
Enabling the evolution of J2EE Applications through reverse engineering and
quality assurance

Fabrizio Perin

Software Composition Group
University of Bern, Switzerland
http://scg.unibe.ch

Abstract—Enterprise Applications are complex software sys-
tems that manipulate much persistent data and interact with
the user through a vast and complex user interface. In partic-
ular applications written for the Java 2 Platform, Enterprise
Edition (J2EE) are composed using various technologies such
as Enterprise Java Beans (EJB) or Java Server Pages (JSP) that
in turn rely on languages other than Java, such as XML or
SQL. In this heterogeneous context applying existing reverse
engineering and quality assurance techniques developed for
object-oriented systems is not enough. Because those techniques
have been created to measure quality or provide information
about one aspect of J2EE applications, they cannot properly
measure the quality of the entire system. We intend to devise
techniques and metrics to measure quality in J2EE applications
considering all their aspects and to aid their evolution. Using
software visualization we also intend to inspect to structure of
J2EE applications and all other aspects that can be investigate
through this technique. In order to do that we also need to
create a unified meta-model including all elements composing
a J2EE application.

Keywords-Reverse engineering; Java Enterprise; Software
Visualizations; Software Metrics.

I. INTRODUCTION

Since Java 2 Platform Enterprise Edition (J2EE) was
introduced in 1999 it has become one of the standard
technologies in enterprise application development. J2EE
applications are complex systems composed using various
technologies that in turn rely on languages other than Java,
such as XML or SQL. In this context where the information
is spread across source code, application deployment de-
scriptors, JSP and other locations, applying existing reverse
engineering and quality assurance techniques developed for
object-oriented systems is not enough. All of those tech-
niques are only able to look at the system from one angle
without a vision on the entire system. This project aims
to conduct a systematic study in reverse engineering and
quality assurance of J2EE applications. In particular, we
target the following questions:

1) How do we model J2EE to support analysis of the
different languages?

2) What defines internal quality in J2EE applications and
how do we measure it?

3) How do we visualize the diversity of languages to
support the understanding of J2EE applications?

In the following sections we discuss briefly these ques-
tions providing samples and proposing solutions.

II. J2EE META-MODEL

A prerequisite to analyzing a system is an explicit meta-
model to represent it. J2EE applications are composed of dif-
ferent technologies such as EJB or Java Server Pages (JSP).
Often J2EE applications interact with a database, which
means that they incorporate two different paradigms: the
object-oriented paradigm for development and the relational
paradigm in order to provide data persistence. Consequently,
a meta-model for object-oriented systems is not enough to
properly represent a J2EE application. We base our work
on FAMIX [1], a language independent meta-model for
representing and analyzing object-oriented software. The
new meta-model expresses and analyze several issues: de-
pendencies between Beans, dependencies between JSP and
Java source code, HTML anchors that point from one JSP
to another, database structure, dependencies between Java
source code and database structure. We added to FAMIX
a meta-model for EJBs and a meta-model for relational
databases proposed by Marinescu [2]. This new parts have
been linked to the already present classes and method entities
to represent the relation between the EA and EJBs and the
database.

In Figure 1 a simplified FAMIX meta-model is shown
where the new parts are highlighted in bold. The new
hierarchy that represents EJBs is in the top-left part of
Figure 1. A generic Java Bean is related to the class
that implements it. The deployment descriptor contains the
mapping between the Beans 2.1 and the classes in the source
code as well as other information. Starting from EJB version
3.0 [3], the deployment descriptor has been replaced by Java
annotations.

Another aspect that is important to consider is the relation
between the application and the database. Marinescu tackled
this problem by presenting a meta-model to represent a
relational database and how it can be relate and enriched
with a meta-model for enterprise applications [4], [5],

http://scg.unibe.ch


Inheritance

Class Attribute

Access

 

transaction
isQuery
kindOfQuery

Method

* *

subclass superclass

*

belongsTo

*belongsTo

*accessedIn
*

accesses

Invocation
*

candidate

*

invokedBy

JEEBean

Entity Message

 

isStateful
isStateless

Session

0..1 implementation

 
columns

Table 0..1

access

 
tables

DB

 

isPK
isFK
ownerTable

Column

1

1reference

Figure 1. Enriched FAMIX Meta-Model

[2]. Also Keller investigated the relations between object-
oriented software and relational databases providing some
patterns describing this family of problem [6]. The new
hierarchy representing a relational database is shown in the
bottom-left part of Figure 1. The entity table is linked to the
method that access it. Thanks to these modification we are
able to connect JEAs elements with the database accessed by
the application. For instance is possible to identify which
database tables are accessed by which EJBs, that are the
entry points for application’s services. It is also possibles get
useful information to identify all the components that related
each others in order to drive modifications of a service.

III. J2EE METRICS AND QUALITY

In order to assess the quality of J2EE applications we
intend to proceed in two way: defining metrics to measure
different aspects of this kind of applications and identifying
pattern for development.

J2EE applications are naturally subdivided into layers [7].
For example it is possible to calculate the number of classes
that are part of a layer. The service layer should contain
just classes used like entry points for services. If too many
classes are in the service layer, this could be symptom of a
bad design because it means that may the functionalities or
services are split in the wrong way.

Other metrics like the average NOM per class and the
average LOC per class [8] can be used to identify Session
Beans that implement logic that should be defined in classes
belonging to the business layer.

Another task that can be done using metrics is measuring
the coupling between layers and to identify the layer’s entry
points. Other examples are: the number of Java source code
lines in the JSP, the number of direct SQL queries both in
JSP and in Java source code, the number of Beans. Some
metrics that measure different aspects of the industrial case
study that we are are analyzing are shown as an example in
Table I.

Metric name Old version New version
NOC 1938 1527
NOCISB 45 38
A NOM per bean 14.29 13.15
A NOTM 0.928 0.849

Table I
SOME SIMPLE METRICS.

In Table I NOC is Number Of Classes, NOCISB is
Number Of Classes Implementing a Session Bean, A NOM
per bean is the Average Number Of Method per bean and
A NOTM is the average number of methods that is involved
in an application transaction.

The meta-model have to be populated with the informa-
tion contained from all possible sources like the deployment
descriptor. In this way it is possible to identify all methods
that are involved in an application transaction, used to define
atomic unit of work that can be rollbacked in case of
application failure. A metric like A NOTM can show wether
or not the application’s transaction scope properly cover the
operations performed by the application or not.

We intend to catalogue some classic metrics that can be
applied to different layers. Also we want create new metrics
to measure the coupling between application’s parts.

The definition of metrics to measure important aspects of
J2EE applications is a problem related with the data that we
can recover from them. We can collect low level information
from Java classes, JS Pages or the data base like directory
structure, data base schema or relation among JSP and Java
classes or JSP and database. Those information are useful to
understand the structure of the application. To define which
data is needed for a concept in a higher level of abstraction
we should define first which concept we intend to inspect.
For instance, application transactions is a feature of J2EE
application that implies the necessity to collect information
from the deployment descriptor or from Java annotations as
we said before.

There are several aspects to inspect, one of this could
be the security. How to define the security level in a J2EE
application could not easy, but it is possible to start for
instance checking if in the application the Security Java API
is used and in which way. Or may checking if there are some
kind of rules to access services in the front-end. Reasoning
from those elements may will be possible to define a security
level rank.

2



Figure 2. System split in layers.

There is a large body of development patterns and heuris-
tics gathered by the engineering community from experi-
ence. That has been the starting point to study and to detect
the existing patterns for enterprise applications [7] in general
and patterns for J2EE [9] in particular. The description of
design patterns provides information about the structure,
the participant’s roles, the interaction between participants
and, above all, the intent for which they should be used.
To identify a pattern means to identify a structure that
is extendable. This is a synonymous of a code easier to
maintain. Information related to the presence of a pattern
is useful to understand not only the code, but also to
realize the concepts behind its design. This has a significant
implication for further improvement or adaptive changes
and to identify classes that provide a particular service.
For example, identifying a Table Data Gateway pattern it
is easy to find all classes that invoke methods of the class
used like gateway. In case of a modification of the database
became easier to identify all classes that potentially should
be modified.

Patterns for enterprise applications are naturally divided
into layers [9]. To identify a pattern also means to identify
which classes are belong to a particular layer. This could
help to better understand the structure of the application.

IV. J2EE VISUALIZATIONS

Visualizations are useful reverse engineering tools that can
be used a first step in the process of designing automated
detections. Visualizations are needed to create a unique
overview on all parts composing a J2EE application. For
example we can show components split into layers and
the relationships between them, as well as components that
access the database. With such a view we can possibly detect
the dependencies that violate the layered architecture. In
Figure 2 we show a visualization that gives an overview
of the system split into layers [7]. The three layers shown
are: Service, Logic and Data layer. Each layer consists

of classes and their methods. Classes that contain colored
methods are Session beans that should be part of the Service
layer. In this case is immediately visible that four Session
Beans are in the wrong layer. This happens because those
beans access the database when they should not. In Figure 2
colored methods have a transaction attribute defined in the
deployment descriptor. Thanks to this external information
we can show all classes and their methods that are involved
in a transaction. This kind of visualizations can also help to
identify which classes are involved in the implementation of
a service aiding the maintenance of the system.

This visualization could also to take JSP into account and
their relation with the database. More specific visualizations
are needed to inspect all parts of J2EE applications. The
location in the file system of the various files is an important
piece of information as it reveals the view of developers
on the system. That is why we intend to construct a
visualization that relates the source code to the file system
to answer questions like: Which JSP files are grouped
together? Are configuration files placed together with the
source code they configure? One possibility is to use a
visualization similar to the Distribution Map [10] that shows
how different properties are spread over the software system.
A Distribution Map shows partitions of the system (e.g.
classes grouped in packages) and maps on the color the
properties. After the creation of useful metrics we intend
to create visualizations based on Polymetric Views [11].
The Polymetric View is a generic graph visualization that
shows nodes as rectangles, and maps up to five metrics
mapped on the dimensions (i.e. width and height), color
and position of the rectangles (i.e. x and y). Considering the
heterogeneous nature of J2EE applications, Polimetric Views
could be a powerful instruments in the quality assessment
process. Polymetric Views have been already used in several
areas: showing the hierarchies of the system with System
Complexity View [12], showing class internals with Class
Blueprint [13] and others [14], [15]. All these applications

3



have to be taken into account and also we intend to create
other visualizations based on Polymetric Views specific for
J2EE applications.

V. SIGNIFICANCE OF THE RESEARCH

We want to refine FAMIX by adding all parts and relations
that are necessary to model a JEA. Having a consistent meta-
model is possible to define on it a quality model based on
metrics and pattern detection. We will proceed creating a
catalogue of classic metrics that can be used in the context of
J2EE and creating new metrics to measure different aspects
of JEAs.

It is important take into account the relations among all
parts of a J2EE application as well as its single components.
Pattern identification will be a key point to analyze the
structure of JEAs and to assess its quality. We also need
many different visualizations builded using existing tech-
niques and exploring new way to visualize J2EE applications
structure and all helpful aspect that can aid the system
maintenance. The final objective is to create a suite of
techniques, metrics and visualizations to automatically, or
semi-automatically, assess the quality of J2EE applications
and enterprise applications in general and aid their evolution.

In order to validate the work we intend to be aided by
the company that provide us case studies. We will perform
human subject testing with expert of the specific case study
and software engineer in general. Presenting them our results
periodically to check if their are useful. We can collect their
comments on visualizations or on metrics due to modify
what we have done and to focus our work on new aspects
of enterprise applications.

Acknowledgments We gratefully acknowledge the financial
support of the Hasler Foundation for the project “Enabling
the evolution of J2EE applications through reverse engineer-
ing and quality assurance” (Project no. 2234, Oct. 2007 –
Sept. 2010). We would also want to thank Tudor Gı̂rba,
Oscar Nierstrasz, Jorge Ressia and Toon Verwaest for their
comments on this paper and their support on this project.

REFERENCES

[1] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz,
“A meta-model for language-independent refactoring,” in
Proceedings of International Symposium on Principles of
Software Evolution (ISPSE ’00). IEEE Computer Society
Press, 2000, pp. 157–167. [Online]. Available: http://scg.
unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf

[2] C. Marinescu and I. Jurca, “A meta-model for enterprise
applications,” in SYNASC ’06: Proceedings of the Eighth In-
ternational Symposium on Symbolic and Numeric Algorithms
for Scientific Computing. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 187–194.

[3] M. K. Linda DeMichiel, “JSR 220: Enterprise JavaBeans
specification, version 3.0,” Sun Microsystems, May 2006.

[4] M. C., “Identification of Relational Discrepancies between
Database Schemas and Source-Code in Enterprise Applica-
tions,” in Symbolic and Numeric Algorithms for Scientific
Computing, 2007. SYNASC. International Symposium on, Sep.
2007, pp. 93–100.

[5] C. Marinescu, “Identification of design roles for the assess-
ment of design quality in enterprise applications,” in Proceed-
ings of International Conference on Program Comprehension
(ICPC 2006). Los Alamitos CA: IEEE Computer Society
Press, 2006, pp. 169–180.

[6] W. Keller, “Mapping objects to tables - a pattern language,”
in Proc. Of European Conference on Pattern Languages of
Programming Conference EuroPLOP ’97, 1997.

[7] M. Fowler, Patterns of Enterprise Application Architecture.
Addison Wesley, 2005.

[8] M. Lanza and R. Marinescu, Object-Oriented Metrics
in Practice. Springer-Verlag, 2006. [Online]. Available:
http://www.springer.com/alert/urltracking.do?id=5907042

[9] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best
Practices and Design Strategies. Pearson Education, 2001.

[10] S. Ducasse, T. Gı̂rba, and A. Kuhn, “Distribution
map,” in Proceedings of 22nd IEEE International
Conference on Software Maintenance (ICSM ’06). Los
Alamitos CA: IEEE Computer Society, 2006, pp. 203–
212. [Online]. Available: http://scg.unibe.ch/archive/papers/
Duca06cDistributionMap.pdf

[11] M. Lanza and S. Ducasse, “Polymetric views—a lightweight
visual approach to reverse engineering,” Transactions on
Software Engineering (TSE), vol. 29, no. 9, pp. 782–795,
Sep. 2003. [Online]. Available: http://scg.unibe.ch/archive/
papers/Lanz03dTSEPolymetric.pdf

[12] M. Lanza, “Object-oriented reverse engineering —
coarse-grained, fine-grained, and evolutionary software
visualization,” Ph.D. dissertation, University of Bern, May
2003. [Online]. Available: http://scg.unibe.ch/archive/phd/
lanza-phd.pdf

[13] S. Ducasse and M. Lanza, “The class blueprint: Visually
supporting the understanding of classes,” Transactions on
Software Engineering (TSE), vol. 31, no. 1, pp. 75–90, Jan.
2005. [Online]. Available: http://scg.unibe.ch/archive/papers/
Duca05bTSEClassBlueprint.pdf

[14] M. Lanza and S. Ducasse, “Understanding software evolution
using a combination of software visualization and software
metrics,” in Proceedings of Langages et Modèles à
Objets (LMO’02). Paris: Lavoisier, 2002, pp. 135–
149. [Online]. Available: http://scg.unibe.ch/archive/papers/
Lanz02aEvolutionMatrix.pdf

[15] T. Gı̂rba, M. Lanza, and S. Ducasse, “Characterizing
the evolution of class hierarchies,” in Proceedings of
9th European Conference on Software Maintenance and
Reengineering (CSMR’05). Los Alamitos CA: IEEE
Computer Society, 2005, pp. 2–11. [Online]. Available: http://
scg.unibe.ch/archive/papers/Girb05aHierarchiesEvolution.pdf

4

http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf
http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf
http://www.springer.com/alert/urltracking.do?id=5907042
http://scg.unibe.ch/archive/papers/Duca06cDistributionMap.pdf
http://scg.unibe.ch/archive/papers/Duca06cDistributionMap.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/phd/lanza-phd.pdf
http://scg.unibe.ch/archive/phd/lanza-phd.pdf
http://scg.unibe.ch/archive/papers/Duca05bTSEClassBlueprint.pdf
http://scg.unibe.ch/archive/papers/Duca05bTSEClassBlueprint.pdf
http://scg.unibe.ch/archive/papers/Lanz02aEvolutionMatrix.pdf
http://scg.unibe.ch/archive/papers/Lanz02aEvolutionMatrix.pdf
http://scg.unibe.ch/archive/papers/Girb05aHierarchiesEvolution.pdf
http://scg.unibe.ch/archive/papers/Girb05aHierarchiesEvolution.pdf

	Introduction
	J2EE Meta-Model
	J2EE Metrics and quality
	J2EE Visualizations
	Significance of the research
	References

