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Abstract—Bug prediction has been a hot research topic for
the past two decades, during which different machine learning
models based on a variety of software metrics have been
proposed. Feature selection is a technique that removes noisy and
redundant features to improve the accuracy and generalizability
of a prediction model. Although feature selection is important, it
adds yet another step to the process of building a bug prediction
model and increases its complexity. Recent advances in machine
learning introduce embedded feature selection methods that allow
a prediction model to carry out feature selection automatically
as part of the training process. The effect of these methods on
bug prediction is unknown.

In this paper we study regularization as an embedded feature
selection method in bug prediction models. Specifically, we study
the impact of three regularization methods (Ridge, Lasso, and
ElasticNet) on linear and Poisson Regression as bug predictors
for five open source Java systems. Our results show that the
three regularization methods reduce the prediction error of the
regressors and improve their stability.

Index Terms—Bug Prediction; Feature Selection; Machine
Learning

I. INTRODUCTION

Building a bug predictor is the process of training a
machine learning model on software metrics to predict bugs in
software entities. In this context, software metrics are called
features, independent variables, or explanatory variables.

The quality of the trained model is directly dependent on
the quality of the features. Irrelevant and correlated features
degrade the performance of prediction models. The more
features are fed into a model, the more complex the model
is, and the less accurate the model becomes.

Feature selection is the process of selecting relevant features
for model training. Feature selection reduces model complex-
ity by eliminating noise and correlated features to reduce the
generalization error. There are three main types of feature
selection: filters, wrappers, and embedded methods.

Filters apply statistical measures to give scores to features
independently of the machine learning model. The features
are then ranked based on the score and a subset of the most
relevant features is selected based on a certain score threshold.
Example filters are Correlation-based Feature Selection (CFS),
Information Gain (InfoGain), and Principal Component Anal-
ysis (PCA).

The 1st international Workshop on Machine Learning Techniques for
Software Quality Evaluation (MaLTeSQuE 2017), Klagenfurt, Austria, co-
located with SANER 2017

Wrappers choose a feature subset that gives the best perfor-
mance of a certain machine learning model. They try different
subsets and choose the one that gives the best accuracy of the
machine learning model at hand.

Embedded methods learn which features contribute to the
prediction accuracy as part of the machine learning model
itself. The most common type of embedded methods are reg-
ularization or penalization methods. They introduce additional
terms to the optimization formula (training algorithm) of a
model to penalize complex models and reduce the dimension-
ality of the input. Example regularization methods are Lasso,
Ridge, and ElasticNet.

Each type of feature selection has its pros and cons. Filters
are usually fast but less accurate than wrappers because they do
not take the underlying machine learning model into account.
Applying wrappers, on the other hand, gives better results in
terms of accuracy but they are usually computationally inten-
sive. Both filters and wrappers are applied as a separate step
before actually training the model, while embedded methods
become part of the machine learning model itself making them
simpler to adopt. Although regularization methods are fast and
accurate, not all machine learning models have or can adopt
them.

Unfortunately, the importance of feature selection for build-
ing stable and performant prediction models is often over-
looked in the bug prediction literature. A recent literature
review in bug prediction reveals that 39 out of the 64
reviewed papers do not apply feature selection [1]. Also
there is a handful of studies dedicated to feature selection
(e.g., [2][3][4][5][6][7][8]) among the vast plethora of bug
prediction studies. Besides, these studies focus on filters and
wrappers, while the effect of embedded feature selection
remains unclear.

Performing feature selection in bug prediction is, although
important, yet another step in an already complex pipeline.
It requires many experiments in the trial-and-error style.
This is exactly what makes regularization methods appealing
and interesting. They become part of the machine learning
model itself and feature selection is performed during the
training phase automatically. In this paper, we study how
embedded feature selection by regularization affects bug pre-
diction accuracy. We compare linear and Poisson regressors
before and after applying three regularization methods (Lasso,
Ridge, and ElasticNet) on five open source Java systems. Our



results reveal that the three regularization methods perform
statistically similarly with a significant positive impact on the
accuracy of the prediction models. The prediction error of
linear and Poisson regressions are reduced by up to 16% and
50%, respectively. Based on these findings, we recommend
the adoption of regularization as an easy, fast, and effective
method to perform feature selection in bug prediction.

II. TECHNICAL BACKGROUND

Regularization, such as Ridge, Lasso, and ElasticNet, work
with any kind of regression in the same way. As an example,
we explain how they work with linear regression.

Suppose the data is in a p-dimensional space. Mathemati-
cally we can represent the linear relationship as:

y = β0 +BX (1)

β0 and B = [β1, β2, ..., βp] are known as model coefficients
or parameters. Training a linear regression model means
estimating the model parameters. These estimates are called
β̂0 and B̂.

For each input vector Xi from the training set, the response
estimation is:

ŷi = β̂0 + B̂Xi (2)

And the error is:

errori = yi − ŷi = yi − β̂0 − B̂Xi (3)

One of the most common methods to estimate model
parameters is the Least Squares method, which minimizes the
Residual Sum of Squares (RSS), which is defined as:

RSS =

n∑
i=1

error2i (4)

In other words, model parameters are calculated as:

{β̂0, B̂} = argmin(RSS) (5)

Regularization methods add other terms, called shrinkage
penalty, to the minimization Equation 5 to penalize high
coefficients as follows:

Lasso : {β̂0, B̂} = argmin(RSS + λ

p∑
j=1

|βj |) (6)

Ridge : {β̂0, B̂} = argmin(RSS + λ

p∑
j=1

β2
j ) (7)

ElasticNet : {β̂0, B̂} = argmin(RSS+

λ[(1− α)
p∑

j=1

|βj |+ α

p∑
j=1

β2
j ] : α ∈]0, 1[ (8)

Penalizing high coefficients leads to keeping only the ones
with relevant features and shrinking the rest towards zero. In
statistical terms, Lasso uses l1 penalty (

∑
|βj |)), Ridge uses

l2 penalty (
∑
β2
j ), and ElasticNet uses a combination of both

according to α ∈]0, 1[. These models have a tuning variable λ
that controls the impact of the shrinkage method on the model
parameter estimation.

TABLE I
THE BUG PREDICTION DATASET DETAILS, AS REPORTED BY D’AMBROS et

al. [9]

System Release #Classes % Buggy
Eclipse JDT Core 3.4 997 ≈ 20%

Eclipse PDE UI 3.4.1 1,497 ≈ 14%

Equinox 3.4 324 ≈ 40%

Mylyn 3.41 1,862 ≈ 13%

Lucene 2.4.0 691 ≈ 9%

TABLE II
THE CK METRICS SUITE [10] AND OTHER OBJECT-ORIENTED METRICS

INCLUDED AS THE SOURCE CODE METRICS IN THE BUG PREDICTION
DATASET [9]

Metric Name Description
CBO Coupling Between Objects
DIT Depth of Inheritance Tree
FanIn Number of classes that reference the class
FanOut Number of classes referenced by the class
LCOM Lack of Cohesion in Methods
NOC Number Of Children
NOA Number Of Attributes in the class
NOIA Number Of Inherited Attributes in the class
LOC Number of lines of code
NOM Number Of Methods
NOIM Number of Inherited Methods
NOPRA Number Of PRivate Atributes
NOPRM Number Of PRivate Methods
NOPA Number Of Public Atributes
NOPM Number Of Public Methods
RFC Response For Class
WMC Weighted Method Count

III. EMPIRICAL STUDY

A. The Dataset

We run the experiments on the “bug prediction dataset”1

provided by D’Ambros et al. [9] to serve as a benchmark for
bug prediction studies. It has been used by many bug predic-
tion studies [12][13][14][15]. This dataset contains software
metrics (source code and change metrics) on the class level for
five open-source Java systems: Eclipse JDT Core, Eclipse PDE
UI, Equinox Framework, Lucene, and Mylyn. A summary of
the studied systems is in Table I and more details can be found
in the original paper [9]. In our study, we use all the 17 source
code metrics (Table II) and the 15 change metrics (Table III) in
the dataset as features and the number of bugs as the response
variable for building the prediction models.

B. The Machine Learning Algorithms

We use linear and Poisson regression as the machine
learning models. Linear regression is a simple, effec-

1http://bug.inf.usi.ch/

http://bug.inf.usi.ch/


TABLE III
THE CHANGE METRICS PROPOSED BY MOSER et al. [11] INCLUDED IN

THE BUG PREDICTION DATASET [9]

Metric Name Description
REVISIONS Number of reversions
BUGFIXES Number of bug fixes
REFACTORINGS Number Of Refactorings
AUTHORS Number of distinct authors that checked a

file into the repository
LOC ADDED Sum over all revisions of the lines of code

added to a file
MAX LOC ADDED Maximum number of lines of code added for

all revisions
AVE LOC ADDED Average lines of code added per revision
LOC DELETED Sum over all revisions of the lines ofcode

deleted from a file
MAX LOC DELETED Maximum number of lines of code deleted

for all revisions
AVE LOC DELETED Average lines of code deleted per revision
CODECHURN Sum of (added lines of code - deleted lines

of code) over all revisions
MAX CODECHURN Maximum CODECHURN for all revisions
AVE CODECHURN Average CODECHURN for all revisions
AGE Age of a file in weeks (counting backwards

from a specific release)
WEIGHTED AGE Sum over age of a file in weeks times

number of lines added during that week nor-
malized by the total number of lines added
to that file

tive, and widely used regression model in bug prediction
[16][17][18][19][20][21][22]. Poisson Regression is also used
in bug prediction [23][24]. It is called a count model because
it predicts “counts”, as in our case where we want the model
to predict the number of bugs. For regularization, we use three
methods: Ridge, Lasso, and ElasticNet [25].

C. Model Selection

For each of the studied projects, we split the dataset into
two sets: training set (80%) and validation set (20%). The split
maintains a similar response variable distribution between the
training set and test set. We use the CARET package in R for
this purpose.2

The training set is used to estimate the model parame-
ters for the two regressors (linear and Poisson), besides the
shrinkage parameter λ for the three regularization methods
(Ridge, Lasso, ElasticNet) for each regressor. This estimation
is done via 10-fold cross-validation on the training set only.
For ElasticNet we set α to be fixed at 0.5 to give equal weights
to the l1 and l2 penalization terms. We use the R package
glmnet for model training.3 Then, the trained models are tested
on the validation set and the root mean squared error (RMSE)
is calculated.

2https://cran.r-project.org/web/packages/caret/index.html
3https://cran.r-project.org/web/packages/glmnet/index.html

This whole process of splitting, training, and testing is
repeated 30 times and the RMSE is averaged to avoid any
bias that might result from an unfortunate data splitting.

D. Statistical Comparisons

For each project, we compare the RMSEs of the linear
regressor without regularization, linear regression with Ridge,
linear regression with Lasso, and linear regression with Elas-
ticNet. Similarly, we compare RMSEs for the Poisson regres-
sion without regularization, Poisson regression with Ridge,
Poisson regression with Lasso, and Poisson regression with
ElasticNet.

The results are compared using the two-stage statistical test:
ANOVA (Analysis of Variance) and the post-hoc test Tukey’s
HSD (honest significance difference), both at 95% confidence
interval. ANOVA indicates whether there is a statistical differ-
ence among the populations. When the ANOVA test passes,
the Tukey’s HSD post-hoc test can be applied to give the
results of the pairwise comparisons among the populations.
If the ANOVA test does not pass, post-hoc analysis cannot be
run and all populations are considered to be equivalent.

E. Results

Figure 1 summarizes the results of our experiments as
boxplots. Red bold frames indicate statistically significant
results, where the RMSEs of Ridge, Lasso, and ElasticNet
are equivalent among each other and statistically lower than
the regression model with no regularization. In the rest of the
experiments, the RMSEs of Lasso, Ridge, ElasticNet, and no
regularization are statistically equivalent.

As expected, regularization methods improve the accuracy
of the underlying regression model. For linear regression,
regularization methods decrease the root mean squared error
(RMSE) for all projects, but with statistical significance only
in Eclipse JDT Core. For Poisson regression, regularization
methods significantly decrease the RMSE for all projects.
This means that regularization affects different regressors
differently, but always decreases model error. Also we notice
that the dispersion of the RMSE values is less in regularized
models, as indicated by the sizes of the boxes in Figure 1.
This means that applying regularization not only improves the
accuracy of the regressor, but also increases its stability.

Another observation is that the three feature selection al-
gorithms perform similarly. There is no perceptible difference
between the RMSEs of Ridge, Lasso, and ElasticNet, for both
linear and Poisson regression. This result is important because
it gives researchers and practitioners the freedom to select any
regularization method they want.

F. Threats to Validity

Threats to internal validity: The quality of our results is
directly dependent on the quality of the used dataset and the
implementation of the used R Packages. Any error in them
can introduce a systematic bias in the results.

Threats to external validity: The used dataset contains
source code and change metrics from five open-source Java

https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
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Fig. 1. Boxplots of all the experiments in our empirical study. The y-axis represents the root mean squared error (RMSE). For each project/model, we examine
four regularization configurations: None, Ridge, Lasso, and ElasticNet. We carried out the analysis of variance (ANOVA) at the 95% confidence interval for
each project/model to see if there is a difference between the four regularization configurations. Red bold frames indicate the statistically significant results,
where the regularization methods are equivalent among each other and significantly reduce the RMSE of the base model.



systems. Our results may not generalize to industrial systems
or systems written in other programming languages.

IV. RELATED WORK

The importance of feature selection is often undermined in
bug prediction studies. A recent systematic literature review in
the field of bug prediction reveals that 60% of the studies do
not apply feature selection at all. Among the studies that apply
feature selection, filters are the most used such as correlation-
based feature selection (CFS) [26][27][28][29][30][31][32],
principal component analysis (PCA) [33][34][35], consistency
based selection (CBS) [36], and InfoGain [37][38][39][40].
Wrapper feature selection methods are rarely applied [41][42]
and regularization methods are either never used or never
reported.

Few studies investigate feature selection in the field of
bug prediction. Wang et al. [6] report that feature selection
improves classification accuracy. Catal and Diri [7] explore
which machine learning algorithm performs best before and
after applying feature reduction. Shivaji et al. [2] report a
significant accuracy enhancement of Naı̈ve Bayes and Support
Vector Machines classifiers when feature selection is applied.
Challagulla et al. [3] report that correlation-based feature se-
lection (CFS) and consistency-based subset evaluation (CBS)
increase the prediction accuracy of the classifiers, while princi-
pal component analysis (PCA) before training the models does
not. Gao et al. [4] report that classification models are either
improved or remain unchanged while 85% of the original
features were eliminated.

All previous studies on feature selection treat bug prediction
as a classification problem, where the response variable is the
class of a software entity as buggy or clean. In this study we
consider bug prediction as a regression problem, where the
response variable is the number of bugs in a software entity.
Also, to the best of our knowledge, we are the first to study
the effect of applying regularization methods on the accuracy
bug prediction.

V. CONCLUSIONS AND FUTURE WORK

Feature selection is a necessary step when building a bug
prediction model. By reducing the number of features, it
reduces model complexity, eliminates feature multicollinearity,
and improves model understanding. Very little research has
been dedicated to this field in general and no study has
investigated regularization as an embedded feature selection
in bug prediction.

In this paper, we provide an empirical evidence on the
positive effect of feature selection by regularization on the
performance of bug predictors. We compare the mean squared
error of Poisson regression and linear regression before and
after applying three regularization methods: Ridge, Lasso,
and ElasticNet. We show that regularization improves the
performance of both regressions and reduces the root mean
squared error by up to 50%, while also increasing the stability
of the prediction. Based on these findings, we recommend the

adoption of regularization in regression models, when possible,
as a convenient and effective technique for feature selection.

In the future, we plan to investigate the impact of more
embedded methods on more machine learning models and
compare embedded feature selection with filter and wrapper
methods.
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