
Mining Frequent Bug-Fix Code Changes
Haidar Osman, Mircea Lungu, Oscar Nierstrasz

Software Composition Group
University of Bern
Bern, Switzerland

{osman, lungu, oscar}@iam.unibe.ch

Abstract—Detecting bugs as early as possible plays an impor-
tant role in ensuring software quality before shipping. We argue
that mining previous bug fixes can produce good knowledge about
why bugs happen and how they are fixed.

In this paper, we mine the change history of 717 open source
projects to extract bug-fix patterns. We also manually inspect
many of the bugs we found to get insights into the contexts
and reasons behind those bugs. For instance, we found out that
missing null checks and missing initializations are very recurrent
and we believe that they can be automatically detected and fixed.

I. INTRODUCTION

Software evolution is inevitable. In this process, source
code changes many times in correspondence to changing
requirements, improvements, and bug fixes. Bug-fix changes
are important to study as a starting point to understand bugs,
predict them, and ultimately fix them automatically.

Bug prediction is a hot topic in research. Many approaches
try to predict bugs based on code metrics [1][2] (lines of
code, complexity, etc.), or on process metrics [3][4] (number
of changes, recent activities, etc.), or previous defects [5].
Those predictors do not point out the bugs themselves but
rather predict the possibility of having a bug in a certain file
or module.

Usually, the research on change patterns is handled first by
manual categorization of change patterns and then counting
automatically the instances of the identified patterns. We argue
that the process should be the other way around.

In this paper we automatically analyze the change history
of 717 open source projects, parse them to find the buggy
code and the fix code, and extract the change patterns that
correspond to bug fixes. After that we go deeper into the
rabbit hole by manually reviewing the most important and
recurring fix patterns to find out the reasons and contexts of
those patterns.

Our motivation for this work is that we have a tremendous
amount of data in the change history of numerous software
projects. This change history contains countless bug fixes of
all types and sizes. We believe that mining these bug fixes in
a systematic way can provide deep insights on how bugs are
created and fixed. We believe that about 40% of the bugs are
very frequent that we can locate and fix them automatically.

IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week

In summary, this paper makes the following three contribu-
tions:

1) We demonstrate a new approach to automatically extract
bug fix patterns.

2) We present some interesting statistical findings about the
bugs and fixes in general.

3) We explore and discuss the fourteen most recurring
patterns and their reasons and contexts.

In our study we learn that missing null checks are very
recurrent and they usually cause null-pointer exceptions that
lead to crashes. We also find out that there are some type
of objects that need special initialization or configuration
immediately after instantiation. Another interesting finding is
that bad naming of variables and methods can lead to serious
bugs.

II. PROCEDURE

The procedure we followed to get our bug and fix patterns
can be divided into three separate phases: building the software
corpora, analyzing the source code, and manual inspection.

Collecting Java Projects

The first phase is to gather the right software corpora. We
cloned 717 Java projects from GitHub with the aid of a tool
that queries GitHub for the biggest and most popular Java
projects and clones them locally.

Analyzing Source Code and Change History

In the second phase, we analyse the change history and
source code of the cloned projects. Figure 1 illustrates the
main steps we perform for every project in our corpus.

a) Find Bug-Fix Commits: We parse the change history
of the project and extract the revisions that correspond to bug
fixes1. In other words, every commit corresponds to a bug
fix if the commit message contains the keyword “fix” or its
derivations.

b) Extract Bug Fix: We extract two versions of each
changed method: the version before the fix (buggy method),
and the version after the fix (fixed method)2.

1We used the JGit library for parsing GIT history changes.
http://www.eclipse.org/jgit/

2We used the JAPA library for parsing Java code.
http://code.google.com/p/javaparser/

http://www.eclipse.org/jgit/
http://code.google.com/p/javaparser/

For every project

For every revision

For every method

Word
Anonymization

Number
Anonymization

Whitespace
Normalization

Extract
Method Body
from Revision

N

Extract
Method Body
from Revision

N+1

Diff The Two
TextsBug Hunk ---> Fix Hunk

Fix Pattern

data process

Fig. 1. The pipeline through which each project has to go through. The final
output of this analysis is the fix patterns and their concrete instances in the
software projects.

c) Compare: We compare the two version of the methods
and extract exactly the changed code. We call the minimal
code that had the bug a bug hunk, and we call the minimal
code that fixed the bug a fix hunk, as in Figure 2. Then
every bug hunk and fix hunk are concatenated with the string
“>>>> ” in between to form a code transition layout, e.g.,
callback.handle(row); >>>> callback.apply(row);

d) Normalize: We anonymize and normalize the patterns
by applying the following three steps:

• Each word (variable name, method name, etc.) is replaced
by the letter “T” (except for java keywords like return,
int, null, etc.).

• Each number is replaced by “0”.
• Each sequence of white spaces (spaces, tabs, newlines,

etc.) is replaced by one space.

In this way, we end up with anonymized patterns like:
T.T(T); >>>> T.T(T);

Manual Inspection

In the third phase and after gathering all the necessary infor-
mation, we grouped the code changes by the fix patterns. So
for each change pattern, we have the number of occurrences,

T.T(); >>>> T.T();

 ...

Type method1(….){
 ...

 ...
 ...
}

mImageViewer.close();

Revision N

Bug Hunk

 ...

Type method1(….){
 ...

 ...
 ...
}

mImageViewer.free();

Revision N+1

Fix Hunk

Edit Fix Pattern

 >>>> if(T==null) return;

 ...
 ...
}

Type method1(….){
 ...

Revision N

Bug Hunk

 ...

Type method1(….){
 ...

 ...
 ...
}

 if (item == null) return;

Revision N+1

Fix Hunk

Add Fix Pattern

T.T(); >>>> ;

Revision N Revision N+1

 ...

Type method1(….){
 ...

 ...
 ...
}

out.flush();
Bug Hunk

 ...
 ...
}

Type method1(….){
 ...

Fix Hunk

Remove Fix Pattern

Fig. 2. This diagram contains the three types of code changes corresponding
to bug fixes and how they are represented as patterns.

the number of projects where the pattern occurred, and the
concrete code snippets that represent the pattern.

Then we ordered the fix patterns based on their distributions
across the projects. In other words, the more the pattern
appears in different projects, the more significant it is.

Then we started inspecting the instances of each of the
most significant patterns by reading the actual buggy code,
how it was fixed, commit messages, and bug reports when
possible. For each of the patterns reported in this paper,
we manually inspected at least a hundred randomly-selected
commits thoroughly.

III. FINDINGS & RESULTS

Our analysis includes 717 Java software projects and
190,821 code changes corresponding to 94,534 bug-fix com-

mits in total. During our investigation on the bug fixes, we
found out that about 53% of the fixes involve only one line of
code, as in figure Figure 3, and most of bug fixes (73%) are
less than four lines of code.

0"

10000"

20000"

30000"

40000"

50000"

60000"

70000"

80000"

90000"

100000"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31" 33" 35" 37" 39" 41" 43" 45" 47" 49"

N
um

be
r'o

f'F
ix
es
'

LOC'

Fig. 3. The distribution of bug fixes according to the number of changed
lines of code.

Also we found out that about 40% of the bug-fixing code
changes are recurrent patterns that appear in more than 10
projects as demonstrated in Figure 4. This leads us to the
conclusion that the fixing of those patterns can be automated
and very useful for many projects.

39%	

61%	

Bug	 Fixes	

Pa)erns	

Non-‐Pa)erns	

Fig. 4. This piechart shows that 39% of the bug fixes are frequent patterns.
A bug-fix change is considered frequent if it appears in more than 10 projects.

Due to the large number and diversity of the analyzed
projects, the most recurrent patterns are high-level and have
nothing to do with the business logic of those projects. In
the following subsections, we categorize the most frequent
patterns according to the reasons behind them.

A. Missing Null Checks

The fixes for the bugs in this category are all addition
changes. They involve the addition of a null check on a certain

object (the checked object) like if (T==null) or if (T!=null).
Table I shows the fix patterns that fall in this category. This
type of bugs appears in 48% of the examined projects making
it a serious and very frequent problem.

TABLE I
THE BUG-FIX PATTERNS OF THE MISSING NULL CHECK. MORE THAN 48%

OF THE PROJECTS ARE INVOLVED

Instances Projects
−→ if(T != null) 3,718 316
−→ if(T == null) return; 1051 190
−→ if(T == null) return null; 243 80
−→ if(T == null) throw new T(); 207 75
−→ if(T == null) T=T; 157 67
−→ if(T == null) continue; 82 34

Total 5,172 348

In many of the cases, a blank return will follow the check.
In other words, if the checked object is null then the method
cannot continue its execution and should immediately return.
One example of this is:

if (viewActionsContainer == null) return;

The checked objects are either the results of method invo-
cations, parameters, or member variables.

In almost 70% of the cases the checked object comes from
a method invocation. Moreover, this kind of bug often appears
when chaining method calls as the examples in Figure 5 show.

((SimpleAdapter)getListAdapter())
.notifyDataSetChanged();

Bug
Hunk

SimpleAdapter adapter =
 (SimpleAdapter)getListAdapter();

if (adapter != null)
 adapter.notifyDataSetChanged();

Fix
Hunk

((View) getParent()).invalidate();
Bug
Hunk

View parent = (view) getParent();
if(parent!=null)
 parent.invalidate();

Fix
Hunk

Fig. 5. Null-pointer exceptions due to missing checks

B. Missing Invocation

The fix patterns for this category of bugs are also addition
changes. Table II shows the patterns in this category.

TABLE II
THE BUG-FIX PATTERNS OF THE MISSING INVOCATION.

Instances Projects
−→ T.T(); 995 188
−→ T.T(T); 747 165
−→ T(); 667 140

Total 2,409 288

There are many scenarios in which this kind of bug can
appear. The first is a missing initialization or configuration
of an object immediately after its creation. For example:

ConnectionPool config=new ConnectionPool()

should be immediately followed by:
config.initialize()

The second scenario is what we can call a missing refresh
where before doing something or after finishing something,
a certain object should be brought to a consistent state or
“refreshed”. These missing method invocations are either at
the very beginning or at the very end of a method body.
Method names that we often encountered from this category
are: refresh, reset, clear, pack, repaint, redraw, etc. In most of
the cases, the “refreshed” object is of some kind of a container
or an aggregator class like canvas, tree, view, etc..

The third scenario is when there is a missing release.
This type of invocation is always about freeing resources and
always comes at the end of the method body. Example methods
are: release, delete, dispose, close, etc.

C. Wrong Name

The fix patterns for this category of bugs are edit changes.
They are shown in Table III.

TABLE III
THE BUG-FIX PATTERNS OF THE NAMING PROBLEMS CATEGORY.

Instances Projects
return T; −→ return T; 305 110
T.T(T); −→ T.T(T); 329 78
T.T(); −→ T.T(); 90 35
Total 724 161

The bug lies in the object names, method names, or param-
eter names. The reasons behind this kind of bug are either
(1) using the wrong identifier due to name similarity or (2)
calling the wrong method based on mistaken name-driven
assumptions about its functionality.

Figure 6 shows two fixes were the bugs were due to
misunderstanding method names.

imageViewer.close(); −→
imageViewer.freeTextures();

key.rewind(); −→
key.flip();

Fig. 6. Sometimes developers invoke wrong methods due to misunderstand-
ing method names.

Figure 7 shows that the names can be very similar and the
programmer might mistakenly use one instead of another.

D. Undue Invocation

The fix patterns for this category of bugs are remove
changes. The only pattern we found is
{T(); −→ } which occurred 186 times in 70 projects.
This pattern is exactly the opposite of the missing invocation

dragView.setPaint(mPaint);−→
dragView.setPaint(mHoverPaint);

visitedURLs.clear(); −→
visitedURIs.clear();

return hasClassAnnotations; −→
return hasRuntimeAnnotations;

Fig. 7. In some cases developers confuse objects or parameters with similar
names.

pattern and corresponds to the same kind of methods like flush,
reindex, init, close, etc..

The methods in this category are resetters, initializers, or
resource releasers. So the bug comes either from premature
resource freeing or resetting, or unnecessary initialization.

IV. THREATS TO VALIDITY

A. Objects

When we selected the projects in our corpora, our search
criteria submitted to GitHub specified projects that were last
updated at least on 01.01.2013, had more than a five-star
rating, and were more than 100KB in size. Basically these
search criteria ensure that those projects are still maintained,
popular, and big enough to be a good representative sample
of the open source Java projects.

B. Methodology

In our parsing, anonymization, and normalization of the
bug-fix code changes, we might have missed some instances or
grouped some instances in the wrong categories. But due to our
large number of code change snippets (190821 code changes),
we argue that the exceptional cases will affect our statistics
and pattern significance computation within acceptable limits.
Also it should be noted that the whole process of automatic
pattern categorization serves only to guide our research and
investigation on software bugs and not to claim any significant
statistical results.

C. Subjects

The categorization and the reasoning about the bug fixes
were done by the first author through manual inspection. We
are aware that this might lead to some subjective bias. So
the second author verified and manually inspected 5% of
the bug fix samples chosen randomly. Both categorizations
were completely consistent. Nevertheless, we are not claiming
any statistical significance and again the whole study will be
evaluated against the real automatic fix approach to come.

V. RELATED WORK

There is extensive research in the field of change patterns
in general and fix categorization in specific. Pan et al. [6]
manually found some change patterns that correspond to fixes
and automatically extracted instances of those patterns from
seven open source projects. The patterns they extracted are of
a high-level abstraction like Addition of Precondition Check
or Different Method Call to a Class Instance.

Kim et al. created a tool named BugMem [7] that extracts
bug fix rules from the history of a project and applies bug
detection and fix suggestion based on that past. This approach
is smart and innovative but the rules are not “patterned” and
they are instead saved in a concrete form. This leads to the
saved fix rules being applicable only to code clones within
the same project. In this case, code clone tracking tools would
perform definitely better by following the changes of a clone
and applying it on all other clones.

Livshits and Zimmermann developed a tool called Dy-
naMine [8] that finds recurrent patterns of application-specific
method invocations. Based on the bias of those patterns,
DynaMine can suggest bug locations.

Martinez et al. [9] came up with a new approach for speci-
fying and finding change patterns based on AST differencing.
They evaluated their approach by counting 18 change patterns
from [6] on 6 open-source projects. The granularity of the
change patterns are exactly the same as in [6]. On the other
hand, Fluri et al. [10] used hierarchical clustering and tree
differencing to find change pattern but with a very coarse-
grained changes like development change and maintenance
change.

Our work is different from the aforementioned approaches
in three ways:

1) Our study included a large number of software projects
(717 projects) while all the previous approaches involved
7 projects at maximum. This leads to better and more
generalizable results.

2) The sequence of our study was to automatically extract
patterns first, and then to manually revise those patterns.
This human analysis phase was crucial to get insights into
the reasons behind the bugs.

3) Our change granularity is at the level of single lines of
code. So all changes are captured without any abstraction.
For example, in our approach, a method call with two
parameters is different from a method call with one
parameter. Whereas in the AST differencing, both are
considered as method calls.

VI. FUTURE WORK

Since there is a large number of diverse Java projects in
the studied corpora, the patterns we found are high-level

language-related patterns. But still we noticed that many of the
bugs actually come from wrong usage of external libraries or
frameworks, especially the bugs in missing invocation pattern.
In any case, we think that further analysis of library usages
should be undergone to reveal framework-related patterns.

Also we noticed a significant keyword similarity within
each of the aforementioned categories. We believe that text
analysis of the source code can reveal some more precise bug-
fix patterns.

We intend to use the collected knowledge to predict bug
exact locations in the source code and suggest the proper fixes
at compile time.

REFERENCES

[1] N. Nagappan and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” in Proceedings of the 27th international
conference on Software engineering, ICSE ’05, (New York, NY, USA),
pp. 580–586, ACM, 2005.

[2] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceedings of the 28th international conference
on Software engineering, ICSE ’06, (New York, NY, USA), pp. 452–
461, ACM, 2006.

[3] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering, ICSE ’09, (Washington, DC, USA), pp. 78–88, IEEE Computer
Society, 2009.

[4] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving defect predic-
tion using temporal features and non linear models,” in Ninth interna-
tional workshop on Principles of software evolution: in conjunction with
the 6th ESEC/FSE joint meeting, IWPSE ’07, (New York, NY, USA),
pp. 11–18, ACM, 2007.

[5] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller, “Predicting faults
from cached history,” in ICSE ’07: Proceedings of the 29th international
conference on Software Engineering, (Washington, DC, USA), pp. 489–
498, IEEE Computer Society, 2007.

[6] K. Pan, S. Kim, and E. J. Whitehead, Jr., “Toward an understanding of
bug fix patterns,” Empirical Softw. Engg., vol. 14, pp. 286–315, June
2009.

[7] S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories of bug fixes,”
in Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, SIGSOFT ’06/FSE-14, (New York,
NY, USA), pp. 35–45, ACM, 2006.

[8] B. Livshits and T. Zimmermann, “Dynamine: finding common error
patterns by mining software revision histories,” SIGSOFT Softw. Eng.
Notes, vol. 30, pp. 296–305, Sept. 2005.

[9] M. Martinez, L. Duchien, and M. Monperrus, “Automatically extracting
instances of code change patterns with ast analysis,” in Proceedings of
the 29th IEEE International Conference on Software Maintenance, 2013.
ERA Track.

[10] B. Fluri, E. Giger, and H. Gall, “Discovering patterns of change types,”
in Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM
International Conference on, pp. 463–466, 2008.

	Introduction
	Procedure
	Findings & Results
	Missing Null Checks
	Missing Invocation
	Wrong Name
	Undue Invocation

	Threats to Validity
	Objects
	Methodology
	Subjects

	Related Work
	Future Work
	References

