
On the Evolution of Exception Usage in Java Projects
Haidar Osman+, Andrei Chiş*, Jakob Schaerer+, Mohammad Ghafari+, and Oscar Nierstrasz+

+Software Composition Group, University of Bern, Switzerland
*Feenk GmbH, Switzerland

Abstract—Programming languages use exceptions to handle
abnormal situations during the execution of a program. While
programming languages often provide a set of standard excep-
tions, developers can further create custom exceptions to capture
relevant data about project- and domain-specific errors. We
hypothesize that, given their usefulness, custom exceptions are
used increasingly as software systems mature. To assess this
claim, we empirically analyze the evolution of exceptions and
exception-handling code within four, popular and long-lived Java
systems. We observe that indeed the amount of error-handling
code, together with the number of custom exceptions and their
usage in catch handlers and throw statements increase as projects
evolve. However, we find that the usage of standard exceptions
increases more than the usage of custom exceptions in both catch
handlers and throw statements. A preliminary manual analysis
of throw statements reveals that developers encode the domain
information into the standard Java exceptions as custom string
error messages instead of relying on custom exception classes.

I . I N T R O D U C T I O N

Exception handling is a mechanism that allows developers
to deal with abnormal execution flows of a program (e.g.,
due to network failures, corrupted data). Given the perva-
siveness of exceptions in today’s programming languages,
many studies have looked at how developers use exceptions in
practice [1][2][3][4][5] and revealed that there is still a wide
misuse of exceptions as an error-recovering mechanism. For
example, developers use many empty catch handlers [2], catch
and throw standard exceptions instead of specialized ones [2],
or just ignore exception handling until an error occurs [4].

Custom exceptions can provide better error-handling support;
they often provide domain specific information that eases the
error handling and recovery. Given that relying on custom
exceptions requires that developers hold enough knowledge
about the project and its domain, we hypothesize that at
the beginning of a project, developers do not have a deep
understanding of the project and its domain, so they rely on
standard exceptions. As the system evolves and developers
become more knowledgable about it, the usage of custom
exceptions increases.

To understand the various usages of exceptions in software
systems and assess our hypothesis, we carry out an empirical
investigation into the evolution of exceptions and exception-
handling code within four long-lived Java projects. The selected
projects are from different fields, have a wide user base, and
are at least 7 years old. We formulate the following research
questions and use them to guide our investigation:

2017 IEEE 24th International Conference on Software Analysis, Evolution,
and Reengineering (SANER)

RQ1. How does the amount of exception-handling code
change as software systems evolve?

To answer this question, we extract all catch handlers from
various versions of the analyzed systems. For each version,
we compute the total number of lines of code (LOC) of catch
handlers and compare its evolution with the overall LOC of
the project. As expected, the LOC for exception-handling code
increases along the evolution of a project, but the ratio of
exception-handling code shows only slight variations.

RQ2. How does the usage of exceptions change as software
systems evolve?

We mine multiple versions of each project and extract all
defined exceptions and throw statements. We classify the
exceptions into standard, custom, and third-party then analyze
how the usage of these three categories evolves in the code.
We observe that both the ratios of catch handlers and throw
statements remain constant during the evolution of the projects.

RQ3. How are customized exceptions used during the
evolution of software systems?

We realize that although developers define more custom
exceptions and use them in throw and catch statements, they
still rely more on standard exceptions with customized string
error messages. We believe a further study is required to
explore this phenomenon.

Our results reveal that exception usage patterns do not
change during the evolution of software projects. The ratios
of exception handling code and the usage of different types
of exceptions remain generally constant. Also, we observe
that developers do indeed encode domain-specific information
together with thrown exceptions, however they add custom
string messages to standard Java exceptions instead of relying
on dedicated exception classes. This analysis indicates that
developers could benefit from tool support, like dedicated
refactoring, to extract custom exceptions from multiple throw
statements throwing standard exceptions with similar or iden-
tical error messages. Mining exception usage is a known
topic and various studies investigate how exceptions are used,
particularly in Java. However, to the best of our knowledge,
this is the first study on how exception usage evolves in long-
lived systems. In the following sections, we explain our study
design, and thoroughly discuss our findings that shed the light
on further research in this domain.

I I . E M P I R I C A L S T U D Y

In this section we describe the design of our study and
discuss its main findings. We implement a tool that carries out

0

5000

10000

15000

2005 2010 2015

Time

LO
C

project
hadoop

lucene−solr

neo4j

tomcat

Exception Handling Code

0

250000

500000

750000

1000000

1250000

2005 2010 2015

Time

LO
C

The Size of the Analyzed Projects

0.010

0.015

0.020

2005 2010 2015

Time

 R
at

io

Ratio of Exception Handling LOC

0

100

200

2005 2010 2015

Time

N
um

be
r

of
 C

us
to

m
 E

xc
ep

tio
ns The Number of Custom Exceptions

Fig. 1. The evolution of the size of exception handling code relatively to the evolution of the code base of the four studied projects.

the cloning, analysis, and storage of the results. The tool is
publicly accessible.1

A. Subjects

Previous work shows that different categories of software
systems deal with exceptions differently [2]. Hence, for this
study, we select four open-source Java systems from four
different domains: Lucene-Solr2 (search engine), Tomcat3 (ap-
plication server), Neo4j4 (database system), and Hadoop5 (big
data infrastructure). Apache Solr is an open-source search
engine built on top of Lucene,6 the de facto library in Java for
text indexing and searching. The two systems were merged
into the Lucene-Solr project in 2010. Tomcat is an application
server that can host web applications and services. Neo4j is
a No-SQL graph database system. Hadoop is a framework
for the development of scalable distributed data processing
applications. Table I gives more details about these systems.

All chosen systems are mature, production-ready, and used
heavily in industry. With more than 7 years of development,
these long-living systems provide a good set-up for reasoning
about the evolution of exception usage.

B. Definitions and Computed Metrics

In this study, a Java standard exception is an exception that
is included in the Java standard libraries.7 A custom exception
is a Java exception, the source code of which is present in the
project’s repository. A third-party or a library exception is any
exception that is neither custom nor standard.

1https://github.com/haidaros/evolution-of-exceptions
2http://lucene.apache.org/solr
3http://tomcat.apache.org
4https://neo4j.com
5http://hadoop.apache.org
6http://lucene.apache.org/core
7https://docs.oracle.com/javase/8/docs/api/overview-tree.html

TABLE I
D E TA I L S A B O U T T H E A N A LY Z E D S Y S T E M S , A S T O T H E

S U B M I S S I O N D AT E (0 1 . 1 2 . 2 0 1 6)

System Latest
Release

#Months of
Development

Java LOC

Lucene-Solr 6.3.0 182 ≈ 920K

Tomcat 8.5.8 127 ≈ 300K

Neo4j 3.0 114 ≈ 600K

Hadoop 2.7.3 90 ≈ 1.2M

To perform our study we first take a snapshot of each
project’s repository at three-month intervals. Then, for each
snapshot, we extract the following metrics:

• The number of custom exceptions.
• The number and the ratio of catch handlers with a custom

exception as a parameter.
• The number and the ratio of catch handlers with a standard

Java exception as a parameter.
• The number and the ratio of catch handlers with a third-

party (library) exception as a parameter.
• The number and the ratio of throw statements with a

custom exception as a parameter.
• The number and the ratio of throw statements with a

standard Java exception as a parameter.
• The number and the ratio of throw statements with a third-

party (library) exception as a parameter.
• The number and the ratio of throw statements with a

standard Java exception initialized using a string value.
• LOCcatch: The LOC of all catch blocks.
• LOC: The size of the system in LOC.

C. Results

The systems in our study are long-lived projects with active
communities, as indicated by the evolution of LOC in Figure 1.
Except for Tomcat, all other systems grew rapidly in size. The

https://github.com/haidaros/evolution-of-exceptions
http://lucene.apache.org/solr
http://tomcat.apache.org
https://neo4j.com
http://hadoop.apache.org
http://lucene.apache.org/core
https://docs.oracle.com/javase/8/docs/api/overview-tree.html

amount of Java code in Solr, Hadoop, and Neo4j has more
than doubled in the past three years. Tomcat also grew in size,
but not as fast as the other systems.

To understand the evolution of error handling code (RQ1), we
study the evolution of LOCcatch relative to the overall size of
the studied systems (LOCcatch÷LOC) and in absolute values.
As can be seen in Figure 1, not only the amount of exception
handling code increases as the studied systems evolve, but
also the number of defined custom exceptions. However, the
exception handling code ratio remains generally constant in
Hadoop, Solr, and Tomcat and even decreases in Neo4j. The
ratio of exception handling code is between 0.02% and 2.5%.
This indicates that the overall code base grows at a similar or
faster pace than the exception handling code does.

To understand the evolution of exception usage (RQ2), we
study the evolution of catch handlers and throw statements. We
use, as a proxy for exception usage, the numbers and ratios
of catch handlers and throw statements with different types
of exceptions. We expect that as a system evolves, developers
depend more often on custom exceptions in catch handlers and
throw statements and less often on standard exceptions. Sur-
prisingly, Figure 2 shows that the ratios of thrown and caught
custom exceptions remain constant. Developers throw and
catch standard Java exceptions more than custom exceptions
throughout the evolution of the studied systems. Figure 2 also
shows that the number of catch blocks with java.lang.Exception
as a parameter, which is considered improper [1], does not
decrease.

Intuitively, as a project evolves, its developers become more
experienced with its behaviour. However, although the number
of defined custom exceptions and their occurrences in catch
handlers and throw statements increase, the usage pattern does
not change. Developers still use standard exceptions more often
even as they become, theoretically, more experienced.

This low usage of custom exceptions is interesting. We
investigate deeper into the used standard exceptions and notice
that most of the throw statements that have standard exceptions
as parameters, actually contain a String parameter, as shown
in Figure 2. A preliminary analysis of the last version of Solr
shows that out of 3’796 statements that throw exceptions with
String arguments, 429 appear identically in the code more than
once. Furthermore, 40 of these statements appear identically
more than five times. For instance, all the following throw
statements appear in the code base more than 10 times:

1- throw new RuntimeException("Unable to load default
stopword set");

2- throw new IOException("Fake IOException");
3- throw new IllegalArgumentException("this suggester

doesn’t support contexts");
4- throw new SQLException("Cannot be called from

PreparedStatement");

These thrown standard exceptions encode project-specific
errors in their String parameters. We also find some evidence
that developers actually use these error messages to guide the
error handling. For instance, the following code snippet from
Solr uses the string message “Fake IOException” (the second
example from the previous listing) to handle the error:

try {
iw.close();

} catch (Exception e) {
if (e.getMessage() != null && e.getMessage().
startsWith("Fake IOException")) {

exceptionStream.println("\nTEST: got expected
fake exc:" + e.getMessage());

e.printStackTrace(exceptionStream);
try {

iw.rollback();
} catch (Throwable t) {
}

} else {
Rethrow.rethrow(e);

}
}

These exceptions can be refactored into custom exceptions
to make the code more readable and maintainable. Thus, as an
answer to the question of how developers customize exceptions
(RQ3), developers not only define custom exceptions, but also
rely heavily on standard exceptions with customized error
messages.

To summarize, our results show that exception handling code
grows at the same pace as the code base itself. Exception usage
patterns do not appear to change during the lifetime of the
studied systems, despite the fact that more custom exceptions
are introduced as these systems evolve. Developers rely on
standard exceptions with error messages that embed project-
specific knowledge more than they rely on custom exceptions,
a phenomenon that is a subject for further investigation.

I I I . T H R E AT S T O VA L I D I T Y

We implemented our analysis in Java using JavaParser8 to
extract throw statements, catch handlers, and custom exception
classes. To mitigate bugs in this analysis we created a second
independent implementation using a different language and
parser (i.e., Pharo9 and SmaCC10). We iterated over these imple-
mentations until their results matched. These implementations
have different authors and use two mature parsers of different
types. This increases our confidence in the correctness of the
results. To compute LOC we used cloc.11 Furthermore, as
the analyzed projects are all open-source, we do not know if
the same characteristics would be observed on closed-source
projects.

For this analysis we only test our hypothesis on four
open-source Java systems. The choice of systems directly
influences the results. Selecting different types of systems can
lead to different results. For example, frameworks can define
more custom exceptions that become third-party exceptions in
applications using those frameworks. Hence, we cannot make
any claims regarding the generalizability of our findings. Due to
the limitations of static analysis, we were unable to determine
the exception being thrown for 46’619 throw statements out
of 452’723 in all projects in all revisions. On average, 10%
of the analyzed throw statements per project, and per revision
were not categorized. This error rate does not have a significant
influence on our results.

8https://github.com/javaparser/javaparser
9http://pharo.org
10http://www.smalltalkhub.com/#!/∼JohnBrant/SmaCC
11https://github.com/AlDanial/cloc

http://pharo.org
http://www.smalltalkhub.com/#!/~JohnBrant/SmaCC
https://github.com/AlDanial/cloc

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

hadoop
lucene−solr

neo4j
tom

cat

2005 2010 2015

Time

N
um

be
r o

f t
hr

ow
 b

lo
ck

s

0

2000

4000

6000

8000

0

2000

4000

6000

8000

0

2000

4000

6000

8000

0

2000

4000

6000

8000

hadoop
lucene−solr

neo4j
tom

cat

2005 2010 2015

Time

N
um

be
r o

f c
at

ch
 b

lo
ck

s

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

hadoop
lucene−solr

neo4j
tom

cat

2005 2010 2015

Time

R
at

io
 o

f t
hr

ow
 b

lo
ck

s

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

hadoop
lucene−solr

neo4j
tom

cat

2005 2010 2015

Time

R
at

io
 o

f c
at

ch
 b

lo
ck

s

Custom
Exceptions

Standard
Exceptions

Standard Exceptions with
String Parameters

Third-Party
Exceptions java.lang.Exception

Fig. 2. The evolution of the throw statements and catch handlers with different types of exceptions. We can see that the ratios of used exceptions remain
constant for all the different types. Clearly, standard exceptions are the most used throughout the evolution of the four projects.

I V. R E L AT E D W O R K

We discuss related work that has studied usage of exceptions.
Asaduzzaman et al. [1] analyzed exception usage in 274K

open source Java projects from GitHub. They found out that
developers define their own exceptions to be mostly checked, re-
vealing their intent to handle their exceptions and recover from
them. Another important finding is that improper exception
handling practices are as common with expert programmers as
with novice programmers. This means that exception handling
might be more dependent on the maturity of a project than on
the expertise of programmers. In this study we do not take into
account developer experience, however, we observe that the
use of custom exceptions does not increase as systems evolve.

Cabral and Marques [2] analyzed exception handling in 32
applications in Java and .Net. They concluded that “exceptions
are not correctly used as an error recovery mechanism”. They
found that only 5% of code in Java systems is dedicated to error
recovery. Developers mostly either just log exceptions or do
nothing (empty catch block). In our study, we observe that error
handling code is only between 0.02% and 2.5% of the Java
code. The difference between the two studies is due to the fact
that the two analyzed datasets contain different systems. Cabral
and Marques also revealed that catching java.lang.Exception
is common, although they considered it to be bad exception
usage. We observe that the ratio of catch blocks handling
java.lang.Exception has only minor variations.

Nakshatri et al. [3] compared exception usage in practice
with exception usage best practices. They concluded that most
developers do not follow the rules. Top-level exceptions (e.g.,
Exception, IOException) are caught more often than specific
ones. Exceptions are mostly left unattended or at best logged.

Shah et al. [4] revealed some possible reasons behind the
mismatch between theoretical and practical exception usage.
The participants in the study stated that they use exceptions
primarily for debugging and they adopt an ignore-for-now
strategy when handling exceptions. They ignore exception
handling until an error occurs. The participants think of
exception handling as a “waste of time” and they expressed
their appreciation for languages that do not force them to deal
with exceptions. However, one participant, who is significantly
more experienced, had a different attitude and expressed an
appreciation of checked exceptions in Java.

Sena et al. [5] employed exception flow analysis and manual
inspection to understand exception handling strategies in Java
libraries. As in previous studies, the authors also found many
anti-patterns. However, Sena et al. went further and discovered
that more than 20% of reported bugs in the 7 most popular Java
libraries are related to improper exception usage (e.g., as catch-
and-ignore or catch java.lang.Exception). To address this prob-
lem, many studies recommend exception handling code based
on mined knowledge from software repositories [6][7][8].

This work complements these studies with a new perspective
by looking at how exception usage evolves. To our knowledge
this is the first study analyzing the usage of different types of
exceptions in catch handlers and throw statements.

V. C O N C L U S I O N S A N D F U T U R E W O R K

The promise of exception handling is that, if correctly used, it
enables systems to gracefully recover from abnormal situations,
without having to pollute the main logic of a program with
checks for special error codes. Nonetheless, previous research
shows that developers do not take advantage of custom excep-
tions. To better understand how exception usage changes as
software systems evolve we analyze the evolution of exceptions
and exception-handling code within four, popular, and long-
lived Java systems. We observe that the ratios of custom
exception, catch blocks and throw statements remain constant
even when systems quadrupled in size. We further notice that,
throughout the evolution of a system, developers prefer to
encode error-relevant information through plain strings and
standard exceptions instead of creating custom ones.

This work provides only an initial insight into the evolution
of exceptions. A future work track consists in increasing the
number of analyzed projects and looking for different patterns
of exception evolution. Also we plan to investigate whether
enough domain specific knowledge is encoded in these custom
messages and why developers adopt such an ad-hoc way of
exception reporting rather than throwing custom exceptions.
Finally, another future work would be using these findings
to provide developers with better tooling for discovering and
transforming sets of throw statements of standard exceptions
with similar error messages into custom exceptions.

A C K N O W L E D G M E N T

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Analysis” (SNSF project No. 200020-162352, 01.01.2016
to 30.12.2018). We also acknowledge the financial support
of the Swiss Object-Oriented Systems and Environments
(CHOOSE)12 for the presentation of this research.

R E F E R E N C E S

[1] M. Asaduzzaman, M. Ahasanuzzaman, C. K. Roy, and K. A. Schneider,
“How developers use exception handling in Java?” in MSR ’16. New
York, NY, USA: ACM, 2016, pp. 516–519.

[2] B. Cabral and P. Marques, “Exception handling: A field study in Java
and .NET,” in Proceedings of European Conference on Object-Oriented
Programming, ser. LNCS, vol. 4609. Springer Verlag, 2007, pp. 151–175.

[3] S. Nakshatri, M. Hegde, and S. Thandra, “Analysis of exception handling
patterns in Java projects: An empirical study,” in MSR ’16. New York,
NY, USA: ACM, 2016, pp. 500–503.

[4] H. Shah, C. Görg, and M. J. Harrold, “Why do developers neglect exception
handling?” in Proceedings of the 4th international workshop on Exception
handling. ACM, 2008, pp. 62–68.

[5] D. Sena, R. Coelho, U. Kulesza, and R. Bonifácio, “Understanding the
exception handling strategies of Java libraries: An empirical study,” in
MSR ’16. New York, NY, USA: ACM, 2016, pp. 212–222.

[6] M. M. Rahman and C. K. Roy, “On the use of context in recommending
exception handling code examples.” in SCAM ’14, 2014, pp. 285–294.

[7] E. A. Barbosa, A. Garcia, and M. Mezini, “Heuristic strategies for
recommendation of exception handling code,” in Software Engineering
(SBES), 2012 26th Brazilian Symposium on. IEEE, 2012, pp. 171–180.

[8] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in Proceedings of the 31st International
Conference on Software Engineering. IEEE Computer Society, 2009, pp.
496–506.

12http://www.choose.s-i.ch

http://www.choose.s-i.ch

	Introduction
	Empirical Study
	Subjects
	Definitions and Computed Metrics
	Results

	Threats to Validity
	Related Work
	Conclusions and Future Work
	References

