (keyword
grouping of those entities into disjoint classes according to some criterion of desc
matching is calledclassification. Matching may express some kind of semantic similar
A classification scheme determines how to perform classification in a given setting, p
scribing the sets of descriptors and possible internal ordering, matching criteria, and
for class assignment.

Depending on the number of descriptors used, a classification scheme can be 
multi-dimensional. An example of a unidimensional scheme is the Universal Dec
Classification (see [26]). In library science, multidimensional (faceted) classification, was
introduced by Ranghanathan [25], breaking down information into a number of categ
thus addressing corresponding aspects of the classified entities. These aspects a
facets.

Prieto-Diaz and Freeman developed a faceted classification scheme for software
[23] [24] in which they use six facets to describe software:function, object, medium/
agent, system type, functional area, andsetting. They mainly describe component func
tionality, the last three facets pertaining to the internal and external environment.
facet has aterm space, i.e. a fixed set of legal values (concepts), in the sense of a controlled
vocabulary, and an extensible set ofuser terms. Concepts are organized by a directe
acyclic specialization relation, and terms are assigned as leaves to concepts. Sub
conceptual distances between concepts and terms are defined, to support retrievi
ware components by their degree of matching.

A variant of the scheme of Prieto-Diaz and Freeman was developed in the ES
REBOOT project [17] [28] [22] [31]. This scheme comprises four facets, better suite
describing object-oriented components:abstraction, operation, operates-on anddepend-
ency. The first three are analogous to subject, verb and object in a natural languag
tence describing component functionality, while the fourth is the counterpart of the 
environmental facets of the Prieto-Diaz and Freeman scheme. The term spaces a
structured by relations such as specialization and synonymy. A conceptual distan
tween terms is defined, which, like that of Prieto-Diaz and Freeman, is the outcome
man assessment. Neither Prieto-Diaz and Freeman nor REBOOT relate the deriva
classification terms to the knowledge of structural dependencies between software
ponents. In [28], however, such a connection is suggested as potentially useful.
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In the SIB classification scheme the REBOOT facets are adopted, except that facets are
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assigned not necessarily to a class as a whole but, rather, to the relevant parts. Spe
the contents of the SIB classification facets are as follows:

Abstraction

Abstraction terms are nouns representingactive object types. Typically these abstraction
indicate the role that the object plays in its interactions with other objects of an ap
tion. An object-oriented software class as a whole is assigned an abstraction, s
‘String’, ‘Set’, ‘WindowSystem’, ‘Index’ or ‘NameList’. Abstraction terms do not in
clude expressions that denote processing, such as ‘String concatenation’ or ‘Strin
version’. Since object types are assumed to be active, the Abstraction terms do not
processing in general either (e.g. ‘String manipulation’).

Operation

Operation terms are verbal types representing specific activities. The active part of 
comprises its methods. Hence we associate Operation terms with each individual m
responsible for an activity, e.g. ‘Solve’, ‘Invert’, ‘Lock-Unlock’, ‘Open-Close’. Pairs
inverse properties, such as ‘Open-Close’, are regarded as one term, to keep the ter
small.

Operates-On

Besides operating on the class to which it belongs, a method operates on its param
object-oriented design, non-trivial parameters belong to classes. (Methods ma
directly access input/output devices, which may or may not be represented as ob
Operates-On terms are nouns representing the object types acted on by methods
ing Abstractions, basic data types and devices. Note that Operates-On is a supe
Abstraction and that the abstraction of a class must be a default ‘Operates-On’ for i
operations. Operates-On represents the role an object type plays with respect t
types.

Dependency

Dependency terms represent environmental conditions, such as hardware, operat
tem or language. It is good practice in software development groups to test and r
complete libraries for a certain environment. Accordingly we assign Dependency ter
class libraries as a whole. The classes of the library are then indirectly linked to a de
ency through the library itself. Each combination of programming language, system
ware and hardware forms a different environment. Dependency terms are provided
SIB which reflect single environmental conditions, as well as combinations of those
instance, a library tested, for example, on (SINIX ODT1.1, AT&T C++ 3.0B, S
WX200), and (SINIX 5.41, CooL 2.1, SNI WX200) does not necessarily run on (SI
5.41, AT&T C++ 3.0B, SNI WX200). Such triples are terms by themselves in the SIB
constituents of which represent their immediate higher terms. Thus retrieval is poss
the triple itself, as well as by simple terms, e.g. SINIX 5.41, Unix, C++, etc. (see fi
7.2).
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7.4.2 Classification Hierarchies in the SIB

Facets are represented as meta-classes in the SIB. The terms, i.e. the values of a f
instances of that facet, and are therefore simple classes. The instances of those cla
the software objects sharing the functional property the term denotes. The assignm
a term to a software object is accomplished by declaring the object to be an instance
term.

Note that facet terms reflect thefunctional role of components as they cooperate in
process, as distinguished from structural relations or user application tasks. For ins
‘C++ class’, ‘Menu item’, ‘Selection of goods, clients, or accounts’ may be respect
the structural, functional and application roles of one software object. These othe
roles are also very pertinent for reuse. In the SIB we take advantage of such inform
both independently and jointly with functional classification, as we shall see below
the other hand, some essential functional parts of a software object are and should
den from the user, hence they do not have any application task associated with the

In addition to a functional classification scheme, like the one discussed here, on
independently develop a classification scheme with respect to structural aspects
programming language, or other criteria. Concurrent classification of software objec
cording to more than one scheme is supported by the SIB. Technically, the assignm
terms from several schemes is performed by multiple classification: a component
clared to be an instance of all the relevant terms.

The term space for each facet is partially ordered by a specialization/generalizat
lation (isA) which, in the SIB, obeys multiple strict inheritance. This organization h

Unix

Object-oriented
Language

Figure 7.2 The isA hierarchy of combinatory Dependency terms.

SNIMachine

SINIX

C++

CooL

SNI_WX200

SINIX_5.41

SINIX_ODT1.1

C++3.0B

CooL2.1

SNI_WX200:SINIX_5.41/Cool2.1

SNI_WX200:SINIX_ODT1.1/C++3.0B
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ponent, since each term inherits all its predecessors. In addition, the probability 
consistent classification is limited. Multiple isA relations express multiple indepen
properties. By contrast, simple isA relations generate pure hierarchical structures 
are not flexible enough for expressing general, multifaceted relationships. If we inte
the term space as a set of classes semantically ordered by isA relations derived fro
implicit properties, assuming strict inheritance of those properties, the terms lose
linguistic nature and become concepts.Homonyms, i.e. instances of the same word wit
different meanings, must then be assigned different terms. For example, spectral ‘r
and circle ‘radius’, law and ‘order’ and warehouse ‘order’ do not share properties. T
call of such a concept-based system is superior to a linguistic one (see [30]).

No distinction in nature is made between leaf terms and higher terms. The gran
of analysis depends very much on the breadth of the domains classified, and should
namically adaptable to the contents of the repository. As is generally accepted in th
ature, term spaces are kept small in order to help the user become quickly acquaint
the applicable terms for a given problem. Retrieved components can subsequently
viewed efficiently by browsing.

In order to combine discipline with linguistic flexibility in developing term spaces, s
onyms are introduced. Two different words aresynonyms if they have the same meaning
such as ‘alter’ and ‘change’ in the Unix system call manual. Preferred words are se
as terms for inclusion in the isA-structured term space. Synonyms are attached to
through the attribute categorysynonym specifically defined in the SIB. Thus access is p
sible by all synonymous words and term, while vocabulary control is maintained.

Multiple inheritance expresses multiplicity of nature of a term itself. For insta
‘Copy’ has the properties of both ‘Put’ and ‘Get’. We adopt the principle that for any g
of terms sharing some implicit property, there should be a higher term with this prop
‘Get’, ‘Put’, ‘I/O’ share a property ‘transfer’, whereas ‘Put’, ‘Update’ share ‘Modify’, e
Arbitrary decisions on term placement in a hierarchy can thus be avoided. On the
hand, as any conceptual distance or similarity is based on some sharing of prop
those notions become closely related to the higher terms structure.

Multiplicity of nature at the item level (components), not resulting from intrinsic pr
erties of the terms, is expressed through multiple instantiation (assignment of term
a method doing ‘Lock’ and ‘Update’. It turns out that the benefits from the specializ
(isA) structure of term spaces are fully obtained if items are only assigned to leaf t
Nevertheless, the system is robust to a dynamic refinement of the term space, where
terms may become higher terms. Items assigned to higher terms can be treated by
trieval query as possible candidates for all leaf terms under it, with a decreasing p
according to the number of levels between them.

The isA organization facilitates exploring, understanding and retrieving terms. N
rally, alphabetical browsing and retrieval by lexical pattern matching are also prov
Finally, a “conceptual distance” (conversely, similarity) can be defined as a suitable m
over the term space partially ordered by the isA relation [29]. The advantage of such
ric is that its computation requires no user input, as it effectively relies on the intr
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properties of the common higher terms. To which degree this notion of measure can
ploited to improve or normalize the hierarchy itself is a topic of further research.

7.4.3 Example

Let us consider the abstractions of a class ‘Time’, which handles arithmetic with y
hours, minutes, etc. On the one hand, it has to do with the representation of time val
the other hand, it does not relate to actual time. We therefore choose the term ‘Tim
resentation’. This term has two higher terms: ‘TemporalObject’, and ‘CompoundRe
sentation’. By ‘CompoundRepresentation’ we denote systems of measurement
different units for different orders of magnitude, such as miles, yards, etc. Anothe
cialization of ‘TemporalObject’ is ‘MachineTime’.

A ‘TimeRepresentation’ class may be directly used, or in conjunction with a ‘Mach
Time’ class to measure elapsed time. This conforms to the initial intention of such a
Note that we could easily change unit names and conversion factors between units t
such a class to handle miles, yards, etc. In this case we reuse the algorithm or stru
a specific solution. This property is intrinsic to a time representation module, and w
press it by the higher term ‘CompoundRepresentation’.

This example demonstrates how multiple inheritance can serve to bring related
together, and how a careful analysis of implicit properties of terms may help to su
reuse in ways the developer did not originally have in mind (see figure 7.3). Sinc
development of generic modules is regarded to be desirable for reuse, any support
tecting candidates to be generalized or parameterized is valuable.

CompoundRepresentation

TemporalObject

HWcomponent

Figure 7.3 The isA hierarchy environment of Abstraction ‘TimeRepresentation’.

TimeRepresentation

MachineTime

Printer

Keyboard

DistanceRepresentation
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7.5 Streamlining the Classification Process
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7.5.1 Static Class Analysis

The SIB stores various kinds of structural and descriptive information about soft
components. In particular, at the implementation description level, it stores the res
static analysis performed by program parsers. Given a programming language, 
responding implementation description model defines a set of entities, such as
method, parameter, source file, and relations between these entities, such as define
user-of. The static analysis data of a given component are entered as instances of t
el concepts. (This information is useful enough in its own right that a version of the
has been developed purely as static analyzer.) Static analysis information is also us
streamlining the classification process.

We distinguish classification intodirect, which is assigned explicitly to an entity, an
derived, which is defined by means of queries. Minimizing direct classification not 
saves human effort, but also improves consistency when software or term space mo
tions take place. Static analysis allows for an automatic mapping of information (met
parameters, etc.) to classification facets and terms.

Abstractions are associated to classes, and Operations are associated to metho
cedures and operators are treated like methods, if they are connected to a class vi
declarations. Otherwise, an additional class, such as ‘Procedure_group’ is introduc
their classification. The operations of a class are derived by queries through the link
cating the methods belonging to that class. The explicit correspondence of metho
Operations facilitates maintenance and consistency of code and classification term
Operates-On terms of a class are also derived, and include the abstraction of the cla
(since its methods can access its instances) and the parameter types of its methods
abstractions (i.e. other classes) or basic data types. (The assignment of terms repre
devices, system calls, etc., to methods is done manually at present.) In a linguistic
Operates-On is the direct object of the Operation verb. Operates-On is at first hand 
erty of the method, or even more precisely of the instantiation of a specific operatio
method, and only in a wider sense a property of the class as a whole.

Dependency terms are assigned to libraries and applications. Therefore, the dep
cies of a class are derived by relating library files with the classes they contain.

7.5.2 Derived Classification

A number of derivation paths are used, in either direction, depending on whether t
jective is to find a class or the valid terms for a class. An example comprising all 
paths is given in the next section. The following is the complete list of relevant pat
ments:

• From synonyms to established terms through the ‘synonym of’ link.
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• From class terms to higher terms through the ‘isA’ link.
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• From Abstraction terms of classes to methods as ‘Operates-On’ through the in
‘has parameter’ link.

• From method terms to classes through the inverse ‘has method’ link.
• From class terms to derived classes, in the sense of the PL, through the invers

‘has parent’ or ‘has supertype’ link.
• From Dependency terms to classes through the ‘Library.runs_on’ – ‘Library.h

file’ – ‘class.defined_in’ path.
Note that the direct assignment of terms is done not to software classes but to

finely-grained entities (e.g. methods) that are structurally related to them. In this wa
sufficient, in most practical cases, to assign one term to each entity. Furthermore
analysis information can support the automatic extraction of classification terms 
formalized source code comments.

When creating term spaces it is important to maintain semantic links between O
tion terms and Abstraction terms, in particular:

1. which legal operations belong to an abstraction; and

2. which application domain an operation term is intended for.

The first kind of constraint should naturally be represented by linking abstractions
their legal operations. Creating higher operation terms would be unnecessary. For
ple, Operation’truncate is an operation applicable to both strings and files. This sho
indicated by links from Abstraction’file and Abstraction’string to Operation’trunca
Introducing, say, Operation’string_operations and Operation’file_operations as h
terms, to which Operation’truncate would be isA related, conveys no information o
nature of Operation’truncate.

The second kind of constraint introduces a problem related to homonyms. These a
dled by adding prefixes to the terms, so that the homonyms effectively obtain unique 
in the SIB. Besides, they preserve the homonym character in the last part of the word
allows access by substring matching. However, great care should be taken not to cre
structures in the term space on the basis of homonyms (more precisely: the homon
parts of terms), which may prove semantically wrong. For example, a substructure in
ing Abstraction’order along with its specializations Abstraction’warehouse_order and
straction’serial_order is not based on common semantics as expected. By co
Abstraction’warehouse_order isA Abstraction’commerce and Abstraction’serial_o
isA Abstraction’memory_management are semantically correct.

7.6 Experiences

7.6.1 The Classification Process

Classification is an iterative process. The user understands the functionality of a pa
component by studying (through the browser) documentation, static analysis data, 
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the code itself, supported in each step by the SIB, matching it with terms in the term space.
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Term understanding is supported by the linguistic form of the term, its position in
hierarchy, text comments on its meaning, or use in the classification of similar code k
to the user. The user must decide if a given term matches with the component an
term is specific enough. If not, a new term must be introduced in agreement with a
of developers responsible for the term space maintenance. With use and experien
upper parts of the term space become increasingly stable and complete.

A user should be aware not only of the meaning of terms, but also of theirquality (i.e.
for retrieval purposes), which leads to the need to know the principles under which
are created. The following general criteria are proposed for selecting terms in a giv
main of interest [12] [22]:

• Terms should bewell-known words, usually technical terms or expressions, wide
accepted in the software engineering community, or at least by experts in the p
ular domain of interest (object-oriented development).

• Terms should haveclear meanings, relative and easily associated to the conce
conveyed by their specializations or generalizations, in the classification stru
Moreover, they should bedistinct and precise, in order to facilitate the direct linkin
of the component to the corresponding classification term.

• Terms should also begeneral enough, in the sense that a term may encompass m
than one specialized term in the classification structure. In other words, every
should be used to address more than one component, or a specific (under so
mantic criteria), set of components. Keeping a set of terms general — therefore
enough, and expressive at the same time, thus useful for the reuse process —
of the basic and most difficult tasks in classification. Conversely, keeping a large
space usually means confusion for suppliers and reusers of components, inc
ient browsing, poor search performance, etc.

• Redundancy should be avoided, in the sense that there should be no two term
very close meaning in the same classification hierarchy. If this happens, then
should be related only with synonym relationship, with the most representative
present in the classification hierarchy.

As these criteria are generally conflicting, the implementation of an effective 
space requires striking a judicious balance among them: a non-trivial task.

7.6.2 An Example

We draw an example from the classification developed for the Colibri class library [
the CooL language environment. CooL [2] is an object-oriented programming lang
developed at Siemens-Nixdorf within the ESPRIT ITHACA project. We demonstrat
selection and the assignment of terms, and the resulting valid terms by derivation.

Consider the following partial listing of the classes ‘Date’ and ‘DateRepr’:
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--  -*- Mode: Cool -*-

-- Date.t --
--
-- PURPOSE

| Date is an object type representing a calendar entry |
| consisting of year, month, and day. This object type |
| offers methods to construct, modify and actualize an |
| object and to get information about an object. Further |
| methods deal with arithmetic operations and |
| predicates |

-- TABLE OF CONTENTS
REFER Duration, Interval, time;
TYPE Date = OBJECT ( IN Year : INT,

IN Month : INT,
IN Day : INT)

-- ----------------------------------------------------------------------------------------------
-- 2. Actual Date
-- ----------------------------------------------------------------------------------------------
METHOD SetToActualDate;

 -- --------------------------------------------------------------------------------------
 -- Set this date to the actual date.
 -- --------------------------------------------------------------------------------------

-- ----------------------------------------------------------------------------------------------
-- 4. Selective access
-- ----------------------------------------------------------------------------------------------
METHOD GetYear : INT;
METHOD GetMonth : INT;
METHOD GetDay : INT;

 -- --------------------------------------------------------------------------------------
 -- Return the specific information of this date
 -- --------------------------------------------------------------------------------------

-- ----------------------------------------------------------------------------------------------
-- 5. Arithmetic operations
-- ----------------------------------------------------------------------------------------------
METHOD Add (IN Extent : Duration);
METHOD Subtract (IN Extent : Duration);
-- ----------------------------------------------------------------------------------------------
 -- Add or subtract an extent from this date.
-- ----------------------------------------------------------------------------------------------

END OBJECT;
-- ----------------------------------------------------------------------------------------------

--  -*- Mode: Cool -*-
-- DateRepr.t --
--
-- PURPOSE

| DateRepr is a sub type of object type Date representing |
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| a calendar entry...together with a format string |
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| containing the presentation description according to |
| the C library function strftime()... |

-- TABLE OF CONTENTS

REFER Date, String;

TYPE DateRepr = Date OBJECT
(IN Year : INT,
 IN Month : INT,
 IN Day : INT,
 IN Format : STRING)

-- ----------------------------------------------------------------------------------------------
-- 3. Format representation
-- ----------------------------------------------------------------------------------------------
METHOD Present : STRING;

 -- --------------------------------------------------------------------------------------
 -- Return this date formatted with its representation
 -- --------------------------------------------------------------------------------------

END OBJECT;
-- ----------------------------------------------------------------------------------------------

Classification of ‘Date’:

1.  Object type ‘Date’ under Abstraction ‘TimeRepresentation’.

2.  Method ‘SetToActualDate’ under Operation ‘Set-Reset’ and Operates-On ‘M
ineTime’. This method uses internally the Unix system call ‘time()’.

3. Method ‘Add’ and ‘Subtract’ under Operation ‘Add-Subtract’.

‘Date’ is not automatically updated to the current date or machine time. Hence ‘M
ineTime’ was not regarded as a good abstraction for it. The methods GetYear, etc.
others not listed above, are omitted for the simplicity of the example.
Classification of ‘DateRepr’:

4. (4) Method ‘Present’ under Operation ‘Convert’.

We usually classify within one term the inverse of an operation as well, since
operations belong semantically together. The method name ‘Present’ denotes the
cation task of the method, not its function within the component. We therefore pref
term ‘Convert’.

More examples on reasoning about good terms are given in [12]. We further as
that, in a previous step, the Colibri library was assigned the Dependency terms (Co
SINIX_5.41, SNI_WX200), and ‘Duration’ was assigned the Abstraction ‘TimeRe
sentation’. The classification of built-in types of the programming language, such as
ger, string, etc., is initially provided in the SIB. Figure 7.4 shows all paths through w
leaf terms for the CooL Object Type ‘DateRepr’ are derived.
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The complete list of terms and synonyms for ‘DateRepr’, resulting from the above
term assignment and the term space currently in the SIB, is given in table 7.1. Notic
these terms areall derived. Having in mind that good object-oriented applications usu
derive some tens of classes from one base class, adding few methods in each de
step, the advantage of the SIB system for classifying large class hierarchies becom
vious.

Once found, terms are easily attached to components or correctly integrated in th
space by using the SIB facilities. To classify a class with some twenty methods we
cally spend half an hour to one hour. These times, however, vary strongly with the
tionality of the class. User interface classes or mathematical classes can be muc
quickly classified than some internal components or components with complex fun
ality. For instance, characterizing the SIB query processor in contrast to other query
essors is not straightforward. Evidently, the quality and maturity of existing termino
plays an important role. These observations raise interesting issues for further wo
perimental as well as on the field of terminology.

Our in-house experience with the SIB classification facilities is currently based on
cases: the class library Colibri for the CooL language environment, the C++ Exte
(APEX 1.0) library [1], and classes of the SIB implementation itself. The term spac
the first two examples has been fully developed. The classification of the SIB imple

Figure 7.4 Leaf terms valid for the CooLObjectType ‘DateRepr’.

SNI_WX200:SINIX_5.41/Cool2.1
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Operation
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has file
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Facet Derived leaf terms Higher terms Synonyms
tation is part of an on-going work to use the SIB for its complete self-documentation
perience reports are also expected from users outside our institute.

7.7 Conclusion

The SIB classification method defines in an objective way how terms and entities w
related. This facilitates the consistent usage of the system by a group of users in th
is a high probability that two users classifying the same object will come up with the 
usage of given terms, that two users will come up with the same higher–lower term 
ing of given terms, and that users retrieving objects will have the same understand
the terms as those who have classified the objects. These properties are expecte
prove considerably the recall of the system. Nevertheless, there is an intellectual 
ment in the creation of term spaces, well known from efforts to create thesauri in
domains as well. A good term space incorporates a lot of experience and knowled
such, it should be subject to specific developments and exchange between user co
ties. In our opinion, this issue has not yet received enough attention in the literature

Abstraction TimeRepresentation TemporalObject
CompoundRepresentation

Time
NonDecimalSystem

Operation Add-Subtract
Set-Reset
Convert

StateManipulation
Arithmetic
Mathematical
Format

Algebraic

Operates-On TimeRepresentation
MachineTime
String

TemporalObject
CompoundRepresentation
HWcomponent
List
Ordered_Collection
Collection
Bag

Time
NonDecimalSystem
CurrentTime
DateFormat
ComputerTime
Date
Calendar

Dependency SNI_WX200:SINIX_5.41
:CooL2.1

Unix
SINIX
SINIX_5.41
SNIMachine
SNI_WX200
CooL
ObjectOrientedLanguage
CooL2.1

Table 7.1 Terms and synonyms for the CooLObjectType ‘DateRepr’.
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Classification of software objects is a time-consuming task. We argue that the various
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derivation mechanisms offered in the SIB will reduce considerably the time neede
classification. They further improve the consistency of the code with the terms appli
particular the maintenance of the applied terms after updates of the software object
aspects are essential for the industrial usage of such a system.

The SIB is different from a series of other approaches in its data modelling capab
which allow it to integrate, without redundancies and in a single tool, the above class
tion mechanism with other organization principles, such as libraries, application fra
associations and lifecycle information in general. As an open, configurable system
easily adapted to new methodologies and standards embedded into software pro
environments.

Integrating all aspects in a logically consistent way, as discussed above for static
ysis and functional classification, gives rise to a bootstrapping and verification pro
The larger the population of the system, the more useful it is, the more important fu
organization principles and lifecycle information become, and the better the validi
their interconnections can be tested. To attract real users of the system, they must
vided from the very beginning with immediately useful functionalities and usage g
ance. The reduction of manual work by importing as much information as possible
existing sources plays an important role in this context. The incremental developm
further chains of functionality in the SIB, like the static analysis–functional classifica
presented here, is a main line of our future work.
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Managing Class Evolution in
Object-Oriented Systems

Eduardo Casais

Abstract Software components developed with an object-oriented language
undergo considerable reprogramming before they become reusable for a wide
range of applications or domains. Tools and methodologies are therefore
needed to cope with the complexity of designing, updating and reorganizing
class collections. We present a typology of techniques for controlling change in
object-oriented systems, illustrate their functionality with selected examples and
discuss their advantages and limitations.

8.1 Object Design and Redesign

8.1.1 The Problem

Nowadays, it is generally assumed that the mechanisms provided by object-oriente
guages — namely classification, encapsulation, inheritance and delayed bindi
together with a comprehensive set of interactive programming tools, provide the
functionality required for the large-scale production of highly reusable software co
nents. However, software developers working with an object-oriented system ar
quently led to modify extensively or even to reprogram supposedly reusable clas
that they fully suit their needs. This problem has been documented during the design
Eiffel [31] and Smalltalk [21] hierarchies, the construction of user interfaces [20], th
velopment of libraries for VLSI-design algorithms [2], and the development of ob
oriented frameworks for operating systems [23].

The first difficulty with object-oriented development is achieving a correct in
modelling of an application domain. Because of the variety of mechanisms provid
object-oriented languages, the best choice for representing a real-world entity in te
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classes is not always readily apparent. The problem is compounded by the versatility of
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the inheritance mechanism, which can serve to denote specialization relationships
force typing constraints, or to share implementations. Inadequate inheritance stru
missing abstractions in a hierarchy, overly specialized components or deficient o
modelling may seriously impair the reusability of a class collection. Such defects mu
eliminated through an evolutionary process to improve the robustness and the reus
of a library [20][22].

Even when a class collection embodies stable abstractions that have been reus
cessfully a number of times, repeated reorganizations of the library may still be una
able. Paradoxically, the high degree of reusability of a library may cause it to und
major reorganizations when developers attempting to take advantage of its functio
stretch its range of application to new domains, thus imposing additional constrain
the library and invalidating the assumptions that drove its original design.

Software reuse also raises complex integration issues when teams of progra
share classes that do not originate from a common, compatible hierarchy. Classe
require significant adaptations, like reassigning inheritance dependencies or ren
properties, to be exchanged between different environments.

8.1.2 The Solutions

Among the approaches that have been proposed in recent years to control evolu
object-oriented systems, we identify the following general categories:

• Tailoring consists in slightly adapting class definitions when they do not lead to 
subclassing. Most object-oriented languages provide built-in constructs for ma
limited adjustments on class hierarchies.

• Surgery. Every possible change to a class can be defined in terms of specific, p
tive update operations. Maintaining the consistency of a class hierarchy require
the consequences of applying these primitives be precisely determined.

• Versioning enables teams of programmers to record the history of class mod
tions during the design process, to control the creation and dissemination of so
components, and to coordinate the modelling of variants in complex applicatio
mains.

• Reorganization of a class library is needed after significant changes are made 
like the introduction or the suppression of classes. Reorganization procedures 
formation on “good” library structures to discover imperfections in a hierarchy
to suggest alternative designs.

A second problem, related to class evolution, is that instances must be update
their representation is modified. Restarting a program and discarding existing instan
not always feasible, since objects may be involved in running applications and may
tain useful, long-lived information. This is especially true for environments implemen
persistent objects. We consider in detail three techniques to tackle this issue:
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• Change avoidance consists in preventing any impact from class modifications on ex-
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isting instances, for example by restricting the kind of changes brought to clas
• Conversion physically transforms objects affected by a class change so that they

form to their new class definition.
• Filtering hides the differences between objects belonging to several variants 

same class by encapsulating instances with an additional software layer that e
their normal properties.

The remainder of the chapter explains the principles behind these approaches, re
when appropriate to the research prototypes or industrial products that implement
and illustrating their functionality with simple examples.

8.2 Class Tailoring

8.2.1 Issues

Quite often, object-oriented programming does not follow the ideal scenario where s
classes, extended with additional attributes, naturally give rise to new object descrip
Inherited variables and methods do not necessarily satisfy all the constraints whic
to be enforced in specialized subclasses [9]. Typically, one prefers an optimized i
mentation of a method to the general and inefficient algorithm defined in a super
Similarly, a variable with a restricted range may be more appropriate than one adm
any value. Tailoring mechanisms alleviate these problems by allowing the programm
replace unwanted characteristics from standard classes with properties better su
new applications.

8.2.2 Language Mechanisms

Object-oriented languages have always provided simple constructs for tailoring cl
We present here an overview of the tailoring mechanisms provided by the Eiffel lang
[30]. Similar mechanisms are available in many other programming languages.

• Renaming is the simplest way to effectively modify a class definition. Renamed 
iables and methods can no longer be referred to by their previous identifier, bu
keep all their remaining properties, like their type or their argument list.

• Redefinition enables the programmer to actually alter the implementation o
tributes. The body of a method may be replaced with a different implementati
specialundefine clause in Eiffel 3 allows the programmer to turn an inherited met
into a deferred definition in a subclass. Eiffel also allows the type of inherited 
ables, parameters and function results to be redeclared, provided the new 
compatible with the old one. Finally, the pre- and post-conditions of a method
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be redefined, as long as the new pre-condition (or the new post-condition) is weaker

in a
 visible

 tai-
riable
(or stronger) than the original one.
• Interfaces are not statically defined in Eiffel. An attribute declared as private 

superclass may be made accessible in a subclass; conversely, a previously
attribute may be excluded from the subclass interface.

The following excerpt from the Eiffel 2.1 library illustrates the use of these various
loring mechanisms. Notice the changes in class interfaces, the redefinition of the va
parent and the renaming and overriding of the operations for creating tree objects.

--
-- Trees where each node has a fixed number of children (The number of children is
-- arbitrary but cannot be changed once the node has been created).
--
class  FIXED_TREE [T]

export
start, finish, is_leaf, arity, child, value, change_value, node_value,
change_node_value, first_child, last_child, position, parent, first, last,
right_sibling, left_sibling, duplicate, is_root, islast, isfirst, go, go_to_child,
delete_child, change_child, attach_to_parent, change_right, change_left,
wipe_out

inherit
…

feature
parent : FIXED_TREE [T];
Create (n : INTEGER; v : T) is …

-- Create node with node_value v and n void children.
end ; -- Create
…

end -- class FIXED_TREE

--
-- Binary trees.
--
class  BINARY_TREE [T]

export
start, finish, is_leaf, arity, child, value, change_value, node_value,
change_node_value, left, right, has_left, has_right, has_both, has_none,
change_left_child, change_right_child

inherit
FIXED_TREE [T]
rename

Create as fixed_Create, first_child as left, last_child as right
redefine

parent
feature

parent : like Current ;
Create (v : T) is

-- Create tree with single node of node value v
do

fixed_Create (2, v)
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node_value = v;
right.Void and  left.Void

end ; -- Create
…

end -- class BINARY_TREE [T]

Sometimes, adaptations cannot be limited to local class adjustments; global cha
the hierarchy are required. Objective-C provides a mechanism where a user-define
can “pose” as any other class in the hierarchy [33]. When the “posing” class is insta
the system, it shadows the original definition. Objects depending on the “posed” 
whether by inheritance or by instantiation, do not have to be changed; the metho
patching scheme guarantees that a message sent to an object of the posed class ac
sults in invoking a procedure in a posing object. The posing class may overrid
method of the posed class and define additional operations; it has access to all o
now shadowed, properties.

8.2.3 Evaluation

Tailoring techniques are useful in performing small adjustments on a class collectio
overriding of inherited attributes enables the programmer to escape from a rigid in
ance structure that is not always well-suited to application modelling. It facilitates the
dling of exceptions locally and does not require the factoring of common propertie
numerous intermediate classes. Tailoring mechanisms correspond to constructs of
oriented languages; consequently, they can be implemented efficiently within comp

On the other hand, overreliance on tailoring may quickly lead to incomprehen
structures overloaded with special cases, which are, as far as persistent object-o
systems are concerned, difficult to manage efficiently with current database techn
Introducing exceptions in a hierarchy destroys its specialization structure and ob
the dependencies between classes since a property cannot be assumed to hold
object derived from a particular definition. Renaming and interface redeclaration
completely break down the standard type relations between classes. When sig
compatibility is not respected, or when the semantics of a method can be radically a
polymorphism becomes impossible; an instance of a class may no longer be used
an instance of a superclass is allowed. Changing attribute representations also can
benefits of code sharing provided by inheritance.

If tailoring is allowed, one must be wary of developing a collection of disorgan
classes. Exceptions should not only be accommodated, but also integrated into th
hierarchy when they become too numerous to be considered as special cases [10]
tunately, the techniques we have described in this section do not really help detect
flaws in object descriptions.
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8.3 Class Surgery
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8.3.1 Issues

Whenever changes are brought to the modelling of an application domain, correspo
modifications must be applied to the classes representing real-world concepts. 
operations disturb a class hierarchy much more profoundly than tailoring: instead of
riding some inherited properties when new subclasses are defined, the structure of e
classes themselves must be revised. Because of the multiple connections betwee
descriptions, care has to be taken so that the consistency of the hierarchy is guaran

This problem also arises in the area of object-oriented databases, where it has b
tensively investigated [3][4][27][32][35]. There, the available methods determine
consequences of class changes on other definitions and on existing instances, as
that possible integrity violations can be avoided. These methods can be broken dow
a number of steps:

1. The first step consists of determining a set of integrity constraints that a clas
lection must satisfy. For example, all instance variables should bear distinct n
no loops are allowed in the hierarchy, and so on.

2. A taxonomy of all possible updates is then established. These changes conc
structure of classes, like “add a method”, or “rename a variable”; they may als
fer to the hierarchy as whole, as with “delete a class” or “add a superclass to a 

3. For each of these update categories, a precise characterization of its effects
class hierarchy is given and the conditions for its application are analyzed. In
eral, additional reconfiguration procedures have to be applied in order to pre
schema invariants. It is for example illegal to delete an attribute from a classC if this
attribute is really inherited from a superclass ofC. If the attribute can be deleted, 
must also be recursively dropped from all subclasses ofC.

4. Finally, the effects of schema changes are reflected on the persistent store; in
belonging to modified classes are converted to conform to their new descripti

We base our discussion on class surgery mainly on the research performed aro
object-oriented database systems GemStone, ORION, O2 and OTGen, although evolu
tionary capabilities based on this technique have been proposed for many other sy
We defer the description of instance conversion techniques to the section on chang
agation.

8.3.2 Schema Invariants

Every class collection contains a number of integrity constraints that must be main
across schema changes. These constraints, generally called schema invariants in t
ature, impose a certain structure on class definitions and on the inheritance graph.
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• Representation invariant. This constraint states that the properties of an object (at-
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tributes, storage format, etc.) must reflect those defined by its class.
• Inheritance graph invariant. The structure deriving from inheritance dependenc

is restricted to form a connected, directed acyclic graph (so that classes may 
cursively inherit from themselves), possibly restricted to be a tree, and having a
a special predefined class usually calledOBJECT.

• Distinct name invariant. All classes, methods and variables must be distinguishe
a unique name.

• Full inheritance invariant. A class inherits all attributes from its superclasses, exc
those that it explicitly redefines. Naming conflicts occurring because of multipl
heritance are resolved manually, or by applying some default precedence sch

• Distinct origin invariant. No repeated inheritance is admissible in ORION and O2: an
attribute inherited several times via different paths appears only once in a clas
resentation.

• Type compatibility invariant. The type of a variable (or of a method argument) re
fined in a subclass must be consistent with its domain as specified in the supe
In all systems this means that the new type must be a subclass of the original o

• Type variable invariant. The type of each instance variable must correspond 
class in the hierarchy.

• Reference consistency invariants. GemStone guarantees that there are no dang
references to objects in the database; instances can only be deleted when the
longer accessible. OTGen requires that two references to the same object 
modification also point to the same entity after modification.

Schema invariants supported by four object-oriented database systems are summ
in table 8.1.

8.3.3 Primitives for Class Evolution

Updates to a schema are assigned to a relevant category in a predetermined tax
Every definition affected by these modifications must then be adjusted. If the inva
properties of the inheritance hierarchy cannot be preserved, the transformation of th
structure is rejected. Schema evolution taxonomies are compared in table 8.2.

• The insertion of an attribute, whether it is a variable or a method, is an operation 
must be propagated to all subclasses of the class where it is initially applied, in
to preserve the full inheritance invariant. When a naming or a type compatibility
flict occurs, or when the signature of the new method does not match the signa
other methods with the same name related to it via inheritance, one either dis
the operation (as in O2 and GemStone), or resorts to conflict resolution rules. In
systems, instances of all modified schemas are assigned an initial value for th
ditional variables that is either specified by the user or the specialnil value.
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Schema invariants GemStone O2 ORION OTGen

.

• Deleting an attribute is allowed only if the variable or method is not inherited. B
cause of the full inheritance and representation invariants, the attribute must a
dropped from all subclasses of the definition where it is originally deleted. If a 
class, or the class itself, inherits another variable or a method with the same
through another inheritance path, this new attribute replaces the deleted on
course, all instances lose their values for deleted attributes. O2 forbids the suppres-
sion of attributes if the operation results in naming conflicts or in type mismat
with other attributes.

• Attribute renaming is forbidden if the operation gives rise to ambiguities in the cl
or in its subclasses, or, in GemStone, if the attribute is inherited.

• The type of a variable (or of a method argument) can rarely be arbitrarily modi
because of the subtype relations imposed by the compatibility invariant. In OR
and GemStone, the domain of a variable can be generalized. GemStone also a
variable to be specialized, except if the new domain causes a compatibility viol
with a redefinition in a subclass. Operations that are neither specializations no
eralizations are not supported; moreover, type changes are not propagated 
classes. Instances violating new type constraints have their variables reset tonil.

• Properties like the default value of a variable or the body of a method can al
modified. Changing the origin of an attribute is an operation supported only in O
ON. It serves to override default inheritance precedence rules and is logically
dled as a suppression followed by the insertion of an attribute. In addition, OR
provides operations to update shared variables and special aggregation links.

• Adding a class to an existing hierarchy is a fundamental operation for object-orien
programming, and, as such, it appears in all systems examined here. Conne

Representation ✓

Inheritance graph ✓ ✓ ✓ ✓

Distinct name ✓ ✓ ✓

Full inheritance ✓ ✓ ✓ ✓

Distinct origin ✓ ✓

Type compatibility ✓ ✓ ✓ ✓

Type variable ✓

Reference consistency ✓ ✓

Table 8.1 Schema invariants of four object-oriented database systems. Some
constraints (like the representation invariant) are implicit in most models
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Scope of change GemStone O2 ORION
new class to the leaves of a hierarchy is trivial — possible conflicts cause
multiple inheritance are solved with standard precedence rules. GemStone allo
inserting a class in the middle of an inheritance graph, provided the new class
not initially define any property: this basic template may be subsequently augm

Instance variables

add a variable ✓ ✓ ✓

remove a variable ✓ ✓ ✓

rename a variable ✓ ✓ ✓

redefine the type of a variable ✓ ✓ ✓

change the inheritance origin ✓

change the default value ✓

modify other kinds of variables ✓

Methods

add a method ✓ ✓

remove a method ✓ ✓

rename a method ✓ ✓

redefine the signature ✓

change the code ✓ ✓

change the inheritance origin ✓

Classes

add a class ✓ ✓ ✓

remove a class ✓ ✓ ✓

rename a class ✓ ✓

modify other class properties ✓

Inheritance links

add a superclass to a class ✓ ✓

remove a superclass ✓ ✓

change superclass precedence ✓

Table 8.2 A comparison of schema evolution taxonomies.
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by applying the attribute manipulation primitives described in the preceding pages.
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With O2, a new class may be connected to only one superclass and one subcla
tially. The definition must specify how inherited attributes are superseded, and
redeclarations must comply with subtyping compatibility rules.

• Removing a class causes inheritance links to be reassigned from the class’s s
classes to its subclasses. All instance variables that have the deleted class as th
are assigned the suppressed class’s superclass as their new domain. GemS
sumes that a class which is being discarded no longer defines any property a
no associated instances exist in the database. O2 forbids class deletion if it results in
dangling references in other definitions, if instances belonging to the class still 
or if the deletion leaves the inheritance graph disconnected.

• Renaming a class is allowed only if the new identifier is unique among all cla
names in the inheritance hierarchy. As with attributes, each object model may d
supplementary class properties, such as the indexable classes in GemStone, a
corresponding manipulation primitives.

• Adding a superclass to a schema is illegal if the inheritance graph invariant canno
preserved. In particular, no circuits may be introduced in a hierarchy. The co
quences of this operation are analogous to those of introducing attributes in a 

• The deletion of a class S from the list of superclasses of a classC must not leave the
inheritance graph disconnected. O2 provides a parameterized modification primitiv
that enables the programmer to choose where to link a class that has becom
pletely disconnected from the inheritance graph (by default, it is connected toOB-
JECT). One may also specify whether the attributes acquired through the suppr
inheritance link are preserved and copied to the definition ofC. In most other sys-
tems, ifS is the unique superclass ofC, inheritance links are reassigned to point fro
the immediate superclasses ofS toC. In the other cases,C just loses one of its super
classes; no redirection of inheritance dependencies is performed. Of cours
properties ofS no longer pertain to the representation ofC, nor to those of its sub-
classes. The primitives for suppressing attributes from a class are applied to c
the definition of all classes and instances affected by this change.

• Reordering inheritance dependencies results in effects similar to those of changin
the precedence of inherited attributes.

8.3.4 Completeness, Correctness and Complexity

Three issues have to be addressed to ensure that class surgery captures interesting
ities:

• Completeness: does the set of proposed operations actually cover all possibilitie
schema modifications?

• Correctness: do these operations really generate class structures that satisfy all 
rity constraints?
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• Complexity: is it possible to detect violations of schema invariants and subsequently
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regenerate a schema conforming to these invariants in an efficient way?
The first two problems have been studied in the context of the ORION methodo

where it has been demonstrated that a subset of its class transformation primitives e
the desired qualities of completeness and, partially, of correctness. In contrast, the
Stone approach does not strive for completeness; only meaningful operations that
implemented without undue restrictions or loss of performance are provided. An int
ing result is provided by the O2 approach, where it is shown that although a set of basic
date operations may be complete at the schema level (i.e. all changes to a class h
can be derived from a composition of these essential operations), this same set ma
complete at the instance level, when changes are carried out on objects and not on
For example, renaming an attribute is equivalent to deleting the attribute and then r
ducing it with its new name; if the same sequence of operations is applied to a varia
an object, the information stored in the attribute is lost.

Ensuring correctness of class changes is much more difficult than it appears 
sight. Since a method implementation may depend on other methods and variabl
cannot consider the deletion of one attribute in isolation. This operation may hav
reaching consequences if an attribute is excluded from a class interface. Similarly,
ducing a new method in a class may raise problems because the code of the meth
refer to attributes that are not yet present in the class definition and because of im
changes in the scope of attributes. If the method supersedes an inherited routin
classes referring to the previous method may become invalid. Not surprisingly, mai
ing behavioural consistency across schema changes is an undecidable proble
Dataflow analysis techniques, like those that are used by some compilers to check f
violations in object-oriented programs, can help detect the parts of the code that b
unsafe because of schema updates, but they are typically pessimistic and might reje
programs as incorrect [14]. Enriching the set of schema invariants to detect more (s
tical) inconsistencies requires careful selection to avoid turning an efficient test proc
for constraint satisfiability into an NP, or even an undecidable problem [26][39]. As a
sequence, all aforementioned systems capture relatively simple structural constrain
their schema invariants and give little support to update methods upon class alte
[41].

8.3.5 Evaluation

Decomposing all class modifications into update primitives and determining the c
quences of these operations has several advantages. During class design, this a
helps developers detect the implications of their actions on the class collection and
tain consistency within class specifications. During application development, it guide
propagation of schema changes to individual instances. For example, renaming
stance variable, changing its type or specifying a new default value usually has no i
on an application using the modified class. Introducing or discarding attributes (var
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or methods), on the other hand, generally leads to changes in programs and requires the
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reorganization of the persistent store — although the conversion procedure can 
ferred in some situations.

Depending on its modelling capabilities and on the integrity constraints, an ob
oriented programming environment may provide different forms of class surgery.
easy to envision a system where class definitions are first retrieved with a class b
and then modified with a structured editor where each editing operation correspon
schema manipulation primitive like those of ORION or GemStone [32]. Such an env
ment would nevertheless fall short of providing fully adequate support for the desig
evolution processes. Class surgery forms a solid and rigorous framework for de
“well-formed” class modifications. In this respect, it improves considerably over un
trolled manipulations of class hierarchies that are more or less the rule with current o
oriented programming environments. But, it limits its scope to local, primitive kind
class evolution. It gives no guidance as to when the modifications should be perfo
and does not deal with the global management of multiple, successive class chang
ried out during software development.

8.4 Class Versioning

8.4.1 Issues

Ensuring that class modifications are consistent is not enough; they must also be 
out in a disciplined fashion. This is of utmost importance in environments where a nu
of programmers collectively reuse and adapt classes developed by their peers mad
able in a shared repository of software components. The early experiences with the 
talk system demonstrated that the lack of a proper methodology for controlling
extensions and alterations brought to the standard class library quickly resulted in a
trous situation. The incompatibilities between variants of the same class hierarchy
sufficient to hinder the further exchange of software, or at least to severely reduce it
ability.

In the case of single-user environments, the exploratory way of programming ad
ted by the proponents of the object-oriented approach requires some support so th
ware developers may correct their mistakes by reverting to a previous stable
configuration. When experimenting with several variants of the same class, to test 
ficiency of different algorithms, for example, care has to be taken to avoid mixing up
definitions and dependencies.

Becauseadhoc techniques do not scale well for large, distributed programming e
ronments, current approaches favour a structured organization of software develo
and a tighter control of evolution based on class versioning. Versioning basically co
in checkpointing successive and in principle consistent states of a class structure. T
ation and manipulation of versions raises complex issues:
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• How is version management organized with respect to software development?
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• How does one distinguish between different versions of the same class?
• What are the circumstances that justify the creation of new versions, and how 

operation carried out?
• What can be done to handle the relations between different and perhaps incom

versions?

8.4.2 The Organization of Version Management

An environment for version management is divided into several distinct working sp
each one providing a specific set of privileges and capabilities for manipulating diff
kinds of versions [15][24]. Three such domains are generally recognized in the litera

• A private working space supports the development activities of one programme
information stored in the programmer’s private environment, in particular the 
ware components he or she is currently designing or modifying, is not access
other users.

• All classes and data produced during a project are stored in a corresponding d
that is placed under the responsibility of a project administrator. They are made
able to all people cooperating in the project, but remain hidden from other u
since they cannot yet be considered as tested and validated.

• A public domain contains all released classes from all projects, as well as da
their status. This information is visible to all users of the system.

It is natural to associate one kind of version with each working space:
• Released versions appear in the public domain. They are considered immutab

can therefore neither be updated nor deleted, although they may be copied an
rise to new transient versions.

• Working versions exist in project domains and possibly private domains. The
considered stable and cannot be modified, but they can be deleted by their own
the project administrator or the user of a private domain. Working versions are
moted to released versions when they are installed in the public repository; the
give rise to new transient versions.

• A transient version is derived from any other kind of version. It belongs to the
who created it and it is stored in his or her private domain. Transient versions c
updated, deleted and promoted to working versions.

The principal characteristics of version types are summarized in table 8.3.
A typical scenario begins when a project is set up to build a new application. The

grammers engaged in the development, copy from the public repository class defin
they want to reuse or modify for the project. These definitions are added to their p
environments as transient versions. Each programmer individually updates these 
and perhaps creates other definitions (via usual subclassing techniques) in the do
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Characteristics of version types Transient Working Released

two
vate
additional transient versions. In order to try different designs for the same class, or t
the result of the programming activity, programmers may derive new transient ver
from those they is currently working on, while simultaneously promoting the latte
working versions. When a programmer achieves a satisfactory design for a software
ponent, he or she installs it as a working version in the project domain. Of course,
working versions can subsequently be copied by colleagues and give rise to new tra
versions in their respective environments. Once software components have rea
good stage of maturity in terms of reliability and design stability, they are released b
project administrator and made publicly available in the central repository.

Since all operations for version derivation and freezing are done concurrently, c
algorithms are required to ensure that the system remains consistent. Fortunately,
dates are applied to local, transient objects, and not directly to global, shared defin
As a consequence, concurrency control does not have to be as elaborate as tra
database transaction mechanisms and can use simpler checkin/checkout or op
locking techniques.

Location

public domain ✓

project domain ✓

private domain ✓ ✓

Admissible operations

update ✓

delete ✓ ✓

Origin

from a transient version by derivation promotion

from a working version by derivation promotion

from a released version by derivation

Table 8.3 Principal characteristics of version types. Some systems consider only 
kinds of versions (transient and released) and two levels of domains (pri
and public) for managing their visibility.
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8.4.3 Version Identification
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Class identity is an essential problem to deal with. It is no longer enough to refer to 
ware component by its name, since it might correspond to multiple variants of the
class. An additional version number, and possibly a domain name, must be provi
identify a component unambiguously [24]. When the version number is absent from
erence, a default class is assumed. Typical choices for resolving the dynamic bind
version references include:

• The very first version of the class referred to.
• Its most recent version. The idea behind this decision is that this version can b

sidered the most up-to-date definition of a class. This is a good solution to bin
sion references in interactive queries in object-oriented databases.

• Its most recent version at the time the component which made the reference w
ated. This is the preferred option for dealing with dynamic references in class d
tions.

• A default class definition specified by the administrator in charge of the domain.
definition, called a generic version, can be coerced to be any element in a versio
ivation history.

The default version is first searched for in the domain where the reference is in
discovered to be unresolved; the hierarchy of domains is then inspected upward u
appropriate definition is found. Thus, to bind an incomplete reference to a class ma
project domain (i.e. a reference consisting only in the class name, without addition
formation), the system first examines the class hierarchy in the current domain; if th
main does not contain the class definition referred to, the search proceeds in the
repository. No private domain is inspected, for stable versions are not allowed to re
transient versions that could be in the process of being revised. Similarly, dynamic
ences to classes in the public domain cannot be resolved by looking for unrelease
ponents in a project domain. Naturally, dynamic binding can be resolved at the lev
private domain for all classes pertaining to it.

If only the most recent version gives rise to new versions, there is in principle no
for a complex structure to keep track of the history of classes: their name and v
number suffice to determine their relationship to each other. The situation where ve
ing is not sequential, i.e. where new versions derive from any previous version, re
that the system record a hierarchy of versions somewhat similar to the traditiona
herarchy. When a version is copied or installed in a domain, the programmer de
where to connect it in the derivation hierarchy. AVANCE provides an operation to m
several versions of the same class. With this scheme, the derivation history takes th
of a directed acyclic graph [8].

The information on derivation dependencies is generally associated with the g
version of a class version set. Version management systems like IRIS and AVANC
plement a series of primitives for traversing and manipulating derivation graphs [5
Programmers can thus retrieve the predecessors and the successors of a particular
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their status (transient, released, date of creation, owner); determine which versio
valid at a certain point in the past and bind a reference to it; freeze or derive new ve
etc.

The management of versions and related data obviously entails a significant stora
processing overhead. This is why in most systems one is required to explicitly ind
that classes are versionable by making them subclasses of a special class from wh
inherit their properties of versions — that is often calledVersion, as in AVANCE and IRIS.

8.4.4 Versioning and Class Evolution

It is evidently impossible to delegate full responsibility to the system for determi
when a transient version should be frozen and a new transient one created, or if a c
nent should be released. Such actions must be based on design knowledge that is b
tered by the software developers themselves. Thus, the automatic generation o
versions triggered by update operations on object definitions is a scheme that has
limited application in practice.

Another difficulty arises because of the superimposition of versioning on the inh
ance graph. For example, when creating a new variant for a class should one deri
versions for the entire tree of subclasses attached to it as well? A careful analysis
differences between two successive versions of the same class gives some direct
handling this problem [8].

• If the interface of a class is changed, then new versions should be created for al
es depending on it, whether by inheritance (i.e. its subclasses) or by delegatio
classes containing variables whose type refers to the now modified definition).

• If only non-public parts are changed, like the methods visible only to subcla
(such methods are called “protected methods” in C++), the type of its variables,
inheritance structure, then versioning can be limited to its existing subclasses.

• If only method implementations are changed, no new versions for other class
required; this kind of change is purely internal and does not affect other definiti

For reasons analogous to those exposed above, some approaches prefer to avo
ducing a possibly large number of new versions automatically and rely instead on a
ual procedure for re-establishing the consistency of the inheritance hierarchy. The
whose programs reference the class that has been updated are simply notified
change and warned that the references may be invalid. Two strategies are com
adopted to do this: either a message is directly sent to the user, or the classes refe
the modified object definition are tagged as invalid. In the latter case, class version
stamps are frequently used to determine the validity of references [15]. Thus, a
should never have a “last modification” date that exceeds the “approved modifica
date of the versions referring to it. When this situation occurs, the references to the
are considered inconsistent, since recent adaptations have been carried out on the
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approved revision timestamp to indicate that the references have become valid aga

Building consistent configurations of classes and instances, and maintaining co
bility between entities belonging to different versions is a major issue and an o
oriented system should provide support for dealing with this aspect of version ma
ment. Application developers may want to view objects instantiated from previous
versions as if they originated from the currently stable version, or they may want to
hibit objects from older versions from referring to instances of future variants. We
scribe in more detail how to achieve these effects in the section devoted to u
propagation.

8.4.5 Evaluation

Versioning is an appealing approach for managing class development and evolutio
cording the history of class modifications during the design process has several be
It enables the programmer to try different paths when modelling complex applicatio
mains and it helps avoid confusion when groups of people are engaged in the prod
of a library of common, interdependent classes. Versioning also appears useful
keeping track of various implementations of the same component for different sof
environments and hardware platforms. Besides, the hierarchical decomposition 
programming environment into workspaces, the attribution of precise responsibilit
their administrators, and the possibilities afforded by this kind of organization (e.g
separation of the long-term improvement of reusable components from the short-te
velopment of new applications) are considered to be particularly valuable for incre
the quality and efficiency of object-oriented programming [38].

The main drawback of versioning techniques resides in the considerable overhea
impose on the development environment. Programmers have to navigate through 
terconnected structures, the traditional inheritance hierarchy and the version der
graph. They have to take into account a greater set of dependencies when desi
class. The system must store all information needed for representing versions and t
ciprocal links, and implement notification. Moreover, methods for version manage
still lack some support for design tasks: at what point does a version stop being a 
of an existing class to become a completely different object definition?

In spite of their overhead, class and object versioning techniques have proved
uable in important application domains like CAD/CAM, VLSI design and office inf
mation systems. They have therefore been integrated into several object-or
environments, including Orwell [38], AVANCE [7], ORION [3] and IRIS [19].
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8.5 Class Reorganization
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8.5.1 Issues

The lessons drawn from the construction of collections of reusable classes have led
formulation of some principles that serve to improve object-oriented libraries [22].

The first principle is to make sure that components are really polymorphic. This c
achieved in a number of ways:

• Adopt a uniform terminology for related classes and standardize the methods
ing up their interface [31].

• Eliminate code that explicitly checks the type of an object. Rather than introdu
case statements to execute some actions on the basis of an object’s class, one
invoke a standard message in the object and let it carry out the appropriate act

• Decrease the number of arguments in a method, either by splitting the metho
several simpler procedures, or by creating a class to represent a group of argu
that often appear together. A method with a reduced number of parameters is
likely to bear a signature similar to some other method in a different class. 
methods may then be given the same name, thus increasing interface standard

A second set of rules aims to increase the degree of abstraction and generality o
es:

• Factorize behaviour common to several classes into a shared superclass. Int
abstract classes (with deferred methods) if convenient, to avoid attribute red
tions.

• Minimize the accesses to variables to reduce the dependency of methods on
ternal class representation [29]. This can be achieved by resorting to special 
sors instead of referring directly to variables.

• Ensure that inheritance links express clear semantic relationships such as spe
tion, or even better, relationships with known mathematical properties like conf
ance or imitation [40].

Finally, reorganizations should improve the modularization of functionality in a
brary:

• Split large classes into smaller, cohesive classes that are more resilient to cha
• Separate groups of methods that do not interact. Such sets of methods rep

either totally independent behaviour or different views of the same object, whic
perhaps better represented by distinct classes.

• Uncouple methods from global attributes or internal class properties by sending
sages to parameters instead of toself or to instance variables.

These guidelines are very general; the problem is therefore to formulate these em
rules rigorously and to make them amenable to a subsequent automation.
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8.5.2 Refactoring
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8.5.2.1 Issues and Techniques
Refactoring is an approach that extends basic class surgery primitives with adv
redesign mechanisms [23]. Refactoring is based on an object model that is spec
tailored to represent and manipulate the rich structure of components developed w
object-oriented programming language. The schema invariants of class surgery a
tended with additional constraints for preserving behaviour, and the precondition
modification operations are made more precise or more restrictive to avoid introd
behaviour and referential inconsistencies in a class collection. The approach propo
[34] is intended to support refactoring specifically for C++ libraries. Four important o
ations are discussed in detail.

• Distributing the functionality of a class over multiple subclasses by splitting met
along conditional statements. Let us consider a hypothetical class that chec
rights of users to access a system during weekends and normal working days:

class  ACCESS-CONTROL
methods

CheckPrivileges
begin

-- some general code …
if  date = Sunday or  date = Saturday then

-- restricted access on week-ends …
else

-- usual checks during normal working days …
end-if

end  CheckPrivileges; …
end ;

ACCESS-CONTROL is specialized in as many classes as there are branches 
CheckPrivileges method;CheckPrivileges is itself decomposed so that, in each su
class, it contains only the code corresponding to one branch of the original c
tional statement. The common part of all CheckPrivileges variants is left inACCESS-
CONTROL.

class  ACCESS-CONTROL
methods

CheckPrivileges
begin

-- some general code …
end  CheckPrivileges; …

end ;

class  CONTROL-WEEK-END
inherit ACCESS-CONTROL;
methods

CheckPrivileges
begin

super .CheckPrivileges;
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end  CheckPrivileges; …
end ;

class  CONTROL-WORKING-DAYS
inherit ACCESS-CONTROL;
methods

CheckPrivileges
begin

super .CheckPrivileges;
-- usual checks during normal working days …

end  CheckPrivileges;
end ;

• Creating an abstract superclass. This operation analyses two classes, extrac
common properties, which are placed in a new component, and then makes bo
tial classes subclasses of the new definition. The extraction of similarities bet
two classes is not performed automatically and relies on heuristics to detect co
structures in method signatures and implementations. Additional renaming of v
bles and methods, reordering of method parameters and transformations of m
implementations may be carried out to achieve a satisfactory result. However
trary to the incremental reorganization algorithm described in section 8.5.4.3, r
toring does not propagate through the inheritance graph.

• Transforming an inheritance relation into a part-of relation. The following exam
shows a classSYMBOL-TABLE that inherits functionality fromHASH-TABLE.

class  HASH-TABLE
methods

Insert …
Delete …

end ;

class  SYMBOL-TABLE
inherit  HASH-TABLE; …
end ;

Rather than being a subclass ofHASH-TABLE, SYMBOL-TABLE can refer to an
instance ofHASH-TABLE via a part-of relation. This requires severing the inhe
ance link between both classes, introducing a variable of typeHASH-TABLE in SYM-
BOL-TABLE, and adding a series of procedures inSYMBOL-TABLE for delegating the
invocations of methods previously inherited fromHASH-TABLE to this new variable.
In our simplified example, the refactoring does not change the superclass. In
eral, it may be necessary to introduce special operations in the superclass to 
sulate accesses to its variables, and to change the methods declared in the s
so that they manipulate these variables through these operations.

class  SYMBOL-TABLE
variables

store : HASH-TABLE; …
methods

Insert (…)
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store.Insert (…);
end  Insert;

Delete (…)
begin

store.Delete (…);
end  Delete; …

end ;

• Reshuffling attributes among classes. This operation is intended to improve th
sign of classes representing aggregations, where a component of an aggrega
only belong to or be referred to by one object. Redistributing variables denotin
gregation elements in a behaviour-preserving way is feasible only when se
strong conditions on referencing patterns are satisfied. References to the mi
variables are updated or replaced with invocations to appropriate accessors.

8.5.2.2 Evaluation
Refactoring is one of the most interesting approaches for providing software deve
with high-level, intuitive operations supporting complex redesign activities. Refacto
embodies some of the empirical guidelines derived from actual experience with
evolution; it would therefore be appealing to integrate such a toolkit of operations
editing and browsing environment. This approach is not without limitations though
decision to carry out specific refactorings, the optimization goals and the selection
classes to modify are left entirely up to the programmer. Thus, refactoring exhibi
same shortcomings as class surgery. The automatic approaches discussed in the fo
sections are based on systematic strategies that are probably more adequate in the
of large, complex libraries. As with any other restructuring method, refactoring face
tractability problems when trying to achieve all possible transformations or to pre
behaviour. For example, all interesting situations where a method could be split a
subclasses cannot be detected, and, in fact, the conditional expressions conside
only of a very elementary nature.

8.5.3 Restructuring Interattribute Dependencies

8.5.3.1 Issues
Avoiding unnecessary coupling between classes and reducing interattribute depend
are two important prerequisites for well-designed objects. Two major issues have to
dressed:

• What are the inferior or “harmful” dependencies?
• How can unsafe expressions be automatically replaced with adequate constru
A possible solution to this problem has been proposed by Lieberherret al. [29] under

the name of “Law of Demeter”, together with a small set of techniques for mechan
transforming object definitions so that they comply with this law [12].
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The Law of Demeter distinguishes three types of interattribute dependencies and
corresponding categories of relationships between class definitions:

• A classC1 is anacquaintance class of methodM in class C2, if M invokes a method
defined inC1 and ifC1 does not correspond to the class of an argument ofM, to the
class of a variable ofC2, toC2 itself, or to a superclass of the aforementioned class

• A classC1 is apreferred-acquaintance class of methodM in C2, if C1 corresponds to
the class of an object directly created inM or to the class of a global variable used 
M.

• A classC1 is apreferred-supplier class of methodM in C2, if M invokes a method
defined inC1, and ifC1 corresponds to the class of a variable ofC2, or to the class of
an argument ofM, toC2 itself, to a superclass of the aforementioned classes, or
preferred-acquaintance class ofM.

The “class form” of the law states that methods may only access entities belong
their preferred-supplier classes. The “object form” of the law does not consider the c
a method depends on, but rather the objects this method sends messages to. In this
a preferred-supplier object is an instance that is either a variable introduced by the
where the method is defined, or an argument passed to the method, or an object cre
the method, or the pseudo-variableself (identifying the object executing the method). Th
“object form” of the law prohibits references to instances that are not preferred-sup
of a method. In itsweak version, the law considers the classes of inherited variables (o
variables themselves, in the “object form” of the law) as legitimate preferred-supp
Thestrict version does not consider the classes of inherited variables (or inherited 
bles) as legitimate preferred-suppliers.

8.5.3.3 Application and Examples
We illustrate the main reorganization aspects dealt with by the Demeter approach
group of simple object descriptions [12][29]. Let us consider the following partial c
definitions:

class  LIBRARY
variables

Catalog : CATALOG; …
methods

Search-book (title : STRING) returns  LIST [BOOK]
begin

books-found : LIST [BOOK];
books-found := Catalog.Microfiches.Search-book (title);
books-found.Merge (Catalog.Optical-Disk.Search-book (title));
return  (books-found);

end  Search-book; …
end ;

class  CATALOG
variables

Optical-Disk : CD-ROM;
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class  CD-ROM
variables

Book-References : FILE [BOOK]; …
methods

Search-book (title : STRING) returns  LIST [BOOK]
begin

book : BOOK;
books-found : LIST [BOOK];
books-found.New ();
Book-References.First ();
loop

exit when  Book-References.End ();
book := Book-References.Current ();
if  title.Equal (book.Title) then

books-found.Add (book)
end-if ;
Book-References.Next ();

end loop ;
return  (books-found);

end  Search-book; …
end ;

class  MICROFICHE
variables

Book-References : FICHES [BOOK]; …
methods

Search-book (title : STRING) returns  LIST [BOOK] …
end ;

class  BOOK
variables

Title : STRING; …
end ;

These definitions obviously do not conform to the law: the methodSearch-book in
LIBRARY accesses internal components ofCatalog (the attributesMicrofiches and Optical-
Disk); it sends messages to these variables and receives as a result objects that ar
components ofLIBRARY nor instances of a preferred-supplier class ofLIBRARY. We also
note that the algorithm for retrieving all references stored on the optical disk manip
the internal structure of books to find whether their title matches a specific search crit

It is clear that the details of scanning microfiche and CD-ROM files to find a parti
reference should be delegated to theCATALOG class. This makes the querying methods
LIBRARY immune to alterations in the internal structure of the catalogue — for exa
the replacement of the microfiches with an additional CD-ROM file. In doing so, we 
to take care thatLIST [BOOK], the type of the result of methodsSearch-book inMICROFICHE
andCD-ROM, is not a preferred-supplier ofCATALOG. The introduction of the auxiliary
methodMerge-refs in CATALOG solves this problem and makes the dependency betw
classesCATALOG andLIST [BOOK] explicit. Finally, ensuring the proper encapsulation
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BOOK objects requires that their variables be manipulated through special-purpose acces-

sors;CD-ROM is adjusted accordingly.

class  LIBRARY
variables

Catalog : CATALOG; …
methods

Search-book (title : STRING) returns  LIST [BOOK]
begin

return  (Catalog.Search-book (title));
end  Search-book; …

end ;

class  CATALOG
variables

Microfiches : MICROFICHE;
Optical-Disk : CD-ROM; …

methods
Search-book (title : STRING) returns  LIST [BOOK]

begin
return  (self .Merge-refs (Microfiches.Search-book (title),

Optical-Disk.Search-book (title)));
end  Search-book;

Merge-refs (microfiche-refs : LIST [BOOK]; cd-rom-refs : LIST [BOOK])
returns  LIST [BOOK]
begin

return  (microfiche-refs.Merge (cd-rom-refs));
end  Merge-refs; …

end ;

class  CD-ROM
variables

Book-References : FILE [BOOK]; …
methods

Search-book (title : STRING) returns  LIST [BOOK]
begin

books-found : LIST [BOOK];
books-found.New ();
Book-References.First ();
loop

exit when  Book-References.End ();
if  title.Equal (self .RefTitle (Book-References.Current ()))
then  books-found.Add (Book-References.Current ());
end-if ;
Book-References.Next ();

end loop ;
return  (books-found);

end  Search-Book;
RefTitle (reference : BOOK) returns  STRING

begin
return  (reference.Get-Title);
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end ;

class  BOOK
variables

Title : STRING; …
methods

Get-Title returns  STRING
begin

return  (Title);
end  Get-Title; …

end ;

8.5.3.4 Evaluation
The Law of Demeter nicely captures some issues dealing with encapsulatio
coupling; although a fully formal model that would mathematically justify its underly
assumptions is still lacking [36], its application to the design of modular class librarie
been found to be beneficial [29]. However, putting the Law of Demeter into practice r
several difficulties [36]. It cannot be completely enforced with languages, such as C
or Smalltalk, that allow expressions to be constructed dynamically and then execu
run-time. In general, the “class form” of the law does not seem to be fully effective fo
typed languages; since objects are untyped, violations of the law cannot be discove
a static inspection of the source code, but must be monitored during program exec

As far as typed languages are concerned, applying the Demeter principles is not 
straightforward either. First, there are some special cases where the spirit of the L
Demeter is violated, although all the dependencies formally respect all the Demete
stated in section 8.5.3.2. Fortunately, such anomalies are rare and occur only in ve
trived situations. More importantly, the law requires significant enhancements and 
mulation to handle language peculiarities correctly; for example, translating the la
Demeter into equivalent terms for C++ is far from trivial, because of the hybrid mod
this language and the need to take constructs like friend functions into account.

8.5.4 Restructuring Inheritance Hierarchies

8.5.4.1 Issues
A frequent problem during the design of inheritance hierarchies is that programmers
look intermediate abstractions needed for establishing clean subclassing depend
and develop components too specialized to be effectively reusable. Several appr
have been proposed to automate the detection and correction of such defects in inhe
hierarchies. They are distinguished by the way they address a few fundamental iss

• What is the scope of the reorganization applied to an inheritance graph?
• What are the criteria driving the reorganization?
• What properties are preserved across reorganizations?
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The differences between inheritance reorganization methods are best summari
grouping these approaches into global and incremental reorganization techniques.

8.5.4.2 Global Reorganization
Global reorganization approaches produce optimal inheritance graphs, without att
redundancy and with a minimum number of classes and inheritance links, from pre-
ing hierarchies (figure 8.1). These techniques can be fully automated. They work glo
analyzing and recasting an entire class collection at a time.

The approach proposed in the context of the Demeter project is based on a form
that distinguishes between abstract classes, which can be inherited but not instan
and concrete classes, which can be instantiated but cannot be used as superclasses
correspond to the vertices in a graph. The edges of the graph denote either inherita
lationships between classes, or part-of relationships between classes and their (typ
tributes [28]. This model forms the basis for global reorganization algorithms whose
is to optimize the structural characteristics of an inheritance graph (i.e. to minimiz

Figure 8.1 Reorganizing a redundant, non-connected hierarchy (1); capital letters
represent attributes. (2): after applying the Demeter algorithm; (3): after
applying the algorithm described in [12]. Class c2 is the concrete
counterpart of abstract class c1; similar definitions are merged in (3), but not
in (2). Class c4 is preserved in (3), but considered as superfluous in (2).
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taken into account. The formal properties of these algorithms have been investiga
detail [28]:

• Transforming a hierarchy to suppress redundant part-of edges, i.e. forcing clas
inherit common attributes from a shared superclass, is inP.

• Minimizing the overall number of edges isNP-complete. When the final hierarchy i
actually a tree, efficient (polynomial) algorithms exist for optimizing the hierarc

A different method is based on an object model that allows classes to inherit from
crete superclasses [12]. The corresponding algorithm proceeds by flattening all cla
initions present in a hierarchy, then factoring out common structures, relinking all 
definitions through inheritance, and finally eliminating redundant inheritance links
auxiliary class definitions. Contrary to the Demeter approach, this algorithm does
serve all definitions that actually differ in the library before the reorganization, it take
definitions into account and it can be tailored to avoid repeated inheritance in the
hierarchy.

None of the global algorithms deal with interattribute dependencies or with the pr
vation of behavioural properties. Global algorithms do not always produce identic
sults because of their varying assumptions and goals — as is shown clearly in figur

8.5.4.3 Incremental Reorganization
Adding a subclass is a major step in the development of an object-oriented library
ranting an evaluation, and possibly an improvement of the hierarchy. The evaluatio
be restricted to the relationships between the new class and its superclasses, an
organization can be limited to the location where the new class is introduced. The
mental factorization algorithm proposed in [11] is driven by the analysis of redefin
patterns between a new class and its superclasses. It attempts to optimize the inh
graph within reason while keeping the disturbances to the original library to a minim
Behavioural properties can be maintained to a certain extent and classes presen
hierarchy before the reorganization are not deleted [12]. The algorithm transforms 
archy automatically to eliminate unwanted subclassing patterns, to pinpoint places r
ing redesign and to discover missing abstractions. It can take into account renami
structural transformations similar to those discussed in 8.5.2.

The incremental reorganization algorithm extracts the properties shared by s
classes and isolates them in a new, common superclass. Figure 8.2 shows a fragme
Eiffel library where classCIRCLE inherits fromELLIPSE. This subclassing operation is ac
companied by a partial replacement ofELLIPSE’s behaviour. Simultaneously,CIRCLE
changes its superclass’s interface in a way that corresponds neither to a restriction
would be expected in a specialization relationship) nor to an extension (characteri
subtyping relationships). A transformation of the hierarchy eliminates this unnatura
classing pattern by inserting an intermediate definition containing the properties com
to bothCIRCLE andELLIPSE, and by making these two classes subclasses of the new
iliary node.
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In more complex situations, the factorization propagates as high up in a hierarch
needed to eliminate unwanted subclassing patterns and introduces auxiliary defin
along the way. A last simplification phase suppresses redundant auxiliary nodes an
(figure 8.3).
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Figure 8.2 Factorizing inheritance relationships.
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Figure 8.3 The new class c4 rejects attributes B and C from c3; this triggers an
incremental reorganization of the hierarchy whose final result is depicted in (3).
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8.5.4.4 Application of Incremental Reorganization
The incremental reorganization algorithm of [11] is one of the rare approaches w
effectiveness has been quantitatively assessed on the basis of large-scale expe
involving the reorganization of versions 2.1 and 2.3 of the Eiffel library (98 and 500 c
es respectively). Starting from an empty hierarchy, Eiffel classes were added one 
to the library, triggering incremental reorganizations whenever redefinition pat
amounting to the rejection of inherited methods were detected (figure 8.4). This 
brought to light several interesting results [13]:

• A large majority (63%) of the problems uncovered by the reorganization algor
were caused by the utilization of inheritance for code sharing and by an inade
modularization of functionality leading to other improper subclassing relationsh

• In 21% of the cases, the outcome of the reorganization corresponds to wh
would expect from a manual redesign of the library. The restructuring patterns 
incremental algorithm closely match empirical observations on the evolutio
object-oriented libraries [2], as well as small-scale reorganizations of a limited
set of the Smalltalk hierarchy [17].

• In 33% of the cases, the incremental algorithm detects, but is not able to co
many actual design problems in a library that are best solved by other kinds 
organizations, such as transforming inheritance links into part-of relationships

Figure 8.4 Restructuring the Eiffel 2.3 library. A few groups of classes responsible for
clustered reorganizations are highlighted. Overall, the incremental
factorization of Eiffel 2.3 adds 166 auxiliary definitions to the library.
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oriented libraries, especially when it is combined with other incremental techni
that are sensitive to naming patterns [13]

8.5.4.5 Evaluation
Global reorganizations are a prerequisite when the goal is to put a hierarchy into a “n
form” free from redundancy. However, global revisions may thoroughly transform 
brary. The results are therefore difficult to grasp and to utilize, particularly with libra
comprising hundreds of classes. Incremental factorization, on the other hand, lim
scope to the inheritance paths leading to one new class — an approach that also gua
better performance in an interactive environment. Besides, it is doubtful that a glob
organization can achieve significant results without additional processing to extra
structural similarities between class interfaces or method signatures that are h
because of diverging naming and programming conventions [31][34]. Maintaining
havioural properties is a problem with both global and incremental reorganiza
[6][12][39] and, anyway, many design problems cannot be solved through adjustme
subclassing relationships alone. Inheritance reorganization techniques must there
enhanced with other methods such as refactoring to support redesign activities effec
Automatic approaches are nevertheless essential to reduce the search space for 
operations on large libraries to a manageable size before applying interactive, user
surgery or refactoring operations.

8.6 Change Avoidance

8.6.1 Confining the Effects of Evolution

In principle, modifications of class specifications must be propagated to objects ins
ated on the basis of old definitions, so as to maintain the overall consistency of the s
Nevertheless, in many cases instances need not be updated or enhanced when th
is modified. Detecting when these situations arise is important, since one can then
the inconvenience of change propagation without giving up system consistency.

Change avoidance is easily combined with class tailoring. Tailoring operations ar
ried out only for the purpose of defining additional subclasses; no matter how inh
properties are overridden, the modifications appear and take effect only at the leve
subclasses performing the redeclarations. New classes obviously have no associ
stances, so there is no need to care about filtering or conversion procedures. Thus,
oriented systems avoid updating instances when subclassing operations are consi

Several other evolution primitives exhibit no side-effects and can safely be ap
without reorganizing running applications. Among the surgery operations listed in se
8.3.3, the following have no consequences on object structures:
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• Renaming classes, methods and variables only affects the description of class
the structure of instances, although this may not always be true for programs th
plicitly manipulate class or attribute names.

• Changing the default value of a variable or a shared slot has no effect on inst
since these values pertain to the class definitions, not to the objects themselve

• The implementation of a method can be changed freely; the code is associat
kept with a class definition, to be shared among all individual instances.

• Because no arbitrary changes to the domain of variables and arguments are a
one can guarantee that the values stored within existing objects remain comp
with their new type.

8.6.2 Physical Structures

A technique for confining the effects of class evolution consists of uncoupling the lo
object model from its physical representation, so that instances may be implement
way immune to change. Transposed files exhibit such desirable characteristics [18

In traditional database systems, the state of an object (i.e. the set of all its variab
usually stored in one record (methods are shared and stored in a separate area). Ev
of a hierarchy is associated with a file which is used as a persistent storage space fo
tities, with each record of a file containing the state of a particular entity (figure 8.5). W
a variable is added to a class definition, additional space must be allocated for the
sponding class and its subclasses; the instances affected by the modification are
quently copied into the new storage zones. When a variable is suppressed from a
special procedures are required for reclaiming unused storage space, a process tha
ally entails unloading and reloading entire class extents.

Transposed files associate one file with each variable of a class. Each record c
the value of the variable for a particular instance. The complete representation of a c
thus spread among several files. One reconstitutes the state of an object by first ac

Figure 8.5 Traditional storage technique for a hypothetical EMPLOYEE class.

class  EMPLOYEE
variables

Name : STRING;
Salary : INTEGER;
Function : STRING;

…
end ;

Mucius Scaevola 5100 Programmer

Julius Nepos 8300 Project Leader

…

Titus Livius 7600 Analyst

File: EMPLOYEE
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the values of its various variables in their respective files, and then grouping them to
in the main memory for processing. All values for the variables of an object are sto
records located at the same rank in the various files; this is made possible by derivi
rank directly from the identifier assigned to every object in the system. A simple sc
is to use a pair〈class-identifier, rank〉 to identify objects. Because file management syste
generally allocate disk space not by records but by blocks, a level of indirection is n
to access the value of a variable. On the other hand, such a structure facilitates the in
of objects whose identifiers are not strictly sequentially determined (blocks corres
ing to unused identifiers need not be reserved), and the release of space after the la
associated with a particular block is deleted. Resource waste is therefore reduced. 
agram of figure 8.6 represents the simplified structure of a transposed file.

Transposed files provide an efficient kernel for implementing many of the class su
primitives described in section 8.3.3, for example:

• Adding a variable to a class does not require reformatting the existing recor
make room for the new attribute. Instead, an additional file is reserved to conta
supplementary variable that is initialized to some default value, such asnil or 0, for
existing instances.

Figure 8.6 Using a transposed file organization for storing class EMPLOYEE.
Rank 2 contains all information relative to employee “Julius Nepos”,
rank 215 the data relative to “Titus Livius”. No instance corresponds
to ranks 7–9, so the corresponding block is not allocated.

Mucius Scaevola

Julius Nepos

—

—

Titus Livius

—

1–3

4–6

(7–9)

…

214–216

Transposed file: Name

5100

8300

—

1–3

4–6

(7–9)

…

214–216

Transposed file: Salary

—

7600

—

Programmer

Project Leader

—

—

Analyst

—

1–3

4–6

(7–9)

…

214–216

Transposed file: Function

…… …
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all the space it occupies to the system. No compaction of the database is requ
• A subclass definition comprises all its superclass files plus some additional file

reorganization of the hierarchy results in the destruction of the subclass, all fil
the attributes it introduces are deleted, but not those corresponding to the varia
its superclass. All instances of the subclass automatically become members
superclass, without one having to execute any procedure to save, reformat and
fer the objects from one class to the other. Theclass-identifier part of all object identi-
fiers must nevertheless be updated to remain consistent across changes.

Transposed files have proved very useful in domains such as statistical and econo
information systems. They have therefore been implemented in special-purpose da
systems geared towards supporting these categories of applications. Their applica
semantic and object-oriented database systems is currently a field of active researc

8.7 Conversion

8.7.1 Issues

Transforming all entities whose class has been modified seems like the most natu
proach to dealing with change propagation. This technique implies that instanc
physically updated so that their structure matches the description of the class they 
to. Two important requirements must be met:

• Because there is in general not a direct or a unique correspondence between 
new class definitions, care has to be taken to avoid losing information.

• The conversion process has to be organized in such a way that it interferes as 
possible with normal system operations.

A consequence of the first requirement is thatad hoc reconfiguration procedures hav
to be programmed to accompany automatic conversion processes whose capabi
preserve the semantics of an application domain are evidently limited. The seco
quirement forces all conversion procedures to behave as atomic transactions (trans
tions must be applied completely to the objects involved in the conversion) and puts 
restrictions on their duration.

8.7.2 Instance Transformation

CLOS provides a good example of how automatic conversion can be enhanced by t
grammer to take supplementary integrity constraints into account [25]. Conversion
performed according to the rules listed in table 8.4. CLOS deletes from objects 
tributes that have been deleted in their class, including their associated accessor m
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it adds and initializes those attributes that have been introduced in the class definitio
adapts the attributes whose status has passed from shared to local (or vice versa
conversions are carried out by a standard function calledupdate-instance-for-redefined-

class that is inherited by every class in a hierarchy and can be customized by the pro
mer. Arguments such as the list of attributes added to the class, or the list of attribut
carded from the class or converted from local to shared, with their original value
passed to this function. This allows the programmer to take proper actions to corre
augment the default restructuring and reinitialization procedures provided by CLOS
thus to determine freely the mapping from an old to a new object schema.

The OTGen system provides a similar kind of functionality for transforming instan
affected by a class modification, although this capability is presented to the user th
a table-driven interface rather than as a programming feature attached to the inhe
hierarchy [27]. A table lists all class definitions whose instances have to be converte
suggests default transformations that apply, which can of course be overridden or e
ed by the user. The transformation operations possible with OTGen are as follows:

• Transfer objects which belong to the old class definition to the new database
changed objects are simply copied from a database to another.

• Delete objects from the database if their class has been deleted.
• Initialize the variables of an object. When the old and new types of a variable a

compatible, the default action taken by OTGen consists of assigning thenil value to
the variable. The user can override the standard behaviour of the system by pro
its own initial values.

• Change local variables to shared variables.
• Perform context-dependent changes. One may initialize variables based on pr

information stored in the objects, or partition the instances from a class into two
categories based on the information they contain.

shared local none

shared preserved preserved discarded

local initialized preserved discarded

none initialized initialized —

Table 8.4 Default conversions carried out by CLOS on objects after a class
modification. A slot corresponds to a variable. Preserved slot values are
untouched. Discarded slots are removed and their values are lost. Initial
slots are assigned a value determined by the class the instance belong
This table is reproduced from [25].
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• Move information between classes, for example by shuffling variables among class-
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• Introduce new objects for classes created while updating the hierarchy and ini

their variables on the basis of information already stored in the database.
Providing a framework to handle the most common transformations certainly eas

task of the programmer. It is difficult, however, to guarantee that such a predetermin
of primitives effectively covers all possibilities for object conversion. When complex
aptations cannot be expressed with these operations, one is eventually forced to r
special-purpose routines.

8.7.3 Immediate and Delayed Conversion

A major constraint with conversion concerns the time at which objects must be 
formed.

Immediate conversion consists in transforming all objects at once, as soon as the
sponding class modifications are committed. This solution does not find much fav
practice, because it may entail the full unloading and reloading of the persistent 
store, and long service interruptions if a significant number of entities have to be co
ed. On the other hand, this technique provides ample opportunities for optimizing th
age and access paths to objects as part of the conversion process. Immediate co
has been implemented in the GemStone object-oriented database system [35].

Lazy conversion consists in adapting instances on an individual basis, but only
they are accessed for the first time after a class modification. This method does no
the drawbacks of system shutdown imposed by immediate conversion at the pr
degraded response time when instances are initially accessed after a class modifi
Lazy conversion requires keeping track of the status of each object. When succ
revisions are carried out on the same class, the system must record each associa
version procedure, to be able to transform objects that are referenced after a long pe
inactivity. Lazy conversion is nevertheless an appealing approach for applications
short-lived instances that are rapidly garbage-collected and therefore do not even 
be converted. This technique has been proposed as the standard mechanism for C
version of the O2 system implements both techniques [41], applying immediate con
sion to instances present in main memory at the time of the modification and resor
lazy conversion for objects residing in secondary storage [4].

8.7.4 Evaluation

Conversion, and in particular lazy conversion, is a very attractive technique for prop
ing changes in an object-oriented system. It requires the programming of transform
functions, even when the environment supports automatic conversion, but there 
other alternatives for resolving intricate compatibility conflicts. When the conversio



236 Managing Class Evolution in Object-Oriented Systems

instances is infeasible, scope restriction techniques borrowed from the filtering approach
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may prove helpful.

8.8 Filtering

8.8.1 Issues

Under some circumstances, one may not need to physically convert instances, b
they have become obsolete due to class modification, or because they represent in
tion that is not allowed to be modified for legal reasons, like accounting records. In
situations, it is preferable to ensure a partial compatibility between old and new o
schemas, so that an application may still use them, but without striving to make them
fectly interchangeable.

Filtering (or screening) is a general framework for dealing with this problem. It is m
often used in combination with version management. This can be done by wrapping
ware layer around objects. The layer intercepts all messages sent to the enclosed
these messages are then handled according to the object’s version, to make it con
the current or to a previous class description, or to cause an exception to pop up w
application uses an object with an unsuitable definition. Three major issues must be
ined with this approach:

• How does one characterize the degree of compatibility between class versions
• How can one map instances from a class version to another?
• How far can a filtering mechanism hide class changes from the users?

8.8.2 Version Compatibility

Fundamentally, filtering is a mechanism for viewing entities of a certain class versi
if they belonged to another version of the same class. From the predecessor–succe
lationship between versions, we identify two types of compatibility [1]:

• A versionCi isbackwards compatible with an earlier versionCj if all instances of Cj

can be used as if they belonged toCi.
• A versionCi is forwards compatible with a later versionCj if all instances ofCj can

be used as if they belonged toCi.
In the first case, applications can use old instances as if they originated from new

nitions. With the second form of compatibility, old programs can manipulate entities
ated on the basis of later versions.

Each classC is associated with the partial ordering of versions {Ci }. We assume that,
at any point in time, someCi is considered the valid version of classC. Building on these
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definitions, we say that a class versionCi isconsistent with respect to versionDj of another
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classD (C ≠ D) if one of the following conditions is satisfied [1]:
• Dj was the currently valid version ofD whenCi was committed. This is the usual si

uation;Ci references up-to-date, contemporaneous properties ofD.
• Dk was the currently valid version ofD whenCi was committed,Dj is a later version

of D, andDk is forwards compatible withDj. HereCi references an obsolete defin
tion of D, but the forwards compatibility property allows it to work with instanc
created according to the new schema.

• Dk was the currently valid version ofD whenCi was committed,Dj is an earlier ver-
sion ofD, andDk is backwards compatible withDj. HereCi is supposed to manipulate
an up-to-date representation ofD; thanks to the backwards compatibility, it is neve
theless able to use instances generated from old versions.

8.8.3 Filtering Mechanisms

The operations that cause problems when invoked on a non-compatible object can b
sified in a limited number of categories. For example, deleting a method generates
violations when an object attempts to invoke the deleted method. These effects ar
marized in table 8.5.

A simple way to deal with this problem is to replace each access primitive with a ro
specifically programmed to perform the mapping between different class struc
Thus, for each variable that violates compatibility constraints, one provides a proc
that returns the variable’s value, and another procedure for changing its value. The
cedures perform various transformations, like mapping the variable to a set of oth
tributes [1]. For example, if the “birthday” attribute of a person class has been rep
with an “age” variable, one has to provide the following procedures to ensure back
compatibility:

• A read accessor that determines the age of a person based on the time elap
tween the recorded birthday and the current date.

• A write accessor that stores the age of a person as a birthday, computed on th
of the current date and the age given as argument to the accessor.

Similarly, one must define two symmetrical operations to guarantee forwards co
ibility. More generally, one can define so-called substitute functions for carrying out 
mappings between objects with different structures as follows:

• A substitute read function RCijA(I) is given an instanceI of versioni of classC. It
maps the values of a group of attributes from this object to a valid value of attribA
of versionj of C. In other words, it makes instances of class versionCi appear as if
they contained the attributeA of class versionCj for reading operations.

• A substitute write function WCijA(I,V) is given an instanceI of versioni of classC,
and a valueV for attributeA of Cj. It maps the valueV into a set of values for a group
of attributes defined inCi. In other words, this function makes instances of class 
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sionCi appear as if they could store information in attributeA, although this informa-
tion is actually recorded in other variables.

A second approach favours the use of handlers to be invoked before or after a failed
to the attribute they are attached to, a technique that has been implemented in t
CORE system [37]. Pre-handlers typically take over when attempting to access a
existent attribute, or when trying to assign an illegal value to it. A pre-handler may
form a mapping like those carried out by the substitute functions, coerce its argume
valid value, or simply abort the operation. A post-handler is activated when an illega
ue is returned to the invoking object; a common behaviour in this case consists in ret
a default value.

8.8.4 Making Class Changes Transparent

Where should filters be defined? As originally stated, the technique based on hand
quires global modifications in all versions of the same class [37]. More precisely,

add a variable backwards undefined variable in old objects

delete a variable forwards undefined variable in new objects

extend variable type backwards writing illegal values into old objects

forwards reading unknown data from new objects

restrict variable type forwards writing illegal values into new objects

backwards reading unknown data from old objects

add a method backwards undefined method in old objects

delete a method forwards undefined method in new objects

extend argument type backwards passing illegal values to old objects

forwards getting unknown data from new objects

restrict argument type forwards passing illegal values to new objects

backwards getting unknown data from old objects

change argument list backwards and forwards similar to dropping and adding a meth

Table 8.5 Consequences of class changes. The middle column indicates which k
compatibility is affected by a modification, the right column describes th
exceptions raised when accessing an object from the old or the new cla
definition.
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• Pre-handlers must be added to a version that suppresses attributes of a class.
• When a version extends the domain of an attribute, corresponding pre- and

handlers must be introduced in all other versions of the class.
• When the domain of an attribute is restricted, the class version redeclaring t

tribute type must be wrapped with a pre-handler and a post-handler.
This solution is rather inelegant: it requires that old class definitions be adjusted

flect new developments and leads to a combinatorial explosion of handler complex
The model of substitute functions allows one to exploit the derivation history for m

ping between versions that have no direct relationships. Thus, one can map a versiCi to
another versionCj if there exist either substitute functions for them (RCijX, WCijX, where
X denotes an attribute ofCj), or a succession of substitute functions that transitively ap
to them (i.e. there are substitute functions for mapping betweenCi andCk, thenCk andCl

and eventuallyCl andCj for example). Depending on compatibility properties, one c
even relate class definitions placed in different derivation paths in a version hierarch
thermore, substitute functions are defined only in the newer versions; previous clas
nitions remain unchanged.

When compatibility between versions cannot be achieved, one may install sco
strictions that isolate objects pertaining to different definitions from each other:

• A forward scope restriction makes instances from a new version inaccessible to
jects from older versions.

• A backward scope restriction makes instances from older versions unreachable f
objects of more recent versions.

Scope restrictions and compatibility relationships make it possible to partition a 
extension in such a way that operations may be applied to any object regardless of
sion. Naturally, interoperability decreases with such a scheme, since the entities fro
ferent versions of the same class can no longer be referred to and accessed as me
one large pool of objects.

8.8.5 Evaluation

Screening has been implemented in some systems, but its application scope there
bly reduced. ORION does not immediately convert instances affected by a class cha
as to avoid reorganizing the database [3]. When an instance is fetched, and befor
tributes are accessed, deleted variables are made inaccessible (after, if needed, th
cal destruction of the objects they refer to). Default values are automatically suppl
account for the introduction of new properties. Rearrangements of inheritance patte
reflected by hiding unwanted properties and supplying default values for new inherit
tributes.



240 Managing Class Evolution in Object-Oriented Systems

From our discussion, it appears that filtering cannot fulfil its objective of making class
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changes transparent without considerable complexity and overhead. The progra
must not only develop a series of special-purpose functions for mapping between th
iants of a class, but must also accept a degradation of application performance a
handlers accumulate, replacing the originally simple and efficient accessors. In pra
this complexity does not appear fully warranted. With lazy conversion, for example
has also to definead hoc procedures for transforming entities from one version to anot
but these procedures are called only once for every object. Their execution is theref
as expensive as the systematic run-time checks and exception raising implied by scr
techniques. On the positive side, filtering provides a rigorous framework for defining
dealing with compatibility issues, and it is most adequate during prototyping, when
modifications may be cancelled just after being tested. Recent approaches provi
proved mechanisms derived from database views that encompass filtering techniqu
that can also be suitable as modelling tools during application development [16].

8.9 Conclusion

Object-oriented development reveals its iterative nature as successive stages of su
ing, class modification and reorganization allow software engineers to build increas
general and robust classes. We therefore expect object-oriented CASE systems 
advantage of the large spectrum of tools and techniques available to manage the 
aspects of class evolution (see table 8.6).

It is appealing to envision an environment where software engineers build new c
out of reusable components, tailor them to suit their needs, and launch exploratory
mental reorganizations to detect the places in their code most likely to require furth
visions. Software developers may then refine the outcome of automatic reorganiz
with class surgery primitives and perhaps embark on comprehensive refactoring 
ties. The results of different reorganizations and their subsequent adjustments are 

Approach Actual impact
on instances

In charge of controlling
change propagation

Implementation

change avoidance

confinement logical system side-effect free operations

storage structures physical system transposed files

conversion physical programmer conversion routines

filtering logical programmer handlers/wrappers

Table 8.6 The main characteristics of change propagation techniques.
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versions of the hierarchy, that can be further modified, tested, debugged and possib
celled by the programmers (see table 8.7). Filtering makes it possible to test the c
ness of various class definitions without having to carry out numerous conversions.
a satisfactory design for a new component and its related classes is achieved, it can
zen and publicly released as the new version of the class library, while the other tem
versions are discarded. If necessary, instances from modified classes can then be d
converted to conform to their new definitions.

Some approaches have been partially implemented and already appear, albeit i
tion, in some object-oriented systems; we hope that integrated tools suitable for su
ing class evolution in industrial and commercial environments will become availab
the near future.

development

tailoring  attributes;
interfaces

extension syntactical constraints

surgery  attributes;
inheritance links;
classes

redesign schema invariants

versioning classes extension configuration consistency

reorganization

refactoring classes;
 attributes;
method structures;
inheritance links

redesign schema invariants;
preservation of behaviour

interattribute
dependencies

method structures redesign preservation of behaviour

inheritance
(global)

classes;
inheritance links

redesign preservation of class structures;
global optimality of hierarchy

inheritance
(incremental)

classes;
inheritance links;
interfaces;
method structures

extension preservation of class structures;
local optimality of hierarchy;
preservation of behaviour

Table 8.7 The main characteristics of evolution management techniques. Attribut
refer to methods as well as to variables; method structures correspond t
signature and the implementation of methods.
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The Affinity Browser

Xavier Pintado

Abstract Large numbers of classes, complex inheritance and containment
graphs, and diverse patterns of dynamic interaction all contribute to difficulties in
understanding, reusing, debugging, and tuning large object-oriented systems.
These difficulties may have a significant impact on the usefulness of such systems.
Tools that help in understanding the contents and behaviour of an object-
oriented environment should play a major role in reducing such difficulties. Such
tools allow for the exploration of different aspects of a software environment such
as inheritance structures, part-of relationships, etc. However, object-oriented
systems differ in many respects from traditional database systems, and in
particular, conventional querying mechanisms used in databases show poor
performance when used for the exploration of object-oriented environments. This
chapter defines the requirements for effective exploration mechanisms in the
realm of object-oriented environments. We propose an approach to browsing
based on the notion of affinity that satisfies such requirements. Our tool, the affinity
browser, provides a visual representation of object relationships presented in terms
of affinity. Objects that appear closer in the visual representation are more strongly
related than objects lying farther apart. So, the intensity of a relationship is
translated into distance in the visual representation that provides the support for
user navigation. We provide many examples of metrics defined over the objects of
an environment to illustrate how object relationships can be translated in terms of
affinity so that they can be used for the exploration of an environment.

9.1 Introduction

Large numbers of classes, complex inheritance and containment graphs, and 
patterns of dynamic interaction all contribute to difficulties in understanding, reusing
bugging, and tuning large object-oriented systems. From the inception of object-or
environments, developers and software designers have felt the need for tools that s
the process of understanding the objects, the classes and the relationships prov
their environments. For example, reuse of existing software components requires n
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ities are also instrumental for the combination of instantiated objects since they allo
user to go back and forth, inspecting objects and combining them. In a similar 
discerning global and local patterns of interaction among classes and among obj
critical for tuning and debugging.

This chapter proposes an approach to browsing for object-oriented environments
on the notion of affinity. Our tool, the affinity browser, allows for the exploration of c
lections of objects based on a visual representation of object relationships prese
terms of affinity. Objects that appear closer in the visual representation are more st
related than objects lying farther apart. So, the intensity of a relationship is translate
distance in the visual representation.

Our approach displays many advantages. First, affinity browsing is not based on
to-point navigation. The user is provided with the set of objects that lie within a g
neighbourhood relative to the object currently being inspecting. The affinity browser
motes, therefore, proximity-based navigation whereby exploration proceeds by exp
first the objects that are close to the current object of interest. Second, the browser
for the exploration of dynamically evolving relationships. The evolution of such relat
ships is visualized as an animation where the change in the relative position of objec
veys the change of the underlying relationships expressed in terms of affinity. Third,
different kinds of object relationships can be translated into affinity representations a
ing the same exploration paradigm and the same user interface to be used to explore
spectrum of object relationships.

This chapter is organized as follows. Section 9.1.1 addresses the problem of findi
selecting objects inside an object-oriented environment. It discusses the characteri
object-oriented systems that may have an impact on the effectiveness of various br
mechanisms. Section 9.1.2 surveys work related to browsing ranging from tradi
graph-based browsing to graphical and spatial browsing. Section 9.2 defines the re
ments for effective exploration mechanisms in the realm of object-oriented environm
Section 9.3 presents the affinity browser as a tool that satisfies such requirements.
tion 9.4 we provide many examples of metrics defined over the objects of an environ
to illustrate how object relationships can be translated in terms of affinity so that the
be used for the exploration of an environment

9.1.1 Object Selection

We address here the issue of selection in the object-oriented realm. Users may w
instance, to select classes, objects, or functionality. Selection in an object-oriented
ronment has many problems, however. First, an application designer has only ap
mate selection criteria to select an appropriate reusable object class for developing
her application. Second, the object classes and the objects in a running system ha
tionships that change dynamically. Third, objects are encapsulated and content se
has only very limited use.
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systems with object relationships that are more complex than in more traditional so
environments. Many authors think that these principles will allow designers and dev
ers to create software environments that are an order of magnitude more complex t
isting software systems [19] [4].

A noteworthy supporting reason for such belief is that object-oriented design 
niques seem to allow significantly better decomposition of complex problems into un
manageable complexity. First, by the virtue of encapsulation an object conceals its
nal complexity and it acquires some level of autonomy. Second, incremental defi
through inheritance allows for the endless refinement of object behaviour and funct
ity without the need to rework the whole hierarchy at each refinement step. These m
nisms, with such desirable features, allow for the implementation of models that inte
much detail both at the object level and at the level of object relationships. This int
is further supported by experience that shows that it is quite easy to introduce comp
in the design and in the implementation of an object-oriented environment. For ins
object-oriented programming is more an activity ofwiring together sets of objects. For th
programmer or for the designer whose task is to build a system through the comp
of objects it might be quite easy to combine them in many different ways— this is the
producer’s view. On the other hand, for a developer who wants to understand ex
functionality for reuse or maintenance, it may be difficult to comprehend the large nu
of functional relationships that have been created— this might be the consumer’s view.

Early experiences with object-oriented environments highlighted the need for too
allow for the exploration of object relationships. The Smalltalk environment, for insta
already provided a sophisticated integrated browsing tool [12]. Interestingly enou
has been argued that the Smalltalk browsing tool is one of the most appealing feat
that environment and it is often cited as a reference. For sure, almost every progra
activity on the environment relies on the browser to support navigation needed for th
of non-linear programming promoted by object-orientation. The browser is used to
new objects, to find reusable classes and to explore object relationships.

9.1.1.1 Querying and Browsing
The two methods commonly applied for selection are querying and browsing. The 
ods are usually applied in a complementary manner; we query and browse in alter
applying which method seems more appropriate at different stages of the selection
ess.

Querying provides fine selectivity when the structure of the information space is k
and when content selection can be used. For instance, querying is the primary se
method in database systems. When querying provides good selectivity, browsing 
ishes in importance. Most selected items are appropriate and we only need a crude
ing tool to inspect them.

Querying, however, can have poor results for many reasons. If the selection crite
ill-defined and fuzzy querying does not work well, e.g. in information retrieval. If 
structure of the information space changes dynamically, queries are not easy to form
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e.g. in financial information systems. Finally, if content selectivity is difficult to exploit,
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querying loses a lot of selectivity power, e.g. in multimedia databases. In all these
powerful browsing capabilities become indispensable.

9.1.1.2 Dynamically Evolving Relationships
As we already mentioned, the analysis of dynamically evolving relationships plays a
portant role in debugging but can also be of invaluable assistance for reuse since 
understanding how objects are related in existing applications. However, providing
port for the understanding of dynamically evolving relationships is a challenging tas
fact, traditional querying techniques usually assume a user with knowledge of the s
structure that supports selection. Such an assumption usually implies structure st
since it seems unrealistic to assume user knowledge of a quickly evolving structure

With traditional databases it is usually assumed that their information contents ch
but not their structure— or at least not frequently. For example, widely used qu
languages such as SQL provide almost no support for selection in an environment
changing structure. The stability of database schemes represents an advantage in 
access to information but it makes traditional databases ill-suited for information
dynamically evolving structures.

The need to cope with dynamically evolving relationships appears in many o
selection problems. For example, we may be interested in finding which are the o
that interact most frequently with a given object in order to determine its patterns of 
action. The change in the interaction patterns depending on what activities the sys
performing may provide useful information about the intended role of an object. Th
formation can be used, for instance, to assess the potential of reuse for an object in
vironment that may or may not provide the same activity context.

The need for more flexibility than that provided by query mechanisms appeared a
databases. For example, Motro [20] [21] [22] describes browsing tools that allow fornav-
igation in a semantic network extracted from the internal structure of a relational data
and provide capabilities for fuzzy queries. The approach has been later extended 
grate similar capabilities in an object-oriented environment [23].

9.1.2 Related Work

Because there is an observable trend towards more complex and quickly evolving
mation systems we need to investigate how to enhance browsing capabilities for the
ration of information systems. In this section we describe previous work relate
browsing.

9.1.2.1 The Smalltalk Browser
To the best of our knowledge, the Smalltalk system was the first programming en
ment where exploration tools played a major role. Furthermore, the browsing con
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and mechanisms have been clearly defined [13] [12] and they are quite often cited as the
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historical reference to which more recent browsing tools are compared.
The Smalltalk environment provides capabilities to inspect the message interface

jects through a system view called abrowser. Similarly, the internal state of an object ca
be inspected through another system view called aninspector. Furthermore, it is possible
to obtain interface information about sets of objects through another kind of system
called amessage-set browser. These views are generated as responses to queries su
which classes implement a given message? Which objects send a particular mess

The main way to find out about classes in the environment is to use a system
browser. The browser presents a hierarchical view of class-related information. It pr
categories that organize the classes within the environment, and categories that a
messages within each class. Categories provide essentially a way of grouping clas
messages into meaningful groups.

It should be noted that in the Smalltalk environment the role of the exploration to
not restricted to inspection. For example, aninspector allows users to change interactive
the values of instance variables and to send messages to objects. In general, ins
tools are used for both inspection and programming purposes. For instance, the c
of a new class derived from an existing one, and the definition of new methods is als
formed through the browser.

Other browsing tools have been described and implemented in various system
browsing mechanisms implemented in the Smalltalk environment have been a cont
source of inspiration for new browsing tools. For example, the Trellis programming 
ronment [24] provides browsing capabilities that are quite similar to those of the Sma
environment [12].

The great majority of existing browsing tools allow for apoint-to-point navigation, i.e.
the navigation paths are defined by a tree or a network structure. For instance, t
structure of the Smalltalk browser is based on classification. This approach has pro
be useful for small collections of objects. But when the number of classes become
users may feel lost because there is no global view and the structure cannot be rea
to fit their intuitive perception of the object’s space.

Discerning global and local patterns of interaction among classes is critical for tu
and debugging. A few authors have already identified this as an important issue an
posed adequate tools. For example, Böcker and Herczeg [1] introduce asoftware oscillo-
scope for visually tracking the interactions between objects in a system. The sys
dynamic behaviour is inspected by placing obstacles between objects and animat
flow of messages across them. The tool focuses only on microscopic behaviour, ho
Brüegge, Gottschalk and Luo [3] describe BEE++, an object-oriented application fr
work for the analysis of distributed applications. BEE++ is fundamentally an e
processing system since it views the execution of distributed activities as strea
events. Event processing is encapsulated in a set of core base classes that are int
be derived for customization.

Other authors such as Kleyn and Gingrich [17] focus on object behaviour issues.
tool offers concurrently animated views of the behaviour of an object-oriented sy
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the problem [30] of retrieving reusable software components based on sampled beh
Finally, Rubin and Goldberg [31] sketch an object-oriented design approach based 
ject behaviour analysis and stress the importance of exploration tools to support the
process.

9.1.2.2 Graphical and Spatial Browsing
In the late 1970s Fields and Negroponte, in a visionary paper [10], expressed the n
new clues to find data. Among the many approaches they envisioned for locating inf
tion are spatial referencing and proximity. Shortly after, Donelson [7], Bolt [2], and H
[14] published papers about spatial management of information which apply many
niques for information exploration and inspection that will serve as a basis for future
tems. They introduced thespatial data management system (SDMS) concept, whereby
information is expressed in graphical form and presented in a spatial framework so t
information has a structure that is more obvious than in a conventional database. He
gues that: “in this way the user can find the information he seeks without having to s
it precisely or know exactly where in the DBMS it is stored.”

More recently, Caplinger [5] has described a sophisticated browsing tool with a g
ical spatial interface that is, in fact, an evolution of the original SDMS idea. A further e
oration of SDMS is BEAD [6], a system for the visualization of bibliographical data
BEAD, articles in a bibliography are represented by particles in 3-space. The system
physically based modelling techniques to take advantage of methods for the appro
tion of potential fields. Interparticle forces tend to make similar articles move closer t
another and dissimilar ones move apart, so that the relationships between articles a
resented by their relative spatial positions. We may also mention the N-Land system
which addresses the problem of visualizing higher dimension information spaces.

The growing interest on hypertext systems generalized the use of browsing as a
anism for information access. Many things have been written recently about hyp
browsing and hypertext navigation, and we will just mention a few works that see
deserve particular interest in the context of this work. SemNet [8] is a system for the 
dimensional visualization and exploration of large knowledge bases that promotes
pertext-like navigation paradigm. Feiner’s work addresses the problem of how to
veniently display hypertext structures [9] so as to facilitate hypertext navigation.

Another interesting approach is described by Stotts and Furuta [34]. The basic ide
replace the usual directed graph of an hypertext system by a Petri net. Unlike a d
graph, a Petri net also allows the specification ofbrowsing semantics, i.e. the dynamic
properties of a reader’s experience when browsing a document. So, Petri nets add
hypertext system access control capabilities based on a formally sound mechanis
authors describe the -Trellis system that has been implemented to experiment w
Petri-net-based model. This approach is also discussed in [28] where it is used to e
hypertext systems with an affinity browser.

A sophisticated browsing tool with advanced capabilities for databases has been
oped by Stonebraker [33], which combines query refinement techniques and brow

α
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tem, ME, is a database of files connected through links which represent weighted 
A retrieval request is a set of terms, and a spreading activation process is used to m
files that are most relevant. Finally we cite a browsing tool for specific databases; G
[11] has discussed the problems associated with accessing information related to c
sign, and described a browsing tool to inspect the contents of a chip design databa

9.2 Browsing Requirements

To illustrate our browsing requirements we will use a simple paradigm. Suppose we
an information base relative to a city. We need acity browser which can guide visitors to
plan their stay. For example, suppose we arrive at a hotel and want to go to eat. We
like the city browser to help us choose a restaurant which is geographically close, 
an interesting and safe walk (or a place easy to reach and park), with good food
surroundings, good service and within our budget.* It is obvious that we have multiple
criteria for our choice and it will be very difficult to find a restaurant that is best in all
need, therefore, to be guided to reach a compromise. We should also be aware tha
rants do not always advertise all their points (especially their shortcomings). They
therefore — like encapsulated objects — hidden information which we can only get
persons that have been there.

To begin, we should point out that if the number of restaurants is small then we
need sophisticated browsing tools. We can explore each one of them according to th
tiple criteria, while keeping the rest in the back of our mind. This approach, how
breaks down when the number of objects and criteria becomes large.

The first requirement for effective browsing is a notion of locality. The browser sh
present us first with the choices that areclose. Close implies a measure of distance whi
does not necessarily have a single interpretation. For instance it can be geograp
close, public-transportation close, etc. Each definition of closeness is within a c
context. The browser should, therefore, be capable of dealing with many contexts
context defines a measure of affinity between the objects we are looking for, in th
ample city locations. We should also be in a position to change contexts in our bro
or combine contexts relating independent selection criteria.

The second requirement is that the measure of distance should be able to 
dynamically. For example, time distances between locations can vary with traffic
browser should be able, therefore, to deal with quickly changing definitions of close

The third requirement is that we need a notion of set-at-a-time navigation. The br
should present us with many choices which could be pursued in the information s
There are two reasons for this requirement. First, the immediately next objects sho
be presented to allow other more subjective criteria to be considered. Second, if we
on point-to-point navigation we may reach many dead-ends and be forced to back

* Such a system was implemented at Bell Labs for New York city restaurants.
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Finally, users should be able to visualize the information space they are searchin

need, therefore, to project a multidimensional information space into a two dimens
screen. This projection should somehow preserve the definition of closeness and
good user interface for identification of choices.

To summarize, we need a browsing capability which can incorporate:
• a multidimensional space;
• a measure of distance among objects defined according to a certain context;
• a facility for dealing with many contexts independently or in combination;
• a dynamic environment where measures can change;
• a set-of-objects-at-a-time navigation;
• visualization of contexts in two dimensions.

9.3 The Affinity Browser

We describe in this section an approach to browsing based on the concept ofaffinity. Our
approach, theaffinity browser, is a tool for the exploration of object relationships e
pressed as affinity between objects that fulfils the requirements discussed in secti
The affinity browser is a generic browsing tool for the exploration of information syst
As a generic tool it is meant to be tailored to specific browsing activities. The tailori
accomplished in essentially two ways. First, by defining the appropriate affinity metr
describe object relationships of interest among the objects of the system. Second, 
ing concepts and visual features that enhance the navigation guidance of the ass
search space.

Most of the browsing tools that have been discussed in the previous sections s
either point-to-point navigation based on hierarchical structures (e.g. the Sma
browser), or they rely on spatial relations for navigation. Our approach is based on th
cept of affinity that can be appropriately expressed in visual terms as a spatial relatio
proximity. Objects that appear close in the representation space are more strongly 
than objects that lie farther apart. A significant advantage of this approach is that a
spectrum of object relationships can be expressed in terms of affinity provided that w
devise metrics defined on the objects of the system that appropriately portray the re
ships in terms of affinity.

The first step for the realization of a visual representation of a relationship amon
jects portrayed in terms of affinity is the choice of a metric that satisfactorily represen
relationship. The second step is the construction of a multidimensional placement
objects based on the affinity information. The dimension of the space, the coordinat
the measure of distance are chosen in such a way that the position of each object c
its relationship to the others. Objects that appear close together should have an affi
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each other. Finally, the object placement needs to be visualized in order to provide naviga-
 [28].
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tion support for the user. A detailed discussion of the affinity browser can be found in
Affinity is a powerful conceptual relationship that humans utilize in everyday lif

construct a cognitive structure over a generally loosely structured world. One of its im
tant characteristics is that it is highlycontext sensitive. A set of objects that are close in o
context can appear quite unrelated in another context. Furthermore, different views
same set of objects relating to different contexts can be displayed simultaneously a
complement one another. Adding new views increases, therefore, the user’s unde
ing about these object relationships.

Once affinity is visually represented, users perform proximity-based navigation
cause users can explore different contexts, the browser should allow them to expl
system by choosing, at each step, the context that seems the most appropriate for 
move and update the other views accordingly. The set of coordinated views are 
synchronized views. This capability seems convenient since objects that appear cl
gether in one view may lie far apart in another view. Conversely, the user may wish t
sue many explorations concurrently, so the browser should also allow for indepe
views. These aspects will be discussed in more detail in the next section.

9.3.1 The Affinity Browser Exploration Paradigm

The intended usage of the affinity browser is the exploration of an information s
assisted by visual representations of object relationships. Each such affinity c
explored through an affinity browser.

Figure 9.1 represents the typical layout of an affinity browser. Each of the round 
represents an object. The black icon in the centre of the browser is themarked object. The
marked object is the object around which exploration recurs; users usually select, omark
an object, and then explore the objects in its neighbourhood. Eventually, during the 
ration they will find an object that appears to be more appropriate, in which case the
select it as the new marked object.

The selection of a new marked object has two main consequences. First, th
marked object is displayed in the centre of the browser. Second, the set of objects t
pear in the browser are those that correspond to the new marked object’s neighbou
As a consequence of marking a new object, some objects may disappear from the
sentation while others may become visible.

In terms of exploration concepts, marking a new object corresponds to a shift in
spective. The user chooses a new navigation focal point and then explores the neig
hood of the new marked object.

In a typical browsing session users select either an object they are acquainted 
they already have some knowledge of the information space or they selected one of
try points that may be provided by the system.
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An exploration path can be characterized by the sequence of marked objects.
may act as exploration landmarks and it may be interesting to provide a set of explo
paths that represent relevant guided tours.

9.3.1.1 Affinity Neighbourhood
An affinity browser does not usually show all the objects of an affinity context at a 
The displayed objects are those that lie within a user-defined neighbourhood 
marked object. More precisely, the neighbourhood of an object is controlled by a p
eter  which represents a discriminant threshold: only the objects that ha
affinity higher than  relative to the marked object are displayed.

Alternatively, the user may specify the maximum number of objects to appear i
display. In practice this is the most commonly used way of specifying the visual n
bourhood range. The reason is that by keeping the same number of objects during
ration the user avoids situations where the system does not provide enough choic
few objects displayed), or situations where the browser presents too many choic
cluttered display.

The notion of set-of-objects-at-a-time navigation results from limiting the displa
objects to those that lie in the specified neighbourhood of an object. This set represe
inspection alternatives that the browser offers concurrently to the user. Althoug
“radius” of the neighbourhood can be changed at any time, it is an essential assump

Figure 9.1 Typical layout of an affinity browser representing an affinity context.
The black icon represents the marked object .
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most exploration or inspection tasks. Further, we see the neighbourhood restriction
as a feature than as a limitation. Once users locate a region of interest they should
sented only with the choices that are close in its exploration context.

9.3.1.2 Synchronised Affinity Browsers
The proximity-based navigation provided by an affinity browser is mainly intended
“fine-grained” exploration. That is, once users have identified an interesting region
explore the alternatives that are close in order to select the most appropriate. Ho
when users are exploring the information space “at large”, local navigation alone is 
ly not enough.

A powerful mechanism used in human mental processes is association. For ex
users proceed by association to recall entities that are close to a given entity. This 
process corresponds, in terms of browsing, to proximity-based navigation. A sli
more elaborate mental process consists of focusing on an object, exploring its neigh
and investigating how the neighbouring objects in the present context are related in
er context, and then exploring the objects that are close in the new context. This is 
erful process since it allows us to reach objects that are not closely related in th
context. Loosely speaking, we may say that exploration is based on transitive assoc
navigation is proximity-based but by alternating the navigation context the user can
many other interesting objects. The mechanism that we provide to support this k
transitive associations is the synchronization of affinity browsers. The synchronizat
the affinity browsers implies that the object under inspection in one browser is also
lighted in the others. Users may pursue exploration in any of the browsers and the
path is followed in the others provided the inspected object also belongs to the latte
text. We may recall here that two objects that are close in one context might not be
or may even be unrelated, in another context. Figure 9.2 shows a set of four synchr
browsers. Synchronized views allow users to inspect objects that would otherwise 
reachable if navigation is based on just one exploration context. This stems from th
that, in one browser objects that are not related to the marked object are normally n
played. So, to reach non-related objects the user needs to switch to another brow
which the objects are related in the displayed context. This emphasizes the no
navigation based on the strict neighbourhood of the marked object. However, the bro
allow users to display objects that are not directly related but are related by transitiv

When objects are transitively related, their affinity is calculated either by a max
transitivity rule or by a max-product rule. Refer to [28] for a detailed discussion a
these operations.

Finally, the user may also explore the information space based on multiple indepe
browsers or a combination of synchronized and non-synchronized browsers. Th
chronization of the browsers is not a symmetric mechanism: saying that browser
synchronized with browser (b) does not imply that browser (b) is synchronized
browser (a). To obtain two-way synchronization the user needs to specify it explicit
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9.3.1.3 Exploration Based on Dynamically Evolving
Affinity Contexts

As we stated in our browsing requirements, affinity browsers are intended to provide
igation guidance based on dynamically evolving object relationships. The browse
vides such support essentially in two ways. First, it is able to track in a visual way a
interactive time-evolving relationships. Second, the browser provides for a degr
visual feedback where the movement of the visual objects gives the illusion of dyn
motion and dynamic interaction. Both aspects are addressed in more depth in [2
[25].

One difficulty that users may find with dynamically evolving affinity contexts is that
changes in object relationships may make some objects disappear from the represe
and others may show up due to the neighbourhood-restricted display. From o
perience, this is quite cumbersome for unstable relationships that evolve at a fast p

Figure 9.2 Synchronous affinity browsers. The black icon represents the marked object.
The user is performing exploration in the lower left browser where the marked
object appears in the centre. Since the browsers are synchronized, the marked
object is the same in all the browsers.
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9.3.2 Architectural Elements of an Affinity Browser
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The architectural foundation of the affinity browser relies on an approach to sof
construction based on the composition of software components. Such an approa
phasizes modularity and careful study of component interfaces in order to achieve
bility and flexibility in software configuration. This flexibility is needed for the affin
browser since the idea is to provide a generic architecture that can be configured t
the exploration requirements that a specific browser is intended to support.

9.3.2.1 Affinity Engine and View Engine
An affinity browser is comprised of two main units: theaffinity engine and theview engine.
The affinity engine is responsible for the management of tasks that are related to the
lation of object relationships into a standard form of affinity representation.

The view engine is responsible for display and user interaction management. The
ity engine and the view engine communicate through well-defined protocols. The a
engine often incorporates application-domain-dependent functionality in order t
hance navigation guidance with domain dependent-features. Similarly, the view e
can also incorporate visual features specific to the application domain and we freq
use this capability, in particular for financial tools.

9.3.2.2 Translucency: One Browser, Multiple Contexts
In our architecture, a browser can display multiple contexts simultaneously. This ca
ity is made available by the view engine that supports a stack of translucent views 
the user can see through the views those that lie behind. The user can specify the
degree of translucency from completely transparent to completely opaque. In a tra
ent view, no objects are visible. In an opaque view, objects hidden behind a front vi
not show up. The superimposition of views is displayed with a visual effect of d
cueing: views progressively fade away from front to back.

The use of translucency is quite effective because it allows for the simultaneous 
ration of many contexts on the same visual space. As a rule of thumb, in order to be
the number of displayed views should not usually exceed four since the visual fadi
fect makes some views unreadable. Translucent visual layers are also effective to 
domain-dependent information such as names, visual cues, transient informatio
alarms.

The interaction protocols between the view engine and the visual layers is well-de
which allows the dynamic insertion of new layers into the view stack. The main adva
of having multiple views displayed in two dimensions is that lengths and distances c
compared visually, which is not usually the case when display relies on three-dimen
techniques since projection distorts distances.
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9.3.3 User Interaction and Event Management
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In order to conveniently support interaction with multiple superimposed visual layers
view engine provides an event distribution mechanism through which events from 
sources are distributed to the various layers that are responsible for reacting to
When a new event is queued, it is sent first to the topmost layer, which is asked if i
terested in the event. If the layer is not interested or if the layer does not consume the
then it is sent to the next layer in the view stack. The operation is applied recursively
the view stack until either the event is consumed or the bottom of the view stack is re

The order of the visual layers can be changed interactively by the user. Typically,
bring the layer with which they want to interact to the top of the stack. Furthermore, v
layers can be added to and deleted from the stack. A new visual layer is inserted,
fault, at the top of the stack. Object relationships displayed in different visual layers 
same browser can be either synchronized or not, much in the same way as object r
ships are displayed in different browsers.

The event distribution mechanism plays an important role in implementing couple
operative strategies between the visual layers. In fact, one of our design goals was to
an architecture for the view engine independent of the application domain. To achie
goal, the interaction between the view engine and the visual layers only supports ap
tion-independent operations and not intended to be extended. We decided to provid
ibility in the way cooperation between views can be specified through an extended
distribution mechanism that acts as a messaging backbone.

The event distribution mechanism allows visual layers to communicate spontane
or in reaction to user-initiated events. Additionally, the browser can be dynamically
trolled by other applications that send events through the event distribution mechan

We applied the idea of external browser control to a financial application that dis
real-time evolving relationships [29]. The application, which runs most of the time w
out user interaction, implements various display strategies aimed at highlighting im
tant financial instruments relationships. The display and the relative position of the v
layers changes under the control of another application that monitors interesting i
ment opportunities. This approach to browsing control can be used to provide auto
navigation for dynamically evolving system.

To summarize, the affinity browser architecture has the following desirable chara
istics for an exploration tool:

• Versatility. Allows users to inspect the underlying system through object relat
ships expressed in terms of affinity. The exploration can be based both on st
dynamic relationships, and the exploration perspective can be either local or g

• Composability. Users can navigate based on multiple object relationships used 
pendently or in combination. Multiple views can be active concurrently.

• Extensibility. New object relationships can be easily added to the exploration
and combined with previously defined ones.
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9.4 The Affinity Browser by Example
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An intuitive way to describe the affinity browser approach is to say that we “measure
ject relationships in such a way that the measurements translate the relationships i
ject affinities. Alternatively, we can say that we quantify a relationship in order to ex
it in terms of object affinity or proximity. For the affinity browser, these measurement
always performed between pairs of objects and are called metrics (refer to [28] for
mal presentation of these concepts).

As we may easily anticipate, one of the critical issues related to affinity browsing 
definition of metrics that portray interesting object relationships. We provide here 
examples of such metrics describing both static and dynamic relationships. Our ma
is to illustrate how the affinity browser can help one to understand particular aspect
object-oriented environment, and provide typical examples of the kind of informatio
affinity browser is intended to provide for a system.

We first discuss metrics based on static analysis of class relationships. This kind o
ysis is usually important to assess design and to understand architectural articulat
provides insight into the relationships among classes without actually executing the
Therefore, the information is primarily extracted by source code analysis.

Next we address the issue of extracting relationships corresponding to the dy
behaviour of the system. We can identify interesting relationships among both class
objects. Metrics to portray such relationships are based on dynamic analysis that c
of collecting statistical information, or simply frequency data during a system’s ex
tion.

The analysis can be performed either dynamically, in which case the display o
relationship is synchronized with the execution, or it can be off-line based on the info
tion collected. In the latter case, the exploration phase resembles static analysis si
relationships do not evolve dynamically. It is also possible to collect data abou
dynamic behaviour of the system and perform the analysis off-line. The advantage
the analysis can be performed at the user’s pace while still allowing for dynamic dis

9.4.1 Class Relationships

We discuss in this section three examples of metrics aimed at revealing class relatio
The first example deals with portraying functional commonality among classes. 
result of inheritance, derived classes inherit functionality from their base classes, a
raises the issue of the extent to which classes differ. The example discusses metrics
to this issue.

The second example deals with class acquaintances. In order to perform their tas
methods of a class send messages to other classes to invoke services. Patterns o
tion between a class and its environment may provide useful information abou
required working environment for the class. We discuss metrics intended to revea
acquaintances.
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anddeath. More specifically, we are interested in knowing which classes are instanti
and freeing objects. Because we are focusing here on relationships among clas
consider that two classes are related if one class instantiates or frees objects of th
class.

It should be noted that the extraction of information for building such metrics dep
considerably on the environment and on the language used to define the classes. In
ular, with strongly typed object-oriented languages such as C++ and Eiffel, relation
like those of the first two examples are usually more accurately portrayed than whe
rics are derived from classes implemented with weakly typed languages since
strongly typed languages, relationships among classes are mostly statically define

9.4.1.1 Functional Commonality
In this example we construct a metric aimed at portraying the functional common
among classes. For the sake of concreteness, the metric construction is illustrated w
set of classes  depicted in figure 9.3. Following inheritance ru
classes recursively inherit methods from their superclasses. We further assume tha
can redefine the methods inherited from its superclasses. Let  be a function t
turns the set of methods in the interface to class . For instance, . 
this metric we want to convey the extent to which classes provide common function
The measure of affinity between two classes can, therefore, be expressed as the pro
of methods that are common to the two classes relative to the total number of the m
defined in both classes. As a candidate measure we define the affinity  be
class  and class  by the function:

where  is a function that returns the cardinality of a set.
Suppose now that we want to emphasize the fact that redefined functionality mig

fer from inherited functionality. We can modify slightly the affinity measure for the c
of redefined functionality. Let  be the inherited method and  be its redefinition. I
case where both  and  appear in  then for the affinity ca
lation we consider  in  while in
we take . This produces a slight reduction of the affinity between classes w
one redefines a method from a superclass (such as class ). From the affinity func
can derive the table 9.1 of pairwise affinities.

Figure 9.4 shows a view of the affinity browser depicting metric  applie
the classes of figure 9.3. In figure 9.4, the highlighted class, , is themarked item
selected by the user. Therefore, the exploration is centred on it and the browser d
the items that lie inside the neighbourhood of the marked item, where the neighbou
is defined as the set of objects for which the affinity relative to the current object is h

C C0 … C8, ,{ }=

M X( )
X C3 a b g h, , ,{ }=

A1 X Y,( )
X Y

A1 X Y,( ) card M X( ) M Y( )∩( )
card M X( ) M Y( )∪( )
----------------------------------------------------=

card()

m m′
m m′ card M X( ) M Y( )∪( )

m m′= card M X( ) M Y( )∩( ) card M X( ) M Y( )∪( )
m m′≠

C1

A1 X Y,( )
C4
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 are all

nter-
vectors
than a chosen value. In this case, however, due to the small number of items, they
displayed.

9.4.1.2 Metrics Based on Binary Vectors
Many other metrics can be defined to reveal functional commonality. A particularly i
esting approach relies on metrics based on binary data. The interest in using binary 

2/5 1/2 1/2 1/2 2/7 2/9 2/8 2/11

2/7 2/7 2/7 2/3 4/9 2/11 4/11

1/3 1/3 2/9 4/9 1/2 4/11

1/3 2/9 2/11 2/10 2/13

2/9 2/11 1/2 2/13

4/11 2/13 4/13

4/13 8/11

4/15

Table 9.1 Functional commonality: pairwise affinity.
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Figure 9.3 Inheritance structure of a set of classes.
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to build metrics is that many relationships can be expressed in terms of binary vec
which we can apply a set of “standard” operations to measure their similarity.

In order to apply these metrics to portray functional commonality we assign to 
class a binary vector of length , where  represents the number of distinct method 
tures in the system. Each entry of the vector is associated with a method signature.
ring to the set of classes depicted in figure 9.3, the binary vector takes the form:

Each entry contains a Boolean value that tells if the associated method signa
present or absent in the class. For example, the binary vector associated with c
looks like:

and the vector associated with class:

C7

C4

C8

C6

C5
C0

C3

C2

C1

Figure 9.4 Affinity browser display showing a set of classes.
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The construction of an affinity metric from binary vectors consists essentially in meas-
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wherex andy represent two binary vectors. counts the number of times 1 app
simultaneously in the corresponding entries ofx andy;  counts the number of times 1
appears inx and 0 iny for corresponding entries; counts the number of times 0 app
in x and 1 iny for corresponding entries; and  counts the number of times 0 app
simultaneously in the corresponding entries ofx andy. So  and count the numbe
of entries in whichx andy agree, while  and  count the number of disagreeme

We propose three metrics to portray functional commonality based on the binary v
representation. The first metric is

where  and  represent the classes from which the binary vectors  and  are d
 assesses binary vector similarity in terms of 1-consensus relative to the l

of the binary vectors.
The second metric is

With this metric the proportion of the 1-consensus is evaluated relative to the num
entries of the vectors excluding those that correspond to a 0-consensus; that is, the
assesses affinity in terms of 1-consensus relative to disagreement. This mea

 is equivalent to .
The third metric

measures binary vector correlation but is not a metric similarity index as are
and, consequently, .
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9.4.1.3 Class Acquaintances
The functionality of a class is not usually self-contained. Methods belonging to a clas
invoke services from other classes. This perspective corresponds to a commonly ac
view of object-oriented systems as sets of collaborating objects.

We are interested in understanding patterns of collaboration between objects. Ho
collaboration has many aspects. We can focus, for instance, on the relationships b
classes that can be observed by static analysis of the source code. Alternately, w
focus on dynamic acquaintances of classes measured by observing message 
patterns between objects of the classes.

Both perspectives are interesting and are, to a large extent, complementary. The
perspective usually reflects design decisions since “hard coded” relationships u
materialize links defined at the architectural level. Such links represent the required
ing environment for a class. But this perspective may fall short of providing an acc
picture if we are looking for working acquaintances between classes. In this case th
perspective may be more helpful.

In practice, the collaboration patterns revealed by the two perspectives usually
significantly. However, the analysis of the differences might offer useful insight a
mismatch between the collaborations that have been foreseen by the designer an
that show up in specific execution contexts. We start with a metric intended to po
static class acquaintances. That is, acquaintances that can be determined without 
executing the methods of the class.

ba
bb
bc
bd
be

aa
ab
ac
ad
ae

ca
cb
cc
cd
ce

Figure 9.5 A set of cooperating classes. The three classes cooperate by service
exchange. Each slot represents the body of a method and the arrows
represent the activation of a method from the body of another method.

class Cclass A

class B
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Figure 9.5 represents the analysis context for such a metric. Each class contains a set of
, trigger
cution

let
g is a

 maxi-
 many
” ac-

nc-
 might
 in this
sents
y ac-

 to dis-
lasses.
 of its
voca-

ss  a
ber

e serv-
ogether
ight-
methods and the methods activate methods belonging to other classes that, in turn
other methods as well. So the execution of a class’s method usually involves the exe
of methods from many classes.

Let  denote the number of times class  invokes methods from class , and 
denote the total number of invocations from class  to any other class. The followin
candidate metric to portray class acquaintances:

which means that the acquaintance affinity between two classes is defined as the
mum of relative invocation frequency of both classes. We may notice, however, that
different functions can be used instead of  to combine the two “one-sided
quaintances. We can define a more general metric as follows:

where  and  has base . This metric is inspired from a fu
tion proposed by Frank [1] to define the union operation on fuzzy sets. The reader
want to refer to [28] for a detailed discussion about other functions that can be used
context. This way of doing things may suggest an interpretation where  repre
the affinity degree of an element  to affinity set  which depicts the unilateral affinit
quaintance between class  and the other classes.

9.4.1.4 Class Acquaintance Similarities
We may also be interested in class acquaintance similarity. In other words, we want
cover to what extent classes match in terms of the services they ask for from other c
Let  denote a service; that is,  is an association of a class name  and one
methods represented by its method’s signature . Let  denote the frequency of in
tion of service  from inside the methods of class . We can associate to each cla
vector  with entries containing . The dimension  of vector  is equal to the num
of different services invoked by the classes of the system.

So, the collection of classes can be represented in the -dimensional space of th
ices, where each class will appear as a point. The idea is that classes lying close t
in this space ask for similar services. We may want to modify slightly the service we
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 is invoked, and let  denote the number of classes. We can define

A service weighting proportional to  will assign larger weights to services wh
are invoked with high frequency in individual classes, but that are only invoked by a
classes. This type of weighting scheme improves substantially both recall and pre
when applied to document retrieval [32]. Finally, we can define a distance metric be
two classes  and  as the Euclidean distance between the associated vectors

9.4.2 Creation and Destruction Relationships

In an object-oriented environment, objects are usually created and destroyed by oth
jects. Understanding creation and destruction relationships is important for many re
First, it provides essential information about which classes are managing the objec
ulation in the system and, in particular, which are the typical procreators of object
provide specific kinds of services. Second, this understanding is crucial for debu
and, in particular, memory allocation related errors. As a matter of fact, the very nat
object-oriented systems as sets of cooperating agents raises the problem of objec
up. Designers need to decide who is responsible for freeing the objects. It is often d
to assign this responsibility to its creator, especially if the creator is not the consum
the services. The non-destruction of stale objects may become a particularly import
sue in the absence of automatic garbage collection.

Creation and destruction relationships can be analyzed either statically or dynam
Similar to acquaintance relationships, dynamic and static analysis provide differen
spectives on the creation and destruction relationship. Static analysis based on 
code scanning essentially provides information about the structure of the creatio
destruction process. We can learn, for instance, which classes can create and des
stances of given classes.

Dynamic analysis provides another perspective on the relationship by showing w
class instances are actually creating and destroying objects, and also how many obj
created and destroyed. However, the static perspective falls short of portraying an 
tant aspect of software execution: execution phases. A typical software system or s
tem goes through a number of execution phases. It may start with an initialization p
then alternate through several phases. Different phases become evident by analysis
interclass acquaintances and creation and destruction relationships. Entering a new
usually corresponds to a significant modification of interaction patterns and an inten
tivity of object destruction— for phase cleanup— and creation of new objects for th
new execution phase.
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The information about the creation relationship can be represented by a matrix like
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where  represents the number of times creation of an instance of class  can b
tified inside the source code specifying class , if we are in the context of static ana
In the context of dynamic analysis,  represents the number of times instances o

 create instances of class  during a given time interval. In order to explore exec
phases we can collect data for several time intervals that should reveal the changes
ation patterns. The destruction relationship can be represented by a matrix  tha
similar form to  where entry  represents the number of times instances of cla
destroy instances of class  during a given time interval.

We can derive a matrix

which might represent an acceptable view of the balance between creation and des
responsibilities. For instance,  means that class  destroyed more instan
class  than it created during the time interval under analysis. Many insightful metric
be derived from the information contained in these matrices.

We convey creation relationships in such a way that classes that are frequently in
in creation (either by creating or by being created) have more affinity and thus clus
gether in the representation. A candidate metric is:

where  denotes the maximum value in matrix .  fails to show wh
one of two classes displaying high affinity is responsible for creation. To obtain suc
formation we may either define a pair of metrics to be used in exploration with syn
nized views or create a metric that highlights asymmetry. Both approaches have a
been discussed in the context of the formulation of previous metrics.

We provide another metric to convey the balance between creation and destructio
idea is that instances of a class  that create more instances of another class  th
destroy, display more affinity while a negative balance in the creation/destruction pr
reduces the affinity between  and .
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9.4.3 Object Relationships

We discussed in the previous section metrics to portray class relationships. The inf
tion needed to apply those metrics relies either on static analysis of the class defin
on dynamic analysis of execution activity, or on both. We may notice, in passing
many of the metrics discussed could be used to portray object relationships as well.
section we focus specifically on object relationships that are related to dynamic asp
the system’s execution and, therefore, require dynamic behaviour analysis. Under
ing the dynamic behaviour of a set of objects that collaborate to perform a task can p
useful information for reuse and for class management. Dynamic behaviour analys
be helpful:

• in giving useful hints about the usage a developer intended for a particular clas
• by showing the typical utilization of classes inside an application;
• to tune the performance of classes;
• in providing information for the assessment of class designs;
• in application debugging.

We now discuss candidate metrics intended to portray different aspects of the dynam
haviour of objects defined in terms of object affinity. In order to perform tasks collecti
objects exchange messages. As a first goal we want to know which objects colla
closely. Because we are interested in dynamic patterns of collaboration, the inform
needed to build the metrics is collected by monitoring message passing activity.

Let  denote the set of interacting objects during a given ti
interval. We may define an affinity metric  between object  and ob

 by:

where  is a function that returns the set of messages sent by object  to 
, and  returns the cardinality of a set. So  represents the

tal number of messages exchanged during the monitored time interval. With such a 
of affinity, objects that exchange messages frequently will have more affinity and
therefore cluster together in the affinity browser’s visual representation.

9.4.3.1 Detecting Object Interaction Asymmetry
However, metric  does not show asymmetric interaction patterns. Suppos
example, that object  sends messages frequently to object  while object  se
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pose asymmetry we define two metrics,  and , that are intende
be used in two synchronized views:

We introduce the notion ofsource anddestination to cope with the asymmetry betwee
the two metrics; the functions src() and dest() return respectively thesource object and the
destination object. The role of these functions is to enforce a rule so that an objec
plays the source role for a given pair (X,Y) in the first metric plays the destination role fo
the same pair in the other metric. Additionally, the rule copes with pair symmetry s

 and . The rule works as follows: fo
an affinity context with  objects we generate the  pairs that correspo
the upper right half of a matrix which is illustrated for :

The rule specifies that for each pair, the object that appears on the left-hand sid
the role of the source and the object on the right plays the role of the destination. F
more, for any such pair (X,Y) the roles for the symmetric pair (Y,X) are assigned to the
same objects. For example,  plays the role of the source and the role of the d
tion in both  and .

When metrics  and  are represented in synchronized views
user can spot asymmetry by looking for pairs of objects that appear close in one vie
farther apart in the other. These two metrics provide both global information about c
oration as well as information about collaboration asymmetry.

However, if we are mostly interested in detecting asymmetry, it might be more a
priate to emphasize pairwise interaction instead of global interaction affinity. To thi
we may consider the replacement of metrics  and  by
and . Let

A9a X Y,( ) A9b X Y,( )

A9a X Y,( ) card send srcX Y,( ) dest X Y,( ),( )( )
card sendOi( )( )

i
∑

-----------------------------------------------------------------------------------=

A9b X Y,( ) card send destX Y,( ) src X Y,( ),( )( )
card sendOi( )( )

i
∑

-----------------------------------------------------------------------------------=

A9a X Y,( ) A9a Y X,( )= A9b X Y,( ) A9b Y X,( )=
n n n 1–( )( ) 2⁄

n 4=

O1 O2,( ) O1 O3,( ) O1 O4,( )

O2 O3,( ) O2 O4,( )

O3 O4,( )

O1 O3
O1 O3,( ) O3 O1,( )

A9a X Y,( ) A9b X Y,( )

A9a X Y,( ) A9b X Y,( ) A10a X Y,( )
A10b X Y,( )

∆ X Y,( ) card send srcX Y,( ) dest X Y,( ),( ) send destX Y,( ) src X Y,( ),( )∪( )=
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It is also possible to synthesize information about symmetry of message passing
metric, although the resulting display might be more difficult to interpret.
candidate measure for such a view. This measure focuses on symmetry of mess
changes and, therefore, suppresses information about frequency of communicatio

Interaction asymmetry is an important issue at the design level. For instance, Boo
identifies three roles for objects in terms of message passing activity:

• Actor : an object that operates upon other objects but that is never operated up
other objects.

• Server: an object that never operates upon other objects; it is only operated up
other objects.

• Agent: an object that can both operate upon other objects and be operated up
other objects; an agent is usually created to do some work on behalf of an actor
other agent.

Such roles can be identified with metric . The comparison of the r
assigned to objects during the design phase, with the effective role they play in give
cution contexts, might be instrumental to assess to what extent reusable software c
nents are used as intended by their designers.

9.5 Conclusion

This chapter dealt with the exploration of object relationships in the context of ob
oriented environments. We addressed the important issue of understanding how o
are related because such understanding plays an important role in many key issues
to software engineering such as reuse, debugging and software maintenance. Early
oriented environment designers have identified these issues and provided browsin
to help users explore the environment.

We have proposed a new approach to the exploration of an object-oriented enviro
where object relationships are translated into affinity relations so that the object rel
ships can be graphically represented in terms of distance: objects that are strongly 
appear closer in the representation. The approach has the advantage that many diffe
lationships can be represented and explored with the same tool and with the same

A10a X Y,( ) card send srcX Y,( ) dest X Y,( ),( )( )
∆ X Y,( )

-----------------------------------------------------------------------------------=

A10b X Y,( ) card send destX Y,( ) src X Y,( ),( )( )
∆ X Y,( )

-----------------------------------------------------------------------------------=

A11 X Y,( )

A11 X Y,( ) 1
abs A9a X Y,( ) A9b X Y,( )–( )
abs A9a X Y,( ) A9b X Y,( )+( )
---------------------------------------------------------------------–=

A11 X Y,( )
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ration paradigm. From the user’s perspective, affinity is a very intuitive concept that has
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the advantage of being easily translated into a visual distance.
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Visual Composition of
Software Applications

Vicki de Mey

Abstract Open applications can be viewed as compositions of reusable and
configurable components. We introduce visual composition as a way of
constructing applications from plug-compatible software components. After
presenting related work, we describe an object-oriented framework for visual
composition that supports open system development through the notion of
domain-specific composition models. We illustrate the use of the framework
through the application of a prototype implementation to a number of very
different domains. In each case, a specialized visual composition tool was
realized by developing a domain-specific composition model. We conclude
with some remarks and observations concerning component engineering and
application composition in a context where visual composition is an essential
part of the development process.

10.1 Introduction

We definevisual compositionas the interactive construction of running applications
the direct manipulation and interconnection of visually presented software compo
The connections between components are governed by a set of plug-compatibility
specified within acomposition model.

Visual composition is a response to the trends in software development towards
component-oriented lifecycles described in chapter 1. With a large number of compo
supplied by component engineers, application development becomes an activity o
posing components into running applications. Visual composition can be used to co
nicate reusable assets from component engineers to application developers, re
designs to application developers, and open applications to end-users. A visual co
tion framework enables the construction of environments and tools to facilitate co
nent-oriented software development.
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In this chapter we present a framework for visual composition. The framework address-
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es four issues: (1) components, (2) composition models, (3) user interaction, and (4
ponent management. Components are made up of abehaviour and apresentation.The
behaviour is responsible for the component’s composition interface and the work the
ponent was designed to do. The presentation is the visual display of the compon
component can have more than one presentation, and the presentations reflect the
the component. A set of components can be grouped together to function as a sing
ponent through thecomposite component mechanism. Component composition is defin
as communication between components through their composition interfaces. The 
work defines the notions ofport andlink to handle the communication. Acomposition
model is the set of rules for component composition in a particular application dom
Decoupling the rules for composition from components allows a variety of different 
ware composition paradigms and increases the potential for reuse of a component

Vista is a prototype implementation of the visual composition framework. A conc
implementation of a visual composition tool is obtained by acomponent engineer (chap-
ter 1) by completing the framework with components, their presentations and the co
sition model governing their interconnection. Finally, the resulting tool can be used 
application developer to visually compose running applications, as shown in section

In reference to software development environments, Ivar Jacobson made the foll
statement:

In the long run, we shall see new development environments that place more emp
sis on applications and less on technique. Developers will be application experts,
Unix or C++ experts. They will work with graphical objects presented in sever
dimensions, not simply text. The language of today may be handled as a machine
guage that is invisible to developers. [23].

These new development environments will have the potential to transform software 
opment. End-users will play a larger role in putting applications together and new wa
creating applications will be necessary. Visual composition is one of these new way

10.2 Related Work

Visual composition is based on work done in many different fields from software lif
cles to graphical user interfaces and graphical object editors, visual programming,
ponents and connectivity, and component integration. Since the latter two areas a
most relevant for this chapter, they will be discussed here.

Visual composition supports components and connecting components together t
running systems. Some exemplary systems based on these ideas are ConMan, Fab
icon Graphic’s IRIS Explorer, Apple’s ATG Component Construction Kit and IBM’
VisualAge. ConMan [14] is a high-level visual language that allows users to build
modify graphics applications. To create an application the user interactively connect
ple components using a directed dataflow metaphor. No concept of composite c
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nents exists. Fabrik [22] is a contemporary of ConMan. Fabrik is a visual programming
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environment that supplies a kit of computational and user interface components th
be wired together using a bidirectional dataflow metaphor. The environment can b
to build new components and applications. Composite components are supported t
the gateway construct. IRIS Explorer is an application creation system and user en
ment that provides visualization and analysis functionality. It is based on a distribute
centralized dataflow model. Its graphical user interface allows users to build cu
applications by connecting modules together. Apple’s ATG Component Constructio
(CCK) [43] is a prototype component architecture and set of test components that 
end-users to plug components into a framework at run-time. The kit has four elemen
a component framework (the structure within which components are connected);
component palette (source of components); (3) an inference engine for automatical
necting components; (4) a component inspector for display and modification of co
nent information. Objects are the medium of communication between components
CCK. VisualAge [20] is a product from IBM designed to build the client side of clie
server applications, focusing on business applications and decision support system
tool is based on the “construction by parts” paradigm that is supported by a visua
gramming tool for creating applications non-procedurally. These systems are inter
but limited since some cater only to specific application domains or are based on on
of expressing the relationships between components.

A component can be seen as a separate tool, application or process. This brings u
ponent integration issues that run very close to the issues of component interfac
component interconnection. Visual composition needs component integration m
nisms to implement the connections between components. Integration issues 
viewed on two levels: coarse-grained and fine-grained. Coarse-grained integratio
cerns components that may be large objects that cooperate by exchanging mess
tools that cooperate through shared files. Fine-grained integration concerns comp
that are smaller and usually need to communicate with each other more frequently.
son, Ossher and Kavianpour [17] have discussed this issue and proposed an ap
called Object-Oriented Tool Integration Services (OOTIS). They believe that applica
are moving more towards fine-grained integration, but that current systems, whic
coarse-grained, must still be supported while this move takes place.

Many proposals have been made for specific solutions to coarse-grained integ
Some examples are: Unix facilities that provide a variety of different tools and tool
gration mechanisms (character files, I/O redirection, pipes, shell programming); He
Packard’s Softbench environment [19]; and Sun’s ToolTalk [26] for interapplication c
munication. Fine-grained integration solutions include efforts by the OMG (Object
quest Broker), NeXT (Distributed Objects [36]), Microsoft (OLE [34]) and Apple (Ap
events and the Apple event object model [1], and OpenDoc [2]). See also chapter 1
more thorough discussion of these commercial efforts, and chapter 3 for an exampl
object-oriented framework to support interoperability.
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10.3 A Framework for Visual Composition
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The framework we present provides a simple and flexible core for visual compos
There are three pieces of information that are needed in order to use the framework
ponent behaviours, component presentations and rules for composition. This inform
is plugged into the framework to produce a visual composition tool for a specific pur

10.3.1 Component Definition

The framework defines a component as abehaviour together with one or morepresenta-
tions. Such a “division of labour” has been seen in other frameworks including Smallt
MVC framework [13], Unidraw [48] and Andrew [38]. Table 10.1 shows the correspo
ing terms in the different frameworks. This division promotes reuse, because diff
presentations can be reused with the same or different behaviours.

Behaviour

The behaviour is responsible for the following:
• Communication with the presentation(s).
• The component’s composition interface. The composition interface advertise

component’s services and requests for services. The composition interface a
the component to be reused in different contexts. A component’s context includ
components it is immediately connected to as well as the entire ensemble of co
nents in which it finds itself embedded. The composition interface of a compo
consists of a set ofports, each of which has a name, a type and a polarity. Ports 
be visually presented in a variety of ways, such as knobs, buttons, text fields, m
etc., depending on the intended semantics.

• Executing whatever the component was designed to do. The behaviour reflec
inner part of the component. From the outside, two components can look like
have the same behaviour, but their internal implementations could be very diff
(e.g. implemented in different programming languages). A component can als
have differently depending on the other components it is connected to.

Visual composition Behaviour Presentation

MVC Model View, Controller

Unidraw subject view

Andrew data object view

Table 10.1 Comparison of the behaviour/presentation division of labour.
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The presentation is responsible for the following:
• Communication with the behaviour.
• Visual display of the component. All components, whether inherently visual or

have a visual presentation. A presentation can also process user input if it cont
interaction component such as a button or a text field.

Communication between the behaviour and presentation is pictured in figure 10.1
presentation informs the behaviour of its location and dimensions so that this inform
can be passed on to other components that need it to display themselves. Also, in
be done through the presentation, and this information is communicated to the beh
The behaviour only informs the presentation of information that it might need to dis
on the screen.

Composite Components

Components can be created by programming or by composition. When a compo
created by programming, only the behaviour and presentation need to be specified
used if an appropriate behaviour or presentation already exists) and hooked into the
work. A composite component is a set of components linked together that is cons
useful as a component in its own right. To define a composite component, one must
the set of components (1) a composition interface (by specifying which ports of the
components are to become ports of the composite component), and (2) a visual pr
tion (which can be composed of existing presentations). The behaviour of a com
component is simply the behaviour of the components it encapsulates. Figure 10.2
trates the idea of composite component. The framework supports composite comp
by definingexternal_port andexternal_view entities. A set of external_port entities repr
sents the composite component’s composition interface, and an external_view entit

User input

Values

Location of presentation
Dimension of presentation

BehaviourPresentation

Figure 10.1 Communication between the behaviour and presentation
entities in the framework.
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presentation used for the composite component. Both external_port and externa
entities are created interactively when a composite component is being defined.

10.3.2 Component Composition

The way component composition is supported in the framework is through the creat
networks. The framework uses components for the nodes in the network and d
active_port andlink entities for edges in the network. Not all ports in the composition
terface of a component need to be used. An active_port is created only when a p
component’s composition interface is connected to a port in another component’s co
sition interface. A link represents the connection from one active_port to another. F
10.3 illustrates the relationship between the elements of the framework. Communi
between components can be either one-way (the dark arrows in figure 10.3) or bidire
al (both the dark and the grey arrows in figure 10.3). The format of the information

Becomes

Figure 10.2 Composite component.

External ports

External view

Figure 10.3 Framework entities.

Link

ComponentComponent

Active port Active port
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passes from component to component is defined in the behaviour of the compone
format is not restricted by the framework. The display information is internal to the fra
work and should at least include the location and dimensions of the presentation so 
active_ports and links can be displayed correctly. Figure 10.4 summarizes the inform
that is communicated between the active_port and link entities of the framework.

As components are composed, networks, such as the one pictured in figure 10
generated. The grey ovals in the figure are components, the black circles are po
clear circles are active_ports and the rectangles are links. These networks have 
characteristics:

• Automatic network update: Information must be automatically propagated throu
the network. Propagation occurs when a node indicates some change to the in
tion on its outputs. This indicates the need for some type of constraint mechan
specify the relations in the network that must always be satisfied. Information 
agation could imply some change to the display that must be done automatica
immediately to support the requirement of direct manipulation. There must b
option for immediate propagation or batching for the display, since the update
densely populated screen can be expensive and possibly postponed

• Hierarchical decomposition: The network must support nodes that are made u
other network structures.

• Cyclic networks: In visual composition, the relationships between components
create cycles in the network.

Location of presentation

Dimension of presentation

Values

Port location

Values

Values

values

Link

Figure 10.4 Communication between a component, active_port and link.

Component

Active port
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The division of labour among components, active_ports and links is flexible, but in
eral, a link is used to transport information between two active_ports, an input active
controls whether information should be passed into a component, and an o
active_port packages up information for leaving a component. Both active_ports and
can have an associated visual display.

Composition Model

The active_port and link framework entities do not impose rules on connections; the
enable connections. Whether or not a connection is valid is determined by acomposition
model. The composition model is the set of rules for component composition in a pa
lar application domain. The rules determine compatibility between components
which component can be linked to which other component. The type of rules is o
ended and based on the component, the component’s composition interface, and o
plication domain-specific information. Different from many other frameworks, the c
patibility between components is not determined by the components. Decou
composition models from components supports a variety of different software com
tion paradigms and increases the potential for reuse of a component, because a com
can be reused without modification in different application domains by associating it
different composition models. A composition model isactive when it is dynamically ap-
plied to a set of components to get them to cooperate in a specific application. The c
sition model can have some knowledge of what components it can be used wit
usually components do not have to be designed with particular composition mod
mind.

Figure 10.5 Network of components.

Component Port Active port Link
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Composition Model Examples

Three examples of composition models will be given: dataflow, two-dimensional gra
objects and class hierarchy diagrams. Dataflow composition is used for specifying
of data in a network of components. Components have input and output ports th
which dataflow. Each data value is associated with some component responsible fo
puting the value as a function of its inputs. The component makes the data value av
at one or more of its output ports. Input and output ports can be joined by links. All 
have an associated type reflecting the type of the data that passes through the p
component has only output ports, then it is a supplier of data; if it has only input ports
it is a user of data; and if it has both input and output ports, then it is a transformer o
Links represent data flowing between components. Links are primarily responsible f
forcing valid dataflow networks. They allow ports to be connected only if they have 
patible types and compatible directions (input to output and output to input). The dat
components and composition model are pictured in figure 10.6

Another example is a composition model for two-dimensional graphic objects. 
model is used to attach and keep two-dimensional graphics objects connected. A c
nent (a graphic object) has ports that represent points on the object, i.e. ports are
point. These ports are either input or output depending on the operation being carr
on the graphic object to which they belong. The points are the location of the object i

Component Port LinkDataflow

Supplier Transformer User Data Dataflow

Figure 10.6 Dataflow composition model and some connected components.
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dimensional space. Links are created between components by placing one point on
the other. Any point can be linked to any other point. When some point changes, as
a graphic object is moved, all other points linked to this point will be updated. This up
guarantees the connectivity between graphic objects. The composition model for tw
mensional graphic objects is pictured in figure 10.7.

A third example is that of a class hierarchy diagram. Class hierarchy diagrams ar
to show the class structure of an object-oriented application. There is one kind of co
nent for this type of diagram, namely the class component. The class component ca
ports of type subclass and superclass. Some class components will not have ports
superclass; these are leaf classes in the class hierarchy. Some class components
have subclass ports; these components are top-level classes in the class hierarch
which represent class relationships, are unidirectional and connect ports of type su
to ports of type superclass. Links do not pass data from one class component to a
their role is to make relationships between classes so that when a class is asked a
superclasses and subclasses, it will be able to respond. The class hierarchy com
and composition model are pictured in figure 10.8.

10.3.3 Interactive Environment

The interactive environment is responsible for ensuring that the framework entitie
used correctly. The interactive environment supplies ways for the user to manip

Graphic objects

Link
Two-dimensional
graphic objects

Implicit in
position of
objects

Component Port

Point Position

Figure 10.7 Two-dimensional graphic composition model and some connected components.
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components, ports and links. This is accomplished using various user interface met
depending on the implementation. The operations listed in table 10.2 make up a m
set. The interactive environment is customizable so that operations can be added an
moved.

The interactive environment supports direct manipulation [42]. Direct manipula
makes objects more concrete and thus helps people to grasp better the ideas and 
being described. Users get immediate feedback to their actions and are informed wh
of their actions cause a change in the system. Ideally, users always know what to
from the system. Development becomes more of an exploratory activity where a 
and see what happens” attitude is encouraged. Being able to see immediately wha
ing on in an application is important in the early stages of application development. 
same time, the interactive environment is as transparent as possible so that user
have to do things that make no sense in their specific application domain.

The environment is visual — a mixture of text, graphics (two-dimensional and/or th
dimensional), and other media like video, sound and images — and therefore vis
control is very important. Visibility control is used to modify the presentations of com
nents, ports and links. There are operations (see table 10.2) that allow a user to ma
ments invisible according to different criteria like, for instance, what group they ar
what component they are attached to, etc. An application developer using visual c
sition usually needs more objects visible than an end-user. The developer is work
more general terms, while the end-user is working in a specific domain. To accomm
this situation, visibility control can hide information that is not appropriate. The com

Component Port LinkClass hierarchy

Figure 10.8 Class hierarchy composition model and some connected components.
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unnec-

e con-
as win-

Components Ports Links
ite component capability can also be used to shield an end-user from unwanted or 
essary detail.

Some of the more common characteristics of interactive environment must also b
sidered. It is necessary that some type of grouping mechanism be available, such 

instantiation
make a functional copy of
the chosen component

identification
name, type and
polarity of port

create
Manual creation relies on
the user manually selecting
the start port and target port
for the link
Automatic connection
would attempt to automati-
cally connect compatible
ports when a component is
placed in a composition
composition model verifies
link

determine location in space
fixed into a particular loca-
tion in space, fixed in rela-
tion to other components’
locations, or left free to be
moved

copy
state is also copied

delete
links referencing the del-
eted component are also
deleted

delete

replace
The links that referenced
the original component are
reconnected to the new
component

display different presenta-
tions

Table 10.2 Manipulations on components, ports and links.
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because all users make mistakes. Skill levels, such as novice or expert, are ways of 
users learn to use a system. These levels usually assume that a novice is not famil
the system and therefore needs a bit of “hand-holding.” Expert users, on the other
could consider such hand-holding distracting. Skill levels can be implemented by a
ing or disallowing certain actions on the objects being manipulated. Different pres
tions of a component can be used to reflect different skill levels. To further facilitat
usage of the environment, mode switches, such as those between building and run
application, are minimized. The literature [39] suggests that avoiding such mode sw
is important for new users because it gives them the flexibility simultaneously to us
modify an application, and that typically there is almost no confusion about when in
directed to the tool and when it is directed to the application.

10.3.4 Component Management

The activities of storing, organizing and retrieving components are external to the
framework, but the framework supplies a simple mechanism that records enough inf
tion about the network to a text file so that when the file is read, the network can 
created. Composition models also need to be stored, organized and retrieve
information stored in the composition model must be activated when a network is
and constantly accessible since it is consulted whenever a link is created and p
whenever information flows through a link. Some notation, possibly textual, for the 
position model is necessary. The framework supports “hooks” for more sophisti
tools, such as the software information base described in chapter 7, for these activ

10.4 Vista — A Prototype Visual Composition Tool

Vista is a prototype visual composition tool based on the framework described abov
prototype is meant as a test-bed for the visual composition framework. Vista [29][37
developed as part of ITHACA’s application development environment. (See the pr
and chapter 7 for more information about the ITHACA project.) Vista is a second
eration prototype; some of the ideas of visual composition were demonstrated in V
earlier prototype based on a Unix composition model [45]. Vista is meant to be a s
and evolutionary prototype.

The layers of software supporting Vista are pictured in figure 10.10. The major pa
Vista are in the shaded region of the figure. The implementation of Vista conforms 
ITHACA software platform which includes C++, X Windows and OSF/Motif. Gra
management for Vista is supplied by a set of class definitions and functions extracte
the Labyrinth System [27], a generic framework for developing graphical application
Vista, components and links are displayed on the screen using Motif widgets and th
play capabilities of Labyrinth.
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Composition Model Manager

There are at least two ways to go about implementing the functionality of the compo
model. One possibility is to implement a composition model manager as an oracl
oversees the correct functioning of the framework based on the active composition m

The other possibility is to delegate responsibility for checking and maintaining com
ibility rules to framework entities. If composition models are used to define global c
patibility between components or global rules encompassing large groups of compo
an oracle would probably be the best choice. The oracle can have an overview of 

Figure 10.9 RECAST example.
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networks on which to base global decisions. Some powerful graph management s
can also work on a global level in the network; thus the decision for a certain type of 
manager could influence the implementation of the composition model manager. In
the composition model manager is an oracle implemented as a C++ class. A comp
model is expressed in a textual notation that expresses port compatibility and is par
the composition model manager.

Components, Active_ports and Links

In Vista, components (behaviours and presentations), active_ports and links are 
mented as C++ classes. Vista supplies default active_port and link classes. To imp
the component behaviour and presentation, four classes are defined. The behavi
component is implemented in thecmp_Node class and subclasses of the abstract cl
V_Base. The presentation of a component is implemented in theview_Node class and sub-
classes of the abstract classFramer. The cmp_Node and view_Node classes are inte
to Vista and maintain network connectivity. The V_Base and Framer classes ar
classed by the user of Vista. This division is advantageous because Vista is implem
in C++ and modifications to superclasses necessitate recompilation of subclasse
division avoids much of this recompilation since the information added from outsid
system does not directly impact the internal framework classes and vice versa.

Dividing up the responsibilities of components, active_ports and links is not alw
straightforward. For example, if two ports of different types are defined to be comp
by a particular composition model, and they are linked, where should the coercio
tween port types take place? The input active_port participating in the connection
type and can coerce things that it receives into that type. The link participating in the
nection knows it is connecting ports of compatible types and can coerce the type
information from the output active_port to the type that the input active_port expect

Figure 10.10 Layers of software supporting Vista.
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Graph management
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Responsibilities can be divided up in certain ways to ameliorate the user’s exper
For example, a four-way interaction where all four components interact. The intera
can be a new component with the original four components linked to it by “interac
links or all of the components can be linked together. These two options are pictured
ure 10.11. Figure 10.11(a) might not look hard to understand as it is pictured here, b
picture would become indecipherable if twenty components were interacting. Ports
accept more than one connection, but this does not reduce the number of links. A
components to a system does not necessarily imply that the system becomes mo
plex. The number of components is not that important; it is how the components ar
sented that is important, as seen in figure 10.11(b) and 10.11(c). In figure 10.11(c
are represented by the location of components (e.g. all components contained in a
component interact) and not by lines connecting the components.

In Vista, active_ports and links can be used to implement any of the scenarios des
above. But as classes are developed, the goal should be to keep active_ports and lin
ple, since too much hidden behaviour will make the system unpredictable and har
understand.

Application-Specific Components and Composition Models

Components and composition models for specific domains are defined using the c
and functionality of the lower layers of software. For components, only the behaviou
presentation need to be defined as subclasses of abstract classes supplied by Vis
position models are expressed in the textual notation supported by Vista.

10.5 Sample Applications

Johnson and Russo [25] have stated that:

Figure 10.11 Four-way component interaction.

(c) Interaction seen as
containment

(b) A component
moderating the

interaction

(a) Direct interaction between
components
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Iteration is a major part of the validation cycle of a framework. The framework shoul
better (more reusable) as results are gathered from its usage. To this end, the visu
position framework was used in three sample applications. The sample applications
from actual ongoing projects and were not artificially devised as test cases for visua
position.

The first application was part of a project that addresses the creation of a framewo
rapid prototyping environment for distributed multimedia applications [32] (see cha
11). The visual composition framework was then used to implement a visual compo
tool for multimedia applications.

The second application was part of a project that addresses the requirements co
and specification phase of software development. The project defines a methodolo
functions as a formal basis for requirements specification and support tools. The 
composition framework was used to implement one of the support tools called REC

The third application was part of a project that addresses workflow applications
project defines a complete environment for designing and running coordination p
dures. The need for some type of visual representation of coordination procedure
recognized by the participants in the project. The visual composition framework sat
this need and was used to draw pictures of coordination procedures and generate t
that the procedures represented.

The scope of these sample applications varies considerably. The first deals with ru
applications and components represent actual executing modules.The other two a
ted to software specification, where components represent elements of the softwar
ification model. We will describe the first and second sample applications here. 
information about all three applications can be found in the author’s thesis [30].

Sample Application 1: Multimedia Component Kit

Chapter 11 introduces the basic concepts of a multimedia framework and multim
components. Based on this work, multimedia components and composition model
created for visual composition. The visual composition tool for multimedia applicat
is a rapid prototyping tool for experimenting with different combinations of multime
components.

A multimedia application is implemented by large number of interconnected hard
and software components. Visual composition can be used to interactively plug co
nents together — rather than permanently “hard-wiring” them — thus making app
tions more flexible and reconfigurable.

Various composition paradigms are appropriate to multimedia applications. Thre
ample composition models follow:

1. Dataflow composition describes an application as a configuration of media com
nents and the data (media streams) that flow between them.
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nd is

sition
w the

will be

er in-
 can

 Some
. The
appli-
 in the
.
sSeq
t, a

 input
plica-

ences
ld).

plica-
trib-
ccept
y, as

eCube
can be
ender
ities and events.

3. Temporal composition describes relationships between temporal sequences a
a special case of activity composition [31].

These three ways of viewing multimedia applications can be reflected in compo
models that determine the types of components useful in the applications and ho
components interact. The dataflow composition model has been implemented and 
discussed in detail here.

Viewed from a dataflow perspective, a typical multimedia application accepts us
put and displays multimedia information related to the input. This type of application
be built from components that represent input devices and multimedia renderers.
example multimedia components for dataflow composition are listed in table 10.3
GeoBall and Navigator components are responsible for getting user input into the 
cation. The GeoBall component represents an actual hardware device, pictured
presentation of the component, that generates 4 × 4 geometric transformation matrices
This component can be considered a producer of information of type GeoTran
(sequences of 4 × 4 geometric transformation matrices). The Navigator componen
transformer component, is responsible for taking the information produced by the
device and transforming it into a type understandable by other components in the ap
tion. Here, the Navigator component produces information of type MoveSeq (sequ
of Render requests dealing with movement of objects in the three-dimensional wor

The Modeler component represents the content that will be displayed by the ap
tion. The Modeler gathers together all the information in the application that will con
ute to the content and prepares the information for display. The Modeler can a
information from the Navigator component to incorporate user input into the displa
well as information from other components that generate content such as the Activ
component. The ActiveCube component represents a graphical cube object that 
displayed. The Modeler produces information of type RenderSeq (sequences of R

GeoBall Renderer Modeler Navigator ActiveCube

out:GeoTransSeq in: RenderSeq in: MoveSeq
in: RenderSeq
out:RenderSeq

in: GeoTransSeq
out:MoveSeq

out:RenderSeq

Table 10.3 Components for dataflow composition.
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requests) that represent the content in a format suitable for rendering. The Rendere
ponent accepts information of type RenderSeq and is responsible for its display.

A simple composition model for dataflow can check to make sure that only ports 
same type are connected as a user interactively creates an application. This model
that the components making up the application are correctly connected but cannot
that the application is producing the desired result. More semantic information can 
into the composition model to produce a particular desired result. For example, a ru
“if a GeoBall component is in the application, then it must be connected to a Navi
component” would eliminate the need to explicitly connect them, and would guarant
correct use of these two components.

Figure 10.12 shows a screen image of the tool displaying a simple dataflow of a 
media application using the components described in the preceding paragraphs. Th
Ball component is implemented as a composite component. The internal view o
composite component is pictured in the upper right side of the figure. The composite
ponent contains a geometry ball component and two sets of horizontal sliders. The 

Figure 10.12 Multimedia dataflow composition.
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parameters can be changed interactively and thereby modify the behaviour of the in
vice as a user navigates through the museum. The input device is connected to a Na
component, which connects to a Modeler component, which, in turn, is connecte
Renderer component. ActiveCube components, which move cube-shaped graphic 
given a velocity, are also connected into the Modeler component.

Sample Application 2: RECAST

The RECAST tool [3][4] in the ITHACA software development environment uses a c
position-based approach to requirements specification and provides assisted inspe
available components by accessing the software information base (SIB). REC
assumes that requirements are specified according to an object-oriented specif
model, called the Functionality in the Objects with Roles Model (F-ORM), which is u
for requirements representation. The model is based on the object-oriented paradi
tended with the concept of roles [8] to represent the different behaviours that an obje
have during its lifetime. F-ORM is a textual definition language and RECAST is a too
graphically manipulates F-ORM requirements. RECAST was built using the visual 
position framework. F-ORM classes and class elements are represented by comp
and class relationships are represented by links. The class relationships are recor
composition model so that a user of RECAST is assured of using F-ORM correctly.

The composition concept of RECAST is reflected in a set of diagrams defined b
ITHACA object-oriented methodology [9]. The methodology defines five types of 
grams at the application design level: class diagram, cluster tree diagram, cluster c
ation diagram, state/transition diagram and IsA/PartOf diagrams. These five diagra
used by the application designer when specifying requirements. The class diagram
mented in RECAST is described here.

The class diagram represents F-ORM classes and roles along with the dependen
tween classes and roles. Classes have corresponding Class components in the fram
The presentation of the Class component contains at least the name of the class
have corresponding Role components and are graphically displayed embedded
Class component to which they belong. Class components can be in theirbase represen-
tation, where all the roles are visible, or in acompact representation, where only the clas
name is visible. Role components are connected by message links that represen
unidirectional or bidirectional message flows.

Colours are used extensively to distinguish different types of components and dif
types of links. Shading is used to signal if certain classes or roles are selected. For
ple, if a class or role is not selected, it is not shaded. If a class or role is darkly shade
it was selected by the user. If a class or role is lightly shaded, then it was selected by
sible design action. If a class or role is moderately shaded, then it was selected as a
quence of a design action.

The components for class diagrams are summarized in table 10.4. The behaviou
Class component is responsible for changes in the F-ORM requirements specific
These changes are made by direct manipulation of the graphical representation
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roles, and the transformation of a class into a set of classes. The behaviour is also 
sible for the display of the class (base or compact) and the display of information abo
class. The behaviour of the Role component is responsible for managing design act
the role, the presentation of the role, access to the properties of the role, and acces
state/transition diagram for the role. The behaviour of the Cluster-reference compo
responsible for mediating the connection between the active class diagram and the
the reference is representing.

Figure 10.13 shows the class diagram for the OrderManagementSystem cluste
diagram is generated by using RECAST to transform a request-processing appl
into an order-processing application. Interacting with RECAST in the following way 
duces the OrderManagementSystem cluster:

1. The user starts a new application called OrderManagementSystem.

2. The user consults the SIB for the application domain and a generic applic
frame. In this case the application domain is sales and the generic application
is request processing. The RequestProcessing class is chosen.

3. The RequestProcessing class is copied into the diagram generating a Class 
nent called MyReqProc. The MyReqProc component has a set of associated
represented as Role components in the diagram, which are embedded ins
presentation of MyReqProc.

Process class Resource class Role Cluster-reference

in: message
in: role
out: message
out: class
in/out: class
in/out: class
in/out: message

all from process class
plus:
in/out: resclass
in/out: resclass

in: message
in: class
in: stdiagram
out: message
out: role
in/out: message

in: message
out: message
in/out: message
in/out: class
in/out: class
in/out: resclass
in/out: resclass

Table 10.4 Class diagram components.

name
level
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4. The Receive Role component is selected. Because of the selection, RECAS
sults its design suggestions and suggests adding a request manager agent a
ent agent to the diagram. The client agent represents the source of the inform
for MyReqProc. The request manager agent represents the requested infor
of MyReqProc.

5. The suggestions are executed and the corresponding Class components 
trieved. For the client agent, MyClient class is retrieved. For the request ma
agent, MyRequest and MyReqAdmin are retrieved. The message links, repres
by thin black arrows, between all the Class components are displayed.

Figure 10.13 RECAST example.
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The sample applications demonstrate that the visual composition framework mak
process of building graphical, component-based applications easier by supplying m
the infrastructure such applications require.

10.6 Discussion

As a result of the work done on the visual composition framework, the prototype im
mentation of a visual composition tool and the sample applications, certain sugge
concerning component definition, composition and visualization can be made.

10.6.1 Component Definition

The choice of components for a particular application is still somewhatad hoc, and results
from other fields, such as the reverse engineering of applications, could supply use
formation for component design. Work by, among others, Johnson [24] [11] on fr
work design has highlighted some key strategies such as finding common abstra
decomposing problems into standard components, parameterizing and finding co
patterns of interaction. With this work in mind and the experience from the sample a
cations described in the previous section, we present the following list of guideline
designing reusable components:

• If a concept is used, or looks like it could be used, in a number of different plac
application domains, this concept should probably be a component.
If the same concept were included explicitly in every component, there would b
same functionality spread throughout the component set, proliferating redunda
formation and negating efforts of encapsulation and reuse.
Parameterization can be used to generalize concepts that might look different 
glance but, with further investigation, they could really be the same concept wit
ferent values for a few different parameters.
User interface components are a good example since they represent concepts
reused in many applications. The Modeler component in the multimedia comp
kit is also a good example. If the Modeler component had not been separate fro
3DRenderer component, the same model information would not be able to driv
different renderers, say a three-dimensional and a two-dimensional renderer,
same time.

• If a component requires an undetermined or variable number of resources, th
sources should probably be components.
Since this type of information can be quite variable, it seems natural to define a
lower-level primitive components and compose them into different configuratio
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components. Since a class can have a variable number of roles, and roles can
namically added or removed, it is much easier to make classes and roles dif
components that share the relationships roleOf and class than to include the 
part of the class.

• Composite components should contain a small number of components and ta
vantage of hierarchical decomposition.
This allows concepts to be organized more effectively and reduces the amo
screen clutter.

• The number of components should be small but extensible.
A small set of components helps people remember what components they h
work with, but the set must be extensible so that when valuable new primitive
discovered they do not have to be simulated with the existing components.

• Components should strike a balance between concreteness and abstraction.
From their experience with the world around them, people are more used to thi
concretely rather than abstractly. Visual composition uses a set of compon
which are abstractions, for application construction. A balance between the two
be made. Components cannot require the user to fill in every detail— if they had to
do that, then visual composition would be worthless. But components cannot
ceal all the details since the user would never figure out what to do with them.

• Big components can be reusable.
It is claimed that the bigger a component gets, the harder it is to reuse [5]. Here
ger” means more complexand more specific. A component being more specific do
make it harder to reuse, but being complex does not have to cause problems. A
as the composition interface of a component correctly reflects its behaviour, 
complex components can be reused just as well as less complex components

10.6.2 Composition

Choosing an effective set of rules for composition is not easy. Visual composition 
gates this decision to the users, on the basis that they know best how components
communicate in their particular application. More effort is needed to determine com
sets of rules that are often observed in applications as well as domain-specific rul
forts such as the Law of Demeter [28], contracts [18], law-governed systems [35] an
sign by contract [33] all contribute to this area.

Alternative ways for expressing composition models are needed. The compo
model was implemented as a small textual language (essentially just listing the por
and their compatibilities) in Vista. It could be useful to use visual composition to des
composition models. Certain rules, like no cycles allowed between components, co
illustrated by diagrams like the ones pictured in figure 10.14. If a component set co
a huge number of components, and a composition model has a huge number of rule
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the textual and graphical representation of the model could get awkward, and a
strategy might become necessary.

10.6.3 Visualization

The visual aspect of visual composition is one of its most important features. Bein
to see the pieces that make up applications and manipulate these pieces directly c
utes greatly to the understanding of an application. Seeing the impact of certain 
choices is very advantageous. But, as with all visual communication, a suitable pre
tion must be chosen otherwise the effectiveness and quality of the visual expressi
be brought into question. What is suitable can vary from person to person, so flexib
important, but people still have to understand each other. Any enhancements to the
presentation must give a user a more comfortable, informative and familiar environ
in which to work.

Visualization is the visual representation of information using, for example, two
mensional/three-dimensional computer graphics. Solutions and problems can of
easier and faster to recognize visually than having to sort through program text. B
does not favour visualizing software, saying: “In spite of progress in restricting and
plifying the structures of software, they remain inherently unvisualizable, and thusdo not
permit the mind to use some of its most powerful conceptual tools” [6] (emphasis added).
Despite Brooks’s pessimistic view, a person’s visual capacity is such a powerful co
tual tool that it must be explored as a possible aid in dealing with complex system
possible that not every level of software is visualizable, but this should not limit atte
to try to profit from visualization where appropriate. Scientific visualization has “dem
strated previously unknown flaws in numerical simulations and made possible
knowledge and insight” [41]. Harel [15] takes a more optimistic view about the poss
ties of visualization. Like Brooks, he agrees that the “traditional” diagrams, such as

Figure 10.14 Example visualizations of some composition model rules.

Cycles allowed between
any two components

Cycles allowed between
neighbouring components
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underlying software systems can be captured naturally by notions from set-theory a
pology that have natural spatial/graphical representations. Harel calls these repre
tionsvisual formalisms [16] and they all have rigorous mathematical semantics. Conc
such as containment, connectedness, overlap and adjacency as well as shape, size
our are used to depict a system. Combining these techniques can trigger many usef
tal images of what is going on in a system.

In Vista, only two-dimensional presentations have been used, and it would be int
ing to see if a third dimension could enhance the effectiveness of the tool. Situation
currently use up too much screen space could be more effectively treated in three 
sions. Examples of this type of work exist [7][40][46]. Different conclusions can be dr
if the application domain is inherently non-graphic or inherently graphic. Animation
also been used to help understand systems [10][12][44] and would enhance visual c
sition. For example, a “data map” that shows where data is, how it is used and how it 
around the application could give a global picture of data usage. Data could be tagg
followed through the executing application.

10.7 Conclusion

The landscape of software is changing from monolithic closed applications to open 
cations composed of reusable components. As the landscape changes, end-users
application developers and application developers become component engineers. 
port this new landscape, the software industry needs to promote the idea of investm
components. Among other things, this means developing repositories of componen
tools for developing applications from components. Visual composition can lead to
tools and environments which would contribute to the fulfilment of our duty, as Harel
it, “to forge ahead to turn system modeling into a predominately visual and grap
process.”
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Frameworks

Simon Gibbs

Abstract This chapter looks at the use of object-oriented technology, in
particular class frameworks, in the domain of multimedia programming. After
introducing digital media and multimedia programming, the central notion of
multimedia frameworks is examined; an example of a multimedia framework
and an application that uses the framework are presented. The example
application demonstrates how object-oriented multimedia programming helps
to insulate application developers from “volatility” in multimedia processing
capabilities — this volatility and related uncertainty is currently one of the key
factors hindering multimedia application development.

11.1 Digital Media and Multimedia

In discussing object-oriented multimedia, a convenient starting point is the notio
media artefacts. Here the term “media” is used in the sense of materials and forms o
pression. This includes bothnatural media, such as inks and paints, anddigital media
made possible by computer technology. The latter either mimic natural media, as
case with drawing and paint programs, or have no natural counterparts. Those thin
duced by working in or with a particular medium are what we call media artefacts.

The distinction between natural and digital media also applies to artefacts. Natu
tefacts are those produced using natural media. Among natural artefacts are pa
prints, sculptures, photographs, musical recordings, and video and film clips. Digita
facts include both the artefacts of digital media, such as an image produced by a pa
gram, and the digitized artefacts of natural media, for instance an image produc
scanning a photograph.

Until fairly recently, artists and designers primarily worked with natural media an
produced what we have just described as natural artefacts (it should be noted, thou
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we are including such technologies as film and video as “natural” media). But the tools of
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the trade are changing, and now, as a result of the increasing capabilities of the com
high-quality digital artefacts are becoming easier, and less expensive, to produce.
are many advantages to digital, as opposed to natural, artefacts — digital artefacts
easily modified, copied, stored or retrieved. They can be sent over communication
works and can be made interactive. Equally intriguing is the ease with which digital
facts are combined. Because, ultimately, digital artefacts simply reduce to bits and
there are no physical restrictions on combining artefacts of different digital media. D
video can be placed in text, or, vice versa, text can be placed in video; similarly aud
graphics can be combined, speech and text can be combined, and so on.

The notion of media artefacts leads to a natural definition formultimedia. We consider
multimedia to be broadly concerned with the creation, composition, presentation, re
ing, editing and, in general, manipulation, of artefacts from diverse media. Since mu
dia is so free in style, an immense variety of techniques, and combinations of techn
are available to the artist. This is reflected in the wealth of media manipulation, com
tion and transformational capabilities packaged in multimedia authoring tools.

11.2 Multimedia Systems and Multimedia Programming

A complex multimedia production, whether a video game, a multimedia encyclopae
a “location-based entertainment environment,” often requires the concerted effort of
teams of people. Like film and video production, multimedia production calls upon
talents of artists, actors, musicians, script writers, editors and directors. These peo
sponsible for “content design” to use current terminology, create raw material and pr
it for presentation and interaction. In doing so they rely on multimedia authoring env
ments to edit and compose digital media.

The authoring environments used for multimedia production are examples ofmulti-
media systems [9]. Some other examples are:

• multimedia database systems — used to store and retrieve, or better, to “play” a
“record” digital media;

• hypermedia systems — used to navigate through interconnected multimedia mat
al;

• video-on-demand systems — used to deliver interactive video services over wid
area networks.

The design and implementation of the above systems, and other systems dealing w
ital media, forms the domain ofmultimedia programming.

Multimedia programming is based on the manipulation of media artefacts through
ware. One of the most important consequences arising from the digitization of me
that artefacts are released from the confines of studios and museums and can be 
into the realm of software. For instance, the ordinary spreadsheet or wordproces
longer need content itself with simple text and graphics, but can embellish its appea
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tended somewhat facetiously, we should keep in mind that digital media offer man
portunities for abuse. Just as the inclusion of multiple fonts in document proce
systems led to many “formatting excesses,” so the ready availability of digital medi
lead to their gratuitous use.)

With the appearance of media artefacts in software applications, programme
faced with new issues and new problems. Although recent work in data encoding 
ards, operating system design and network design has identified a number of p
services for supporting multimedia applications, the application programmer must s
aware of the capabilities and limitations of these services. Issues influencing appli
design include:

• Media composition — digital media can be easily combined and merged. Among
composition mechanisms found in practice are:spatial composition (the document
metaphor) which deals with the spatial layout of media elements;temporal composi-
tion (the movie metaphor) considers the relative positioning of media elements 
a temporal dimension;procedural composition (the script metaphor) describes a
tions to be performed on media elements and how media elements react to e
and semantic composition (the web metaphor) establishes links between rela
media elements.

• Media synchronisation — media processing and presentation activities often h
synchronisation constraints [10][13]. A familiar example is the simultane
playback of audio and video material where the audio must be “lip synched” wit
video. In general, synchronisation cannot be solved solely by the network or o
ing system and, at the very least, application developers must be aware of th
chronisation requirements of their applications and be capable of specifying the
quirements to the operating system and network.

• User-interfaces — multimedia enriches the user-interface but complicates im
mentation since a greater number of design choices are available. For example
tions of “look-and-feel” and interface aesthetics must now take into account a
video and other digital media, instead of just text and graphics. Multimodal i
action [2], where several “channels” can be used for information presentation, 
other challenge in the design of multimedia user-interfaces.

• Compression schemes — many techniques are currently used, some standard
some proprietary, for the compression of digital audio and video data streams. A
cation developers need to be aware of the various performance and quality trad
among the numerous compression schemes.

• Database services — application programming interfaces (APIs) for multimedia d
tabases are likely to differ considerably from the APIs of both traditional datab
and the more recent object-oriented databases. For example, it has been argu
multimedia databases require asynchronous, multithreaded APIs [6] as oppo
the more common synchronous and single-threaded APIs (where the appli
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sends the database a request and then waits for the reply). The introduction of con-
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currency and asynchrony has a major impact on application architecture.
• Operating system and network services — recent work on operating system suppo

for multimedia — see Tokuda [14] for an overview — proposes a number of 
services such as real-time scheduling and stream operations for time-based 
Similarly, research on “multimedia networks” (e.g. [4], [12]) introduces new ser
es such as multicasting and “quality of service” (QoS) guarantees. Developers
consider these new services and their impact on application architecture.

• Platform heterogeneity — cross-platform development, and the ability to easily p
an application from one platform to another, are important for the commercial
cess of multimedia applications. It is also desirable that multimedia applica
adapt to performance differences on a given platform (such as different proc
speeds, device access times and display capabilities).

In summary, a rich set of data representation, user interface, application archite
performance and portability issues face the developers of multimedia systems. Wh
seek from environments for multimedia programming are high-level software abs
tions that help developers explore this wide design space.

11.3 Multimedia Frameworks

In identifying abstractions for multimedia programming one should consider the pre
ing programming paradigms such as functional programming, rule-based program
and object-oriented programming. While discussion of this topic is beyond the sco
this chapter, our position is that each of these paradigms has something to offer to
media, but that object-oriented programming, because of its support for encapsulati
software extension, is perhaps the most natural.

The apparent affinity between multimedia and object-oriented programming is cl
evident if one looks at the short history of programming environments for multimedi
plications. From the earliest multimedia toolkits, such as Muse [8] and Andrew [3], t
cent commercial multimedia development environments (e.g. Apple [1], Microsoft [
one can see the influence of the object-oriented paradigm. Often these environme
toolkits, in addition to structuring interfaces into classes and class hierarchies, ha
more ambitious goal of building class frameworks for multimedia programming.

Perhaps the main benefits of object-oriented technology to multimedia program
are its mechanisms for extending software environments. Many of the issues listed
previous section (media composition techniques, compression schemes, etc.) are,
core, questions of how best to cope with the uncertainties of evolving environm
Frameworks, or hierarchies of extensible and interworking classes, offer developers
of coping with evolution (see chapter 1). In the case of multimedia programming, se
“evolutionary processes” are of concern, in particular:
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• Platform evolution — the hardware platforms for multimedia applications are rapid-
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ly evolving. Capabilities that were once considered exotic, such as video com
sion and digital signal processing, are now found on the desktop (and soon th
top”).

• Performance evolution — many of the operations of interest to multimedia progra
ming have real-time constraints, consider audio or video playback as examples
temporal dependencies make multimedia applications particularly sensitive to
form performance. It may be necessary, for instance, to adapt to less than o
processing capacity by reducing presentation “quality” (e.g. lowering frame rat
sample sizes).

• Format evolution — new data representations for image, audio, video and other
dia types are likely to appear as a result of on-going standardization activities a
search in data compression and media composition.

Developers want to create applications that can adapt to and take advantage of c
in platform functionality, increases in platform performance and new data repres
tions. Of course it is impossible to write applications that can fully anticipate future d
opments in multimedia technology, but frameworks at least offer a mechanism
incorporating these changes into the programming environment.

11.4 A Multimedia Framework Example — Components

We now look at a particular multimedia framework — one that provides explicit sup
for component-oriented software development. This framework is described more
elsewhere [5]. In essence it consists of four main class hierarchies: media classes
form classes, format classes and component* classes (see figure 11.1):

• Media classes correspond to audio, video and the other media types. Instanc
these classes are particular media values — what were called media artefacts
in the chapter.

• Transform classes represent media operations in a flexible and extensible man
For example, many image editing programs provide a large number of filter o
tions with which to transform images. These operations could be represent
methods of an image class; however, this makes the image class overly comp
and adding new filter operations would require modifying this class. These prob
are avoided by using separate transform classes to represent filter operations

• Format classesencapsulate information about external representations of media
ues. Format classes can be defined for both file formats (such as GIF and TIF

* The term “component” appears throughout this book, here the term is used in the specific sense of 
ware interface encapsulating software and/or hardware processes that produce, consume or transfor
streams. Some examples are video codecs and audio players.
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image file formats) and for “stream” formats (for instance, CCIR 601 4:2:2, a str
format for uncompressed digital video).

• Component classes represent hardware and software resources that produce,
sume and transform media streams. For instance, a CD-DA player is a comp
that produces a digital audio stream (specifically, stereo 16 bit PCM samples a
kHz).

Components are central to the framework for two reasons. First, the framewo
adapted to a particular platform by implementing component classes that encapsul
media processing services found on the platform. Second, applications are constru
instantiating and connecting components. The remainder of this section looks at c
nents in more detail.

11.4.1 Producers, Consumers and Transformers

The structure of a component is depicted graphically in figure 11.2. Of central impor
are theports through which media streams enter and leave. Components can be d

Media
Text
Image

BinaryImage
GrayScaleImage
ColourImage

Graphic
2dGraphic
3dGraphic

TemporalMedia
Audio

RawAudio
CompressedAudio

Video
RawVideo
CompressedVideo

Animation
EventBasedAnimation
SceneBasedAnimation

Music
EventBasedMusic
ScoreBasedMusic

Figure 11.1 Four class hierarchies of a multimedia framework: the Media, Format,
Transform and Component classes and examples of their immediate
subclasses. The classes shown are abstract (with the exception of those
in italics) — concrete classes appear deeper in the hierarchies.

Transform
ImageTransform
AudioTransform
VideoTransform

Format
TextFormat
ImageFormat
GraphicFormat
TemporalMediaFormat

AudioFormat
VideoFormat
AnimationFormat
MusicFormat

Component
Producer
Consumer
Transformer
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into three broad categories based on the directionality of their ports:producers have only
output ports,consumers have only input ports, andtransformers have both input and out-
put ports.

11.4.2 Component Interfaces

Components communicate with other components, and with other objects, via three
faces:

• Synchronous interface — components, since they are objects, have a method i
face describing messages that can be sent to the component and the ass
replies. This interface is intended to allow external control over the componen
example, methods might include starting and stopping the component and qu
or modifying operational parameters.

• Asynchronous interface — components emit events that can be caught by o
objects (including other components, although building in dependencies bet
components is not recommended). As an example of event generation, a video
component might emit a “frame completed” event each time it produces a new 
on its output port. Generally the asynchronous interface is intended for monit
and coordinating component behaviour.

Figure 11.2 Structure of a component. Three interfaces are available to the programmer: a
synchronous interface based on message passing, an asynchronous interface
based on events, and an isochronous interface based on streams. Streams
enter and leave components through their ports and flow over the connectors
joining components.

Messages

Event emission

Event

Connector

Port

Component
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• Isochronous interface — finally the input and output ports provide a third form of in-
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terface. Streams of media data (such as audio samples, video frames or ani
events) enter and leave through ports. If congestion (or starvation) is to be av
connected components must operate at the same rate — in other words, con
components areisochronous.

11.4.3 Plug Compatibility

Several conditions must be satisfied before a pair of ports can be connected. In par
• One port must be an output port, the other an input port.
• The ports must beplug compatible.
• Creating the connection cannot exceed either port’sfan-limit (the number of simul-

taneous incoming or outgoing connections a port may accept).
• The ports must accept the same form of connector. Generally connectors com

variety of “forms” such as shared memory connectors, network connectors and
nectors using a hardware bus.

Plug compatibility is related to type compatibility. Each port is associated with a s
stream format classes; these are thesupported types of the port. When a port is to be con
nected, a specific member of this set is specified and is called theactivated type of the port.
An input and output port are then said to be plug compatible when the activated type
output port is either identical to or a subtype of the activated type of the input port.

Plug compatibility rules out such errors as connecting a video output to an audio 
Of more interest though, are the situations involving subtyping. It is best to think of a
type as specifying the form of elements in the stream that flows through the port. No
streams need not be homogeneous, one could have a stream containing both “c
elements and “square” elements. Plug compatibility then says that an output port p
ing, for instance, only “circular” elements, can be connected to an input port that ac
streams containing both “circular” and “square” elements. In practice this means th
can connect a source to a sink provided the “vocabulary” of the source is included 
of the sink.

11.4.4 Component Networks

Groups of connected components are calledcomponent networks. A component network
resembles a dataflow machine — streams of media data flow from producers, th
transformers, and finally to consumer components. Applications are responsib
building component networks — in other words, applications build the virtual machin
which they run. This involves:
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• Instantiation — the instantiation of a component results in resources being allocated
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for its operation. Resources include such things as memory, bus and network
width, processor cycles, and hardware devices.

• Initialization — after creating a component object it must be initialized, i.e. op
tional parameters such as “speed” or “volume” must be set. The component’s m
interface is used for this purpose.

• Connection — after instantiating and initializing components, they can then be 
nected. Depending on the application, all connections may be made statically
the application begins (e.g. a two-party desktop conferencing application) or dy
ically as the application runs (e.g. a multi-party desktop conferencing applic
where users have the ability to enter and leave conferences as they are runnin
example of a tool that can be adapted to allow the visual configuration of m
processing components is described in chapter 10.

• Synchronisation — components are subject to real-time constraints. In particu
media values enter and leave their ports at specific rates. If for some reason c
nents are no longer able to process streams at the proper rates, then synchro
errors start to appear (such as video lagging behind audio). When a compone
work falls “out-of-sync” it may be necessary for the application to specify correc
action (such as shutting down components, reducing quality, or acquiring mo
sources).

• Event-handling — during operation, components generate a variety of events. A
cations can register interest in events and must then provide appropriate eve
dlers.

11.4.5 Media Processing Platforms and Component Kits

Finally, two important notions related to components aremedia processing platforms and
component kits. A media processing platform is simply a set of hardware and softwar
sources. Some examples would be a CD-i player, a MIDI network, a PC with a s
board, a video editing suite, a digital signal processor, and a network of “multim
workstations” (workstations with audio and video capabilities).

Given a media processing platform, a component kit is the set of components offe
the platform. Clearly applications can only use available components. However, it s
be possible for applications to adapt themselves, at least to some extent, to differe
forms and different component kits. For instance, consider an application that play
tiple audio, video and MIDI tracks. If the application finds itself on a platform with
MIDI components, it might select simply to ignore any MIDI tracks during playback.

11.5 Video Widgets — A Programming Example

The preceding section contained a short overview of a proposal for an object-or
framework for multimedia programming. To give a better idea of how such framew



314 Multimedia Component Frameworks

chitec-

gets”
-inter-
ts are
or dig-

 sim-
ng to
r situ-

and
The in-

idget
can be used, and how they can help shield applications from changes in platform ar
ture, we will look at a programming example based on an existing prototype.

The programming example we have chosen is the implementation of “video wid
[7]. Video widgets, like graphics widgets (menus, buttons, icons and so on) are user
face elements encapsulating both visual and behavioural information. Video widge
rendered (i.e. displayed) by compositing video sequences (stored either in analog 
ital form) over application graphics.

An example of a video widget is shown in figure 11.3. This widget is the basis of a
ple “video assistant” for explaining and demonstrating the use of buttons belongi
some application. Such a video widget could be of use in multimedia kiosks or othe
ations where users may not be familiar with the operation of the application.

The implementation of video widgets involves components for playing, mixing 
displaying video — these are producers, transformers and consumers respectively. 
stantiation and connection of these components is performed by a class calledVideo-
Widget, this class also provides application programmers methods for controlling w
behaviour. A partial class definition forVideoWidget is as follows:

class VideoWidget {
private:

VideoPlayer* player; // a Component object (a Producer)
VideoMixer* mixer; // a Component object (a Transformer)
WindowServer* wserver; // a Component object (a Producer)
Display* display; // a Component object (a Consumer)
ActionTable* atab; // identifies widget actions

Figure 11.3 A video widget and application windows.
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public:
// create a video widget

VideoWidget(WindowServer* w, Display* d,
Video* v, ActionTable* a, ChromaKey k);

// have widget perform some action
// this may generate events that can be
// caught by the application

void Perform(ActionId aid, float speed, bool blockFlag);
};

TheVideoWidget class includes instance variables that refer to the component ob
used to build the “virtual machine” (i.e. component network) on which a video wi
runs. The classes of these components are:

• VideoPlayer — an abstract class for components that playback video values (e
analog or digital). Some specializations could include:VideoTapePlayer, VideoDisc-

Player, MpegPlayer andJpegPlayer. Methods declared byVideoPlayer (and implement-
ed by the subclasses) includeLoad, Cue, Play andPause.

• VideoMixer — a class for components that mix video using techniques such as 
ma-keying. Methods includeSetChromaKey, EnableKeying, BypassKeying.

• WindowServer — a class used to encapsulate window server functionality. A win
server is represented by a producer component with a video-valued output po

• Display — a class used for display devices. A particular display is represented
consumer component with a video-valued input port.

Using the framework’s notion of components and connections, a typical graphics 
cation would consist of aWindowServer component connected to aDisplay component.
Video widgets can then be implemented by “splicing” a video mixer and a video p
into this connection. The resulting component network is shown in figure 11.4.

Configuration of the component network takes place in the constructor forVideoWidget.
An outline of this method is:

Figure 11.4 A component network for a video widget.

displaywserver mixer

player
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Video* v, ActionTable* a, ChromaKey k)
{

player = new VideoPlayer(v->Format( ));
mixer = new VideoMixer;
wserver = w;
display = d;
atab = a;

// connect player and wserver outputs to mixer inputs
// connect mixer output to display input

// initialize components
player->Load(v);
mixer->SetChromaKey(k);
mixer->EnableKeying( );

}

In addition to making component connections, the constructor loads a video valu
the video player and configures the mixer for chroma-keying. The constructor also
anActionTable argument; this is a data structure identifying offsets within the video v
for particular “actions” that can be performed by the widget. A particular action is pla
back by using thePerform method:

VideoWidget::Perform(ActionId aid, float speed, bool blockFlag)
{

player->Cue(atab[aid]); // cue at start frame of action aid
player->Play(speed, blockFlag); // start playing, this method blocks

// if blockFlag is TRUE
}

TheVideoWidget class can be expanded in many ways to include such things as aud
pabilities, multi-layer mixing and video effects (e.g. fading in or out a video widg
However, our purpose here is not really to discuss the use of video widgets or their 
requirements, but rather to provide a non-trivial example of how component networ
mapped to media processing platforms.

Two possible, but radically different, platforms for video widgets are shown in fig
11.5 and 11.6. The first is based on analog video and external devices for mixin
switching. The second assumes a fast internal bus and hardware components for p
ing high data rate uncompressed digital video.

The important point of this example is that the differences between the platforms
not be visible to the user of video widgets. More specifically, it is possible to have a s
implementation of theVideoWidget class for both platforms. The code for methods such
Perform remains the same; what changes between platforms are the implementation
components used byVideoWidget. However, as long as implementations ofVideoMixer,
VideoPlayer, etc., provide the same interfaces, there is no reason to change theVideoWidget

class.
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11.6 Summary

Multimedia raises a host of new design issues for application developers. Questi
media composition, media synchronisation, data formats, user interfaces and datab
terfaces must be re-examined in the light of the capabilities of multimedia platform
take one example, advances in video compression techniques now make it possible
struct “video servers.” These digital video storage and delivery systems are the basi
new family of video-on-demand services and lead us to question the nature of the in
between applications and database systems.

One of the more severe practical difficulties facing developers of multimedia app
tions is the lack of stable target platforms. What can be called “platform volatility” re
from the rapid pace of additions to the functionality of multimedia hardware, impr

Figure 11.5 An analog video platform for “video widgets”. The two video signals F (front)
and B (back) come from the video widget and the application respectively.The
central part of this layout is an analog video routing switch allowing video
equipment to be connected under computer control. The TBCs (time-base
correctors) synchronize video signals against some reference signal (coming
here from a sync generator) and are needed when video signals are mixed.
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Scan converter
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ments in performance and quality characteristics, and the introduction of new m
formats. In order to simplify cross-platform development, multimedia programming
vironments must address the issue of platform volatility. This chapter has argued, th
a concrete example, that object-oriented programming, class frameworks and comp
based software allow us to cope with platform evolution — that constructing applica
from connectable and “swappable” components helps protect developers from eve
cal changes in target platforms.
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Gluons and the
Cooperation between
Software Components

Xavier Pintado

Abstract A major problem in software engineering is how to specify the patterns
of interaction among software components so that they can be assembled to
perform tasks in a cooperative way. Such cooperative assembly requires that
components obey rules ensuring their interaction compatibility. The choice of a
specific approach to specifying rules depends on various criteria such as the
kind of target environment, the nature of the software components or the kind of
programming language. This chapter reviews major efforts to develop and
promote standards that address this issue. We present our own approach to the
construction of a development framework for software applications that make
use of real-time financial information. For this domain, the two main requirements
are (1) to facilitate the integration of new components into an existing system,
and (2) to allow for the run-time composition of software components.The goal
of the development framework is to provide dynamic interconnection
capabilities. The basic idea is to standardize and reuse interaction protocols that
are encapsulated inside special objects called gluons. These objects mediate
the cooperation of software components. We discuss the advantages of the
approach, and provide examples of how gluons are used in the financial
framework.

12.1 Introduction

The advent of object-oriented techniques has brought many benefits to the field o
ware engineering. One notable benefit is that objects provide a higher degree of aut
than obtained with the traditional separation of software into functions and data 
tures. This autonomy promotes component-oriented software construction, since a
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Component reuse can reduce development time and costs, and can lead to improv
ability, since reusable components will become thoroughly tested as a consequenc
use.

Although component-oriented software is fairly promising in terms of its reuse po
tial some major problems remain to be solved. Among these, a salient problem 
definition of the patterns of cooperation between software components, to which co
erable effort has already been devoted. We may notice, for instance, that a class in
condenses assumptions about the objects that can be instantiated from it, but not a
tions about the interactions that those objects may have with other objects.

We may better capture the essence of the problem by observing that virtually an
of cooperation requires agreement between the cooperating entities [29]. Coope
agreements can take many forms, however. They can be specified, for instance, by 
to which all the cooperating entities obey. But cooperation can also rely on bilateral a
ments each defining the cooperation between pairs of entities.

In the context of component-oriented software design, the goal is to make sof
components cooperate through reliable and flexible mechanisms that appropriate
port and enforce convenient interaction patterns. In this context, the interaction “la
cooperation agreement is usually captured by the notion of an object-oriented de
ment framework [9] [10]. An object-oriented framework is a collection of classes tha
designed to work together. A framework is intended to provide a development env
ment that promotes reuse and reduces development effort by providing a compreh
set of classes and development rules. Frameworks come in many different flavour
can, for example, target a narrow application domain such as the development of 
drivers (e.g. NeXTStep Driver Kit [19]), or they can address the requirements of a ge
development environment (e.g. Visual C++ framework [4]) comprising multiple se
classes and development rules.

The distinguishing characteristic of a framework is the design philosophy that per
all aspects of the framework such as the definition of foundation classes, the rules 
design of new classes and the tools that support the development process. By app
consistent design philosophy to all the aspects of the framework, designers atte
provide the user with a uniform development model that reduces the learning effo
defines a generic architecture for applications developed with the framework.

In this chapter we develop a framework for the development of financial applicat
The framework is intended for the development of applications that involve the retr
of real-time financial data sources. The typical target environment for the framewo
rapidly evolving, in the sense that the behaviour of the objects and the way they are 
evolves at a fast pace to reflect the real world of finance. The framework focuses o
time connection of software components and on capabilities that support the increm
development of applications. Figure 12.1 shows a typical display of an application d
oped with the financial framework.

The distinguishing feature of the framework is the introduction of a special fami
objects, calledgluons, which are responsible for the cooperation among software com
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nents. Although gluons essentially encapsulate communication protocols, they p
prominent role at the design level by promoting a protocol-centered design.

This chapter is organized as follows: the next section provides an overview of ho
ferent frameworks address the issue of object cooperation and the patterns of coop
that they promote. We focus on standardization proposals promoted by major so
houses since they will most likely have a significant impact on the future architectu
software applications. Section 12.3 discusses the requirements for the financial 
work. Such requirements cannot be easily satisfied with the previously describe
proaches and we therefore introduce a new protocol-centered approach. Sectio
discusses gluons as special components that enable a protocol-centered approach
12.5 presents the financial framework, focusing on the illustration of commonly 
gluons. We conclude with a summary of the advantages of protocol-centered frame

Figure 12.1 Display presenting some of the visualization tools available for the display of
real-time information. Windows 1 and 2 display real-time information about
DEC and IBM stocks in the Zurich stock exchange. Windows 3 and 4 provide
transaction information about foreign exchange rates. Window 5 and 6 display
index values (French Cac 40 and Dow Jones Industrial). Finally, window 7
displays information in page format, and window 8 offers news highlights.

1
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12.2 An Overview of Cooperation Patterns
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The development of mechanisms that support communication between software c
nents is hardly a new problem. A significant effort has been devoted in the past, f
stance, to interapplication communication. A typical mechanism is the remote proc
call (RPC), which allows an application to invoke routines belonging to another app
tion. RPC is the kind of cooperation mechanism one expects in software environ
where the principal entities are functions and data structures. In a word of objects
ever, we might expect to have remote message capabilities since the message is th
object communication mechanism.

To the best of our knowledge the first commercially available implementation of re
messages came bundled with NeXTStep AppKit framework[19]. However, remote 
saging only provides a communication layer. For software components to coopera
dependable and flexible way we need to define the laws of cooperation. In what fo
we provide an overview of various standardization efforts that address, in a broad 
the problem of defining laws of cooperation in the context of software develop
frameworks.

12.2.1 Object Management Group

The Object Management Group (OMG) promotes a standard to support the interac
software components within a framework called the Object Management Archite
(OMA). One of the main goals of OMA is to achieve object distribution transpare
which means that the interaction between a client component and a server com
through the server’s interface should be independent of its physical location, acces
and should be relocation invariant. This standard relies on a common object mod
OMG Object Model which is used by all OMG-compliant technologies.

12.2.1.1 The OMG Object Model
The OMG Object Model defines a way to specify externally visible characteristics o
jects in an implementation-independent way. The visible characteristics of an obje
described as a collection of operation signatures called the object’s interface. The
Object Model definition of an operation signature extends in interesting ways the ty
definition of a method’s signature in order to make it more convenient for distributed 
puting environments. The optionaloneway  keyword specifies an exactly-once operatio
semantics if the operation successfully returns results or a at-most-once semantic
exception is returned. Each parameter is flagged with one of the three qualifiers —in , out
or inout  — to specify the write access to the parameter of the client, the server or bo
exception is an indication that the request was not performed successfully. Theraises  key-
word introduces the list of possible exceptions that can be raised by the operation. F
thecontext  keyword allows for the specification of additional information that may aff
the performance of the operation. These extensions address issues related to dis
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environments such as unreliable communications, and the need for appropriate m
nisms for exception handling.

12.2.1.2 Object Request Broker
The communication between objects is mediated by an Object Request Broker (
The ORB is responsible for finding the object implementation for the requested oper
to perform any preprocessing needed to perform an operation, and to communica
data associated with the operation. The functionality of object request brokers is d
in the Common Object Request Broker Architecture (CORBA)[21]. In order to en
language independence, CORBA defines a Interface Definition Language (IDL
obeys the same lexical rules as C++, although additional keywords are introduced
tially to support distributed environments. However, IDL differs from C++ in that it is o
a declarative language. In order for object implementations to communicate with the
they need to implement a Basic Object Adaptor (BOA) which deals with such aspe
interface registration, implementation activation, and authentication and access c
An important component of the ORB is the interface repository which provides acc
a collection of object interfaces specified in IDL.

To summarize, the OMG provides a standard for the communication of objects i
tributed environments. The standard focuses on interoperability of heterogeneou
tems, where interoperability is achieved through a request broker that defines st
interface rules which the interacting agents need to obey.

12.2.2 Microsoft DDE and OLE

Microsoft provides two main standards for interapplication cooperation: DDE (Dyna
Data Exchange) and OLE (Object Linking and Embedding). DDE is much simpler
OLE since it addresses essentially the exchange of data between applications tha
the same computer. On the other hand, OLE is an ambitious standard that encom
many aspects related to the structures of software components.

12.2.2.1 Dynamic Data Exchange
DDE focuses on data exchange between applications based on a client–server m
DDE parlance, a client is any application that initiates a DDE connection. Usually a 
requests data after establishing a connection with a server. The connection estab

[oneway ] <return_type> <operation>(in |out |inout  param1, ..., in |out |inout  paramK)
[raises  (except1, ..., exceptL)]
[context  (name1, ..., nameM)]

Figure 12.2 The OMG Object Model operation signature.
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link that according to the way the link deals with data updates on the server side can
of three types:cold, warm andhot. These three links are illustrated in figure 12.3. W
cold links the server plays a passive role: it takes no action whenever data is update
client is, therefore, responsible for implementing the update policy by issuing 
requests when appropriate. Withwarm links the responsibility for data update is shar
between the client and the server: the server notifies the client upon a data update
data request to perform the update on the client’s side is initiated by the client. Fi
with hot links the server is responsible for the whole update process on the client’s s

The three types of links allow for the implementation of data consistency pol
between the client and the server that appropriately reflect the requirements of the
application. The actions on both the client and the server side are carried out throug
back functions.

The data organization at the server end follows a three-level hierarchy that reco
three entity types: services, topics and items, as illustrated in figure 12.4. Typically, a
corresponds to a document (e.g. an open document in a wordprocessor server) bu
also represent a relation in a relational database since the DDE standard does not
what a topic should be. Items are the smallest entities that can be addressed throug
Items can be of any type and format recognized by the Windows clipboard. In orde
client to request data from a server it needs to know the name of the service provi
the server, the name of the topic and the name of the item it is looking for. A client ca
nect to multiple servers and a server can be linked to multiple clients. Although DDE
sentially a mechanism for data exchange among applications it also provides li
capabilities that allow a client to execute commands on the server side. These capa
can be used to implement cooperation mechanisms that are, to some extent, simila
mote messaging in other environments.

Figure 12.3 DDE involves three types of links between clients and servers. The variety
of links reflects the different requirements of applications on how to
maintain client’s data consistent with the corresponding server’s data.

Client requests data

(1) Server notifies client about data update

Cold link

Warm link

Hot link

(2) Client eventually requests new data

Server updates data on the client side

Client Server
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12.2.2.2 OLE 2.0
OLE is another standard defined by Microsoft that enables the cooperation of ap
tions. In its current 2.0 version [17][18] it shares many similarities with OpenDoc tha
will describe in section 12.2.4.2. For instance, both standards comprise a set of co
tion protocols and a definition for compliant structured documents. OLE 2.0 is relat
hard to summarize briefly. In fact OLE 2.0 is much more than a application coope
standard; it is the foundation for a Microsoft strategy to make MS-Windows migrate t
ject-oriented technology. As such, OLE 2.0 comprises a set of apparently loosely r
standard definitions, models and implementations which provide, as a whole, a coo
ed platform for future object-technology. OLE 2.0 provides standard definitions an
plementation support for compound documents, drag-and-drop operations, 
services, linking and embedding of documents, and application interaction automa

The unifying concept underlying the OLE 2.0 platform is the Component Object M
(COM). All the other pieces of OLE 2.0 either rely on the COM definitions or use C
objects, usually called Windows objects [17]. Windows objects differ slightly from
objects proposed by commonly used programming languages such as C++ or Ei
Windows object is fully defined by its set ofinterfaces. An interface is a collection of
function pointers and there is no such notion as references to Windows objects. Wh
obtain a reference to an object it is in fact a reference to one of itsinterfaces. Another in-
teresting aspect of Windows objects is that there is no inheritance mechanism, but b
Windows objects provide multipleinterfaces, it is easy to encapsulate Windows objec
with programming languages that offer either single or multiple inheritance. The C
presents Windows objects essentially as collections of functions [7][17] (i.e.interfaces),
which can be fairly confusing for readers acquainted with object-oriented concepts
main reason, we believe, is that the OLE 2.0 is to be implemented with many differen
gramming languages, such as BASIC, C, C++, which may or may not endorse obje
ented techniques. With different programming languages the binding between the o
data and the object’s methods may be implemented in different ways that are not sp
in OLE. Microsoft offers an OLE 2.0 software development kit for C++ environment

Service

Topic A Topic B

Item 4

Topic C

Item 3Item 2Item 1 Item 6Item 5

Figure 12.4 DDE hierarchy showing the service provided by a server and how it is
hierarchically organized in topics and items.
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A key feature of OLE 2.0 is the definition of structured documents. Structured docu-
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ments containstorages andstreams that are organized in a similar way to traditional fi
systems:streams are analogous to files whilestorages act as directories. So,storages con-
tain eitherstreams or storages. Storages and streams provide support for structure
composite documents that are organized in a hierarchical structure. OLE 2.0 prov
standard definition for the document’s structure and also a set of functions that supp
standard operations on structured documents.

The best-known features of OLE 2.0 are probably embedding and linking. A ty
compound document (e.g. a text with graphics, sound, data in spreadsheet forma
contains data objects that have been created by different applications. The owner
compound document, say a wordprocessor, may know how to display most of these
but cannot deal with the full complexity of retrieving and modifying them. An OLEcon-
tainer is any application that can incorporate OLE objects.Containers usually display the
OLE objects and accept commands for them. However,containers are not intended to
process the objects. Objects retain an association withserver applications that are respon
sible for servicing the requests addressed to the objects. The idea here is that client
need to be aware of the internals of the objects they contain. The object (data) to
with its associate server corresponds to the usual notion of object in object-oriented
nology which encapsulates both data and operations on the data.Servers accept com-
mands, calledverbs, that correspond to actions that can be applied to the objects
interface is the set of operations that can be applied to an object via its server.

OLE 2.0 offers two ways to integrate an object into a compound document:linking and
embedding. Embedding is most frequently used. Thecontainer application owns and
stores each embedded object, but the server retrieves the object. The server plays a
ymous role by processing the object on behalf of the container application. Convers
object can be linked into a document. A linked document belongs to a given docu
(and is stored in the document’s file) but it is referenced in another document. In thi
severalcontainers can share a single linked object.

Additionally, OLE 2.0 provides a standard for data transfer called Uniform Data Tr
fer (UDT) and a standard for scripting called Automation. Automation allows obj
associated with one application to be directed from another application, or to perfor
erations on a set of objects under the control of a macro language [18].

To summarize the OLE 2.0 standard suite we may say that the Component Objec
el standardizes how an object and an object’s client communicate; compound docu
standardize document structure and storage; Uniform Data Transfer standardize
exchange capabilities and Automation provides a support for remote control of ap
tions.

It should be noted that with OLE version 2.0 the interapplication cooperation primi
are restricted to the scope of the same machine. However, these mechanisms coul
be extended to provide the same capabilities across networks and serve, therefo
foundation for distributed computing.
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12.2.3 ODBC 2.0

Although the Open Database Connectivity standard from Microsoft is more a standa
the interconnection of applications and databases, it is worth mentioning here for tw
sons. First, it represents a much-needed standardization effort to isolate application
the access to specific databases. Second, databases will be, at least in the near fu
of the most prominent reusable software components since they are responsible fo
persistence.

The architecture of an ODBC 2.0 application is represented in figure 12.5. Fro
view point of the application, the access to the various data sources is transparent t
the ODBC interface. The ODBC 2.0 standard interface provides the following:

• a standard way to connect to databases;
• a set of function calls that allows an application to connect to one or many data

execute SQL statements, and retrieve the results;
• a standard representation for data types.
The Driver Manager loads drivers on behalf of the application, while the Drivers im

ment ODBC function calls and submit, when appropriate, requests to the associate
source. The Drivers are responsible for adapting to the specific syntax of the asso
DBMS. ODBC 2.0 does not rely on object-oriented principles and is fairly low level in
sense that it provides a vendor-independent mechanism to execute SQL statem
host databases.

12.2.4 Apple’s Interapplication Communication Architecture
and OpenDoc

Like Microsoft, Apple devoted significant efforts to the definition and implementatio
standard mechanism for the cooperation of applications. Also like Microsoft, Apple 

Application Driver
Manager Driver B

Driver C

Driver D

Driver A

ODBC interface

Data source A

Data source B

Data source C

Data source D

Figure 12.5 ODBC 2.0 application architecture.
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large developer base and a large software base that did not already fully adopt 
oriented tools. The consequence is that the migration towards an object-oriented pl
started by the introduction of object-oriented concepts such as message passing 
velopment environments that are not object-oriented.

12.2.4.1 Interapplication Communication Architecture
This migration was the driving force for the development of the Interapplication Com
nication architecture (ICA), which provides a standard mechanism for communic
among Macintosh applications[1]. More specifically the goal is to allow applications

• exchange data through copy-and-paste operations;
• read and write data blocks from and to other applications;
• send and respond to Apple events;
• be controlled through scripts.

A significant effort has been devoted by Apple to define a common vocabulary of 
level messages, called Apple events, that are published in the Apple Event Re
Standard Suites. To the best of our knowledge, this has been the only effort to d
standardize the messages that applications may respond to.

• Applications typically use Apple events to request services from other applica
or to provide services in response to other applications requests. Aclient application
is an application that sends an Apple event to request a service, while the appli
that provides the service is theserver application. The client and server application
can reside on the same machine, or on different machines connected to the sa
work.

The ICA comprises the following:

Edition Manager Open Scripting Architecture

Event Manager

Program-to-Program Communication toolbox

Figure 12.6 The layers of the Interapplication Communication Architecture.
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ment changes.

• TheOpen Scripting Architecture, which defines the standard mechanisms that al
for the external control of single or multiple applications. OSA is comparable
some extent, to Automation in OLE 2.0. OSA is not tied to any specific scrip
language. Each scripting language has a corresponding scripting compone
translates the scripts into events.

• TheEvent Manager, which provides the support that allows applications to send
receive events. The Event Manager standard defines the architecture and the
of Apple messaging backplane.

• The Program-to-Program Communication toolbox, which provides low-level
support that allows applications to exchange blocks of data in an efficient way
Edition Manager and the Open Scripting Architecture provide the user level sup
They both rely on the Event Manager to exchange data and messages across 
tions. The Event Manager, in turn, relies on the Program-to-Program Commu
tion toolbox to transport data. Figure 12.6 illustrates how the different parts o
ICA are related.

12.2.4.2 OpenDoc
As opposed to OLE, the ICA only deals with the problem of application interaction
does not define a standard for documents. Apple, together with other companies s
Novell and IBM, is proposing another standard, OpenDoc, that is quite similar in sco
OLE 2.0. It defines both standards for application interaction mechanisms and for 
tured documents. In reality, OpenDoc integrates three other standards: (1) System
Model (SOM), which originated as a CORBA compliant IBM standard for interappl
tion message exchange; (2) BENTO, which standardizes the format of structured
ments and (3) the Open Scripting Architecture that we already mentioned as p
Apple’s ICA.

BENTO defines the standard elements for structuring documents in OpenDoc. BE
documents are stored in containers which are collections of objects. BENTO objec
organized as schematized in figure 12.7. An object has a persistent ID which is u
within its container. Objects contain a set of properties, which in turn contain valu
some type. The values are where data is actually stored and their types describe th
sponding formats.

The ideas underlying OpenDoc are quite similar to those on which OLE 2.0 is b
composite documents may contain heterogeneous objects that are managed and 
lated using a variety of specialized software components. With OLE 2.0 the speci
components are heavyweight applications such as wordprocessors and spreadsh
the other hand, OpenDoc targets components that are more fine-grained. The go
make the concept of application vanish, giving place to a document-centered app
that promotes the document as the main user concept. Each part of a document re
association with a specialized component that knows how to retrieve it. Naturally, t
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vocation of the retrieving component is transparent to the user, who can easily incre
variety of the parts that can be incorporated into composite documents by purchasin
specialized software components.

12.2.5 Discussion

The considerable effort that has been devoted to designing, implementing and prom
the adoption of these cooperation standards suggests the critical role that such sta
may play in future software technology. We may notice, however, that the various s
ards differ considerably in scope.

For example, OMG standards focus on interoperability among heterogeneous s
tems and they essentially provide mechanisms that allow software components to r
services from other software components. Software components need to provide a
ard layer that adapts them to the request broker in much the same way that ODBC 
plications need drivers to adapt data sources to the ODBC 2.0 interface. Conversel
2.0 and OpenDoc each provide a complete integration platform-centered on a sta
definition of composite document. The document-centered approach that underlie
standards seems appropriate for office information systems where the composite
ment seems to be indeed the fundamental user abstraction.

However, there exist many software application domains that do not revolve arou
notion of document. For example, in real-time software and communications soft
the notion of document does not play an important role. We may also notice that
standards do not promote interaction at the software component level, but rather at 

ObjectValue of type A
Value of type B
Value of type C
Value of type D

Value of type C
Value of type A

Property X

ObjectValue of type A
Value of type B
Value of type C
Value of type D

Property Y

ObjectValue of type C
Value of type A
Value of type C
Value of type S

Property Z
ObjectValue of type F

Value of type G
Value of type A
Value of type B

Value of type H
Value of type A

Property U

Object “Budget”

Figure 12.7 A Bento object contains a collection of properties and properties contain
values which are the placeholders where data is actually stored.
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small and specialized retrieval units while OLE 2.0 promotes communication among
fledged applications such as wordprocessors, spreadsheets, etc.

The ICA from Apple (in particular, the Apple events suite) takes a rather differen
proach, focusing on the standardization of operations. The goal is to promote a st
vocabulary for services so that applications that provide similar services (e.g. sp
sheets) can be replaced by one another.

Another observation is that any of the standards discussed requires mechanisms
specific to object-oriented languages such as inheritance and encapsulation. In fa
are being used as a vehicle for the migration towards object-oriented environments
troducing object-oriented concepts expressed in non-object-oriented languages. 
probably the reason why these standards focus mainly on interaction between a
tions; the same interaction rules do not usually apply to interaction of software co
nents occupying the same address space.

12.3 Requirements for a Financial Framework

The application cooperation standards we have discussed address the needs of a
software environment and reflect many other constraints not all related to sof
engineering, such as market constraints and applicability of standards to old develo
environments. Our financial framework targets applications that retrieve real-time
historical data from financial information sources. Typically, these applications dis
data such as the price of securities, interest rates and currency exchange rates, a
users to explore real-time and financial historical information. These applications pr
to the professional user a window into financial activities which provides access to th
tributed world-wide financial market.

Financial markets are characterized by rapidly evolving, complex relationships a
the wide variety of financial instruments. Market relationships that hold among fina
instruments are continuously evolving, and professional investors are constantly tra
that evolution in order to detect new investment opportunities. Decision support sy
(DSSs) play an important role in supporting the user while finding such investment o
tunities. The user needs to combine financial instruments, test the combination wit
ous economic scenarios, look at the present cost of the combination, refine the ch
instruments, re-evaluate them, and eventually make an investment decision. In o
provide the appropriate support the DSS should allow the dynamic combination of 
cial instruments so that any instrument can be combined with any other instrumen
asks for a DSS architecture that facilitates the run-time interaction of software co
nents. Furthermore, new financial instruments are frequently added so the DSS sh
easily extendable with operational models for new instruments. To summarize, the
tecture needs to provide capabilities for the dynamic connection of software compo
and facilitate the integration of new software components.
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12.3.1 Towards a Protocol-Centered Framework
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As we already mentioned, the goal of a framework is to provide a set of classes that 
signed to work together. This operational compatibility can be achieved in many w
The Object Management Group focuses on compatibility mediated by an object re
broker. They impose no restriction on the software components themselves. Thei
concern is to provide interoperability in heterogeneous environments. OLE 2.0 and O
Doc emphasize the compound document as the main shared entity. Their main con
to provide the most flexible environment for document retrieval. Apple’s ICA appro
on the other hand, attempts to standardize common operations by defining a stand
erations vocabulary and its associated semantics. ICA pursues two main goals. T
goal is to make the access to core standards functionality, such as common spreads
erations, database access and wordprocessor tasks, application independent. The
goal is to offer powerful scripting capabilities to automate tasks and to compose ap
tions together.

The goal of the financial framework is to provide support for dynamic control of th
teraction between software components. To achieve such a goal we need to pro
mechanism that allows for dynamic interconnection of software components.

12.3.2 Standardizing a Service’s Vocabulary

During the early stages of the framework’s design we considered a number of alter
intercomponent interaction principles. The goal was to find a mechanism that 
provide the highest degree of dynamic interconnection for the kind of applications w
targeting with the financial framework. We tried, for instance, to standardize a set o
services so that each service is associated to a unique name called a verb, much in t
way as the Apple events suite standardizes the operations vocabulary of common s
provided by wordprocessors, spreadsheets, databases, etc.

12.3.2.1 The Advantages
The intuition behind this approach is that we can identify among the services provid
the various software components of a framework many services that, although not 
cal, have comparable semantics. For example, most components in our environme
vide services such asevaluate, print, andnotify. We attempted to identify within the scop
of the financial framework the principal groups of services and we ended up with th
shown in table 12.1. Software components may provide other services as well. Thes
ices belong either to more specialized groups, such as a group that is related to re
services, or they do not belong to any group since they are too specific to a particula
of components.

A major advantage of this approach is simplicity. A service request can be perfo
by sending a message, a mechanism that every object-oriented environment offe
advantage of standardizing a vocabulary for services is perhaps more compelli
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many reasons. First, reusing components is made easier since services with sim
close semantics bear the same name on all the software components, thus simplify
name space. Second, dynamic interconnection of software components is improv
cause if a component provides a service conforming to a standard protocol, such as
service, then that service can be invoked by any client understanding the same pr
Third, interchangeability of software components is increased since two software co
nents that provide similar functionality will most probably show a fair degree of com
nality in their interfaces.

12.3.2.2 The Shortcomings
We noticed, however, that this approach is not the best in terms of dynamic interco
tion. The main reason is that, in general, the interaction between two or more comp
involves more operations than simply sending a message. Although we can compo
ware components by specifying the appropriate sequences of messages to be exc
between the components, a collection of sequences of messages is not the appropr
to specify components’ interactions. All but the simplest interactions involve a state
the set of permissible messages that can be exchanged between interacting comp
at a given point in time, usually depends on the present state of the interaction. Re
financial environments provide many illustrations. Consider, for example, a soft
component, called the server, that offers real-time data updating services to other c
nents. A component may register to be notified for data updates. Registering starts
teraction that ends, hopefully, when the client component requests the server t
notification. Such interaction may comprise many data updates, error messages, n
tion of temporary interruption of real-time services, with subsequent service resum
etc. Another example is a database transaction. A server may execute a databas
action on a client component’s behalf. The transaction may involve many different o

Service group name Description

Common services Services that are usually provided by most components
such as: print, show-services, identify-error, and store

Messaging and notification Services related to messaging and event notification such
as: call-back, notify, add-to-broadcast-list, message,
forward-message

Computational Services related to computational servers: evaluate,
iterate, perform-aggregation, set-value, get-value

Display Services related to visual operations such as: display,
undisplay, front, drag-and-drop

Object management Services related to software component management
such as: create, replicate, destroy, add-object, instance-
of-class, component-id

Table 12.1
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tions that individually succeed or fail. The transaction succeeds if all its opera
succeed, otherwise the transaction fails. The interaction between the client and the
depends on the state of the transaction, which can be defined as the logical “and” of
dividual operation results. Whenever, the state condition switches to fail, the alread
cuted operations need to be unrolled before terminating the transaction.

The two examples illustrate the need for a higher-level mechanism to specify co
nents’ interactions that allows for interaction states and state-dependent actions. W
such a mechanism a component’s interaction protocol. These observations lay the f
tions that lead us from message-based frameworks to protocol-centered frame
which focus on protocols as the main components interaction mechanisms.

12.3.3 Component Interaction Protocols

Software component protocols share many similarities with computer communic
protocols. Both specify object interaction patterns. As such they fulfil two important f
tions. First, they provide a mechanism or a formalism to specify the rules of interactio
tween objects. Second, protocols define compatibility classes in the sense that entit
obey the same protocol display an interaction compatibility as illustrated in figure 1

12.3.3.1 Requirements for Interaction Protocols
Software component interaction protocols should support a number of important fea
First, they should be appropriate to specify various aspects of component intera
such as synchronization, negotiation and data exchange. Second, they should play 

A
B

C

E

G

F

D H

Figure 12.8 Protocols define compatibility classes inside which members are able to
interact. Protocol X allows interaction between objects A, B, C and D, while
protocol Y defines an interaction pattern between D, C, B and F. Object H
cannot interact with other objects since it does not adhere to any specified
protocol.

X

Y

Z



Requirements for a Financial Framework 337

of “contracts” or “interaction agreements” that represent the necessary and sufficient con-
mply
s.
ilater-

men-
, a proto-
n in an
ted to
 com-
 con-
 which

ents.
 to the
 and
l is to
ed by

 to ex-
 they do
 neces-

s the

le of
an play
ibility
 small.
li-

ed
 in the
mple,
 ob-
proto-
ditions for a software component to interact with other software components that co
with the same “agreement”. Helmet al. [12] focus on this important aspect of interaction
Third, the interaction specifications should be multilateral agreements rather than b
al interaction agreements between two software components.

Another desirable property of component interaction protocols is that their imple
tations reside as much as possible outside the components since as an agreement
col does not belong to any component. We may observe, looking at programs writte
object-oriented language, that a significant fraction of a component’s code is devo
the communication of the component with other software components. Most of the
munication functionality is inside the component. This has two main objectionable
sequences. First, components tend to become “hard-wired” to their environments,
has the undesirable side effect of reducing their reuse potential within other environm
Second, the intermix of code responsible for interaction with the code that is proper
component reduces readability and maintainability. Naturally, it might be impossible
perhaps undesirable to strip all the interaction code out of a component. The goa
leave inside the component only the sufficient interaction functionality that can be us
many different protocols. For example, we will keep inside the component methods
port values, methods to notify events, and methods to send generic messages since
not implement any interaction among specific components and represent the hooks
sary to build protocols.

12.3.3.2 Roles and Interplay Relations
We will be more precise now about what we mean by a protocol. A protocol specifie
interaction between software components. Aprotocol P = (R, I, F) consists of a set of
roles, R, aninterplay relation, I, and afinite state automaton, F.

 defines a set of roles:

Each component that is -compliant plays one or more roles. A typical examp
roles are the client and server roles in a client–server protocol, where components c
either the client’s role, the server’s role, or both depending on the specific respons
assigned to the components. In general, the number of roles defined by a protocol is

A protocol also defines aninterplay relation that specifies the interaction compatibi
ties allowed by protocol . The interplay relation is defined by a set:

Moreover, if , then . In words, it is always assum
for a one-role protocol that all the software components obeying  are compatible
sense that they are able to interact under . Referring to the previous exa

 specifies that the protocol allows for the interaction between
jects that play a server’s role and objects that play a client’s role. To specify that the 

P

R R1 R2 … Rr, , ,{ }=

P

P

I I 1 I 2 … I i, , ,{ } whereI k R Ik ∅ 1 k i≤ ≤,≠,⊆,=

R r{ }= I I 1{ } r r,{ }{ }= =
P

P
I server,client{ }{ }=
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interplay relation should be specified as:

Each object of the environment  eventually conforms to roles of one or many p
cols. Let  denote a function that returns the set of all roles component
forms to. A protocol  together with an element (i.e. a set of roles)

 of its interplay relation defines a domain of interaction compatibility
Domains of interaction compatibility play an important role in our framework since 
define which are the components that can potentially interact. The compatibility de
by a domain of interaction extends not only to the components that exist at the tim
protocol is defined and implemented, but also to all future components that obey the
protocol and are compatible through an interplay relation.

Finally, each protocol is associated with a finite state automaton that specifies va
quences of interactions between participants in the protocol. (See chapter 4 for a 
treatment of two-party protocols based on finite state processes.) In the following s
we will see examples of how the state of a protocol can be specified, and how it co
the interactions between components.

12.4 Gluons

Gluons encapsulate and implement interaction protocols by instantiating an interpl
lation for a given protocol. The principle idea underlying gluons is to standardize an
capsulate protocols, rather than just standardizing service names, since inter
protocols should represent one of the primary resources to be reused. Gluons su
protocol-centered reuse strategy. By embedding interaction protocols inside gluo
can use them as agents to implement many different interaction strategies.

Applications that we developed with the financial framework show that with this
proach we can achieve the following:

• A high degree of dynamic interconnection —The reuse of interaction protocols pro
vides significantly more flexibility to express interaction patterns than the reuse
naming convention. In particular, we typically need a small set of interaction p
cols to express interactions that would require a large quantity of standard s
names to achieve the same result. For example, all interactions between two so
components that involve a service request followed by an agreement on the
types to be exchanged, and ending with a notification of both components abo
result of the operation, can be expressed with just one protocol. Service name
ardization would require standard names for each possible service reques
would probably ask for additional code to build the sequence of messages nee
perform the interaction. This point will be better illustrated later with example
gluons from the financial framework.

I server client,{ } server server′,{ },{ }=

Oi
roles Oi( ) Oi

P I k xs … xt, ,{ }=
x R∈ D P Ik,( )=
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from the fact that the unique interoperability constraint is that the new compone
uses existing interaction protocols that can be instantiated through gluons.

12.4.1 Gluons and Software Design

We already mentioned that in a protocol-centered framework the primary reuse res
is the protocol. The adoption of a protocol-centered approach has a significant imp
software design. While methods such as CRC [5] promote an iterative design proc
that emphasizes identification of the responsibilities and collaboration for each co
nent, in a protocol-centered framework the design team attempts to identify the typi
teraction protocols for the specific environment prior to any other design decisions.
the choice of the basic interaction protocols has been made, we then proceed with th
tification of the components’ responsibilities and the collaborations needed to fulfil
responsibilities.

At first, we seem to be adding just another layer (i.e. the definition of the reusable
action protocols) to the design process. However, experience shows that, at leas
case of the financial framework, the addition of such a layer simplifies significantl
whole design process provided the reusable protocols are properly defined. Our fi
sign defined only eight protocols that allowed us to express most of the interaction
simple system. The reusable interaction protocols represent the “glue” that allow f
connection of software components.

12.4.2 Anatomy of a Gluon

In terms of its internal structure, a gluon is a software component that handles a finit
automaton with output to control the execution of a protocol’s interplay relation. It 
tains a start state and any number of intermediate states. A gluon can provide ma
states (i.e. accepting states in finite automation parlance) but for simplicity it is be
have a unique end state. Figure 12.9 shows the symbols that can appear in a gluon
state automaton. States and state transitions are the common constituents that
found in any finite state automaton [8]. A participant’s role stores a reference to a so
component that is compatible with the role defined by the interplay relation, while a
sage selector container stores an arbitrary message selector.

A state transition triggers the execution of an action which is composed of opera
A state transition is fired whenever the gluon receives a message.

There are three types of operations that compose an action: messages sends, object as-
signments andmessage selector assignments. A message send is what its name implie
the gluon sends a message to a software component requesting a service. Objec
ments allows a gluon to keep a reference to software components. Message sele
signments are similar to object assignment operations, the difference lies in the fa
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the gluon keeps a reference to a message selector instead of a reference to a softw
ponent. These are the only allowable operations in a gluon’s action. Furthermore, th
assignments allowed are those that involve either a participant’s role or a message s
container in the left side of the assignment.

Figure 12.10 shows the finite automaton embedded inside the simplest gluon pro
by the financial framework. The SimpleGluon contains two states,Start andEnd, and three
transitions. The diagram also shows a participant, theServer and a message selectorMess-

Sel that can store an arbitrary message selector. State transition triggers and the act
sociated with state transitions are shown in table 12.2.

The SimpleGluon handles an asymmetric interaction protocol between a server
client. The protocol handles message forwarding. The asymmetry stems from the fa
a gluon is associated with a unique server component while the client can be any c
nent that can send a message to the gluon. The association between the server
gluon is requested by the server component by sending messageregisterServer to the gluon
(refer to table 12.2). This message triggers state transition 0 which initiates the g
protocol. Any component can now send messages to the gluon and these message
warded to the server with transition 1. Finally, the gluon can be disconnected fro
server by sending it the messageexit. SimpleGluons are used in the financial framewo

Figure 12.9 Symbols for the gluon’s finite state automaton.

Server0Start MessSel

State State transition Participant role
Message selector

container

Figure 12.10 The SimpleGluon finite state automaton. SimpleGluons forward
messages to an attached software component called the Server.

End

Server

0

2

Start

1MessSel
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for two main purposes. The first purpose is to isolate services from service provide
assigning different components to the server’s role, the clients can be granted se
from different components. The SimpleGluon plays here the role of a proxy. The se
typical usage of SimpleGluons requires a slightly modified gluon with multicasting c
bilities. The modified version accepts the registration of multiple servers so that the
sages sent by the clients are forwarded to all the servers.

12.5 Gluons and the Financial Framework

Gluons are the architectural elements of the financial framework that are responsi
the way in which other components are composed. The financial framework offers
components as well. One such component, the RealTimeRecord acts as a conta
real-time information. This component plays a central role in the distribution of real-
information. The RealTimeRecord plays usually the role of a server to clients reque
date notifications. The structure of RealTimeRecords is illustrated in figure 12.11.
entry of the record is a pair(key, obj_ref), where the key allows for the lookup of an obje
by name.

Most of the components in an application act as data sinks, data sources or both
are connected through notifications chains so that updates are readily broadcast d
chain. Pure data sources are those components that are either connected to exte
source such as those provided by Reuters, or are associated to files providing stre
data. Components that act both as data sinks and data sources are data transforme
usually get information from data sources, transform it and redistribute it to client co
nents. Pure sink components usually correspond either to display components or t

Protocol transitions
Event / action

State Transition State

0 Start
Source: registerServer{server}

Server := server

Start 1 Start
<any_obj>: <message>

MessSel := <message>
<message> →Server

Start 2 End
<any_obj>: exit

gluonDisconnecting{self} → Server
Server := none

Table 12.2 Protocol transition table for the SimpleGluon.
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ponents that write to files. So an application can be seen as a set of components co
by a notification web.

The rest of this section illustrates the financial framework by providing two exam
of gluons that play an essential role in the framework: the dragging gluon and the rea
data notification gluon.

12.5.1 The Dragging Gluon

The dragging gluon implements the common dragging mechanism we are acqu
with from most windowing systems (see figure 12.12). A drag operation is an oper
initiated by a component, the dragging source, that attempts to find a partner comp
to cooperate with. The choice of the partner, the destination component, is perform
the user with the visual assistance of the windowing system. Both the dragging sour
the dragging destination need to be associated with a visual representation since d
is a visual operation. Figure 12.13 illustrates the finite state automaton associated w
dragging gluon, while table 12.3 shows the events that fire each state transition and
sociated actions.

To simplify the understanding of how the dragging gluon works it is useful to con
simultaneously figure 12.13, which shows the state transitions, and table 12.3, whi
hibits the events that trigger a state transition together with the actions executed dur
transition. The three boxes in the lower left corner of figure 12.13 represent the roles
components that participate in the dragging process.
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(price) 234.34
(volat) 24.34
(high) 235.20
(low) 230,30
(date) 12 jul
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(news) LRTS
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(yearlo) 200.1

(price) 234.34
(volat) 24.34
(high) 235.20
(low) 230,30
(date) 12 jul
(moves) 123
(news) LRTS
(yearhg) 235.7
(yearlo) 200.1

(SBC)
(UBS)
(CS1800)
(CS1900)
(CS2000)
(NESTL)

(SBC)
(UBS)
(CS1800)
(CS1900)
(CS2000)
(NESTL)

(SBC)
(UBS)
(CS1800)
(CS1900)
(CS2000)
(NESTL)

(ATL)
(SWI)
(FRF)
(CHF)
(DEM)
(LSTR)
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(ATL)
(SWI)
(FRF)
(CHF)
(DEM)
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Figure 12.11 Structure of the RealTimeRecord component. The data is contained in
dictionaries. Dictionary 1, for instance, contains references to all the
information updated in real time by a data source. The other dictionaries
contain either values (2) or references to other objects (3).
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The server is the component that initiates the interaction by sending the messagstart-

Dragging to the gluon with its object identifier as parameter (see table 12.3, transitio
Upon receipt of this message the gluon enters stateStart followed by the execution of an
action that makes the gluon send the messagestartDragging to the component that plays th
WindowManager role, and assigns object identifiers to the destination and the s
roles. The destination is assigned the void object identifier since at this stage the
that will play the destination role is not yet determined. The WindowManager respon
the first the message by sending back to the gluon thedragCandidateEntered message. The
reception of this message triggers state transition 1 on the gluon. Thecandidate object
identifier that is sent as parameter corresponds to the source component since at th
ning of the drag operation the mouse is over the visual representation of that comp
Consequently, the first component that is assigned the destination role is always th
component as the one that plays the source role. Later, the assignment will chang
user drags the mouse out of the source visual representation to enter another visua
sentation (i.e. icon) that is associated to a software component that accepts dragg
the process of finding the appropriate destination component, the user may mo
mouse in and out of visual representations that accept dragging. This process corre
to alternations between stateIN and stateOUT.

If the user releases the mouse button when the gluon is in stateOUT, then the dragging
operation stops with no side effects since the mouse has been released outside a vi
resentation that accepts dragging. Conversely, if the mouse is released when the g

Figure 12.12 User interfaces of some software components available. The gluons that
allow for the connection of the components are indicated by arrows. To
connect the components the user drags the circle from one gluon to another.

Gluons



344 Gluons and the Cooperation between Software Components

 source
ee, the
 be-
g oper-
efore

h-
. Like-

tion

tocol
efined.
 com-
ges the
e im-
ion,
e ex-
e type
in theIN state, the gluon undergoes state transition 2 which puts the gluon in statePRE.
This state corresponds to a pre-operation that is usually a negotiation between the
and destination components to agree on an operation to be performed. If both agr
gluon transits to stateOPER, which corresponds to execution of the agreed operation
tween the source and the destination. If no agreement is reached, then the draggin
ation will end through transition 5. State POST allows for post-operation cleanup b
the interaction ends.

We may notice that stateIN and stateOUT correspond to the visual process of establis
ing a relationship between two software components: the source and the destination
wise, statesPRE, OPER andPOST manage the negotiation and execution of an opera
between two components.

The dragging gluon illustrates the generality and usefulness of an interaction pro
specified as a finite state automaton. Such generic protocols are intended to be r
Typically, when the source component negotiates an operation with the destination
ponent, they agree on another gluon to which both are compatible. This gluon mana
execution of an operation, or in other terms it mediates the delivery of a service. In th
plementation of a visual workbench for the retrieval of real-time financial informat
called ReutersLab [25], which has been implemented with the financial framework w
tensively use the dragging protocol together with another protocol that negotiates th

OPER

POST

PREIN

OUT

0
End

Figure 12.13 Finite automata for the dragging protocol. The ellipses represent the states
while the the arrows represent state transitions. The three boxes at the lower left
corner represent the roles of the components that participate in the interaction.
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Protocol transitions
Event / action

State Transition State

0 Start

Source: startDragging{Source}

startDragging{source} → WindowManager
Source := source
Destination := none

Start 1 In
WindowManager: dragCandidateEntered{candidate}

Destination := candidate
dragEnter{Source} → Destination

In 2 Pre
WindowManager: endDragging

preOperation{Source} → Destination

Pre 3 Oper
Destination: ACK{destination} | Source: ACK{source}

operation{source} → Destination

Oper 4 Post
Destination: ACK{destination} | Source: ACK{source}

postOperation{Source} → Destination

Pre 5 End
Destination: NACK{destination}

slideDragViewBack → WindowManager

Oper 6 End
Destination: NACK{destination}

slideDragViewBack → WindowManager

Post 7 End
Destination: ACK{destination}

operationComplete{Destination} → Source

In 8 Out
WindowManager:dragCandidateExit{candidate}

dragExited → Destination
Destination := none

Out 9 In
WindowManager: dragCandidateEntered{candidate}

Destination := candidate
dragEnter{Source} → Destination

Out 10 End

WindowManager: endDragging

dragAborted → Source
slideDragViewBack → WindowManager
Source := none

Table 12.3 Dragging gluon protocol transition table.
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ponents agree on a data type, they interact under the control of another type of glu
establishes a real-time update notification between the components. The real-time
cation gluon is discussed next.

12.5.2 Real-time Data Notification Gluon

Since the financial framework is intended to support the access to information sourc
are updated in real time, the framework provides a gluon that supports notificatio
tween data sources and client components so that after data updates on the source
client can be updated to reflect the information change. In a typical situation the 
component registers with the source to request update notification. The request cr
link between the source and the client.

In order to provide for flexible notification, the framework allows for three types of
tification links — cold, warm and hot — which correspond to the three type of links 
vided by Microsoft DDE depicted in figure 12.3. The reason for providing three type
notification links stems from the fact that different components have different data u
requirements. For example, a client software component that handles a visual disp
real-time data usually needs to be updated as soon as the information changes
source side since the user is expecting the fastest update possible. These requirem
respond to a hot link between the client and the source. Other components expect 
notifications but they only need actually to update the values in a few cases. These
spond to the typical requirements for a warm link where the source is in charge of n
ing the client while the client is responsible for eventually issuing an update request
source. The least demanding kind of link is the cold link in which the client is respon
for requesting updates to the source at its own pace with no notification from the s
A typical usage of cold links is portfolio evaluations that require access to market
only when the portfolio is evaluated with no need for further updates.

Figure 12.14 represents the finite automaton embedded in a real-time data notifi
gluon. The protocol defines three roles: the source, the client and the data. The role
source and client components has been discussed above, while the component 
sumes the data role acts as an information container that is exchanged between the
and the client. The statesCOLD, HOT andWARM, correspond to three types of links ava
able. When the link is established between the source and the client, the gluon en
COLD state and waits for a message from the client requesting an update. Upon rec
of the client’s request the gluon enters stateCUP in which it waits until an update messag
issued by the source puts the gluon back in stateCOLD through transition 3. A gluon can
be requested to switch from one type of link to another provided it is in any one of the
states,COLD, HOT orWARM, so that the update mechanism can be changed at any po
time to adapt to evolving requirements on the client’s side. We may notice that stateWARM
has a self-looping state transition (i.e. number 11), which is fired when the source n
the client for an update, and two transitions (i.e. transitions 9 and 10) with an interme
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stateWUP which handles the update request from the client component. As expecte
actions associated with transitions 9 and 10 are similar to actions associated with
tions 2 and 3 since they perform the same task.

12.6 Conclusion

We have addressed in this chapter the problem of defining patterns of interaction a
software components. We adopt the point of view of component-oriented software d
and development which promotes an approach to software construction based on t
nection of software components.

We provide a survey of previous efforts that address similar problems. The focus
work from large software houses since they represent significant efforts to standard
promote approaches that may have a considerable impact, in the near future, on s
design and development. The survey suggest that the sizeable differences that ca
served between such approaches reflect differences in design goals and difference
requirements of the target environments.

Our development framework targets financial applications that retrieve real-time
and require support that allows for fast reconfiguration of the patterns of intera

Figure 12.14 Finite automata for a real-time data notification protocol.
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new software components. These requirements can be equated to support for dyna
terconnection of software components. Unfortunately none of the approaches su
achieves the desired level of dynamic interconnection capabilities.

We propose a new approach which focuses on the reuse of component interactio
tocols. We call a framework based on such principle a protocol-centered framework
experience with a financial framework shows that we can achieve a fairly high deg
dynamic interconnection with a small number of reusable protocols (typically less
twenty). However, the applications that we developed have a scope that is too nar
allow us to infer that the approach is of wide applicability.
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