
Recovery and Analysis of Transaction Scope from
Scattered Information in Java Enterprise

Applications
Fabrizio Perin, Tudor Gı̂rba, Oscar Nierstrasz

Software Composition Group
University of Bern, Switzerland
http://scg.unibe.ch

Abstract—Java Enterprise Applications (JEAs) are large sys-
tems that integrate multiple technologies and programming
languages. Transactions in JEAs simplify the development of code
that deals with failure recovery and multi-user coordination by
guaranteeing atomicity of sets of operations. The heterogeneous
nature of JEAs, however, can obfuscate conceptual errors in the
application code, and in particular can hide incorrect declara-
tions of transaction scope. In this paper we present a technique
to expose and analyze the application transaction scope in JEAs
by merging and analyzing information from multiple sources. We
also present several novel visualizations that aid in the analysis of
transaction scope by highlighting anomalies in the specification of
transactions and violations of architectural constraints. We have
validated our approach on two versions of a large commercial
case study.

Keywords: Reverse engineering, Java, Enterprise Application,
Transactions, Visualization.

I. INTRODUCTION

An increasing number of companies use complex Java En-
terprise Applications (JEAs) to solve their business problems.
JEAs are complex because they are composed of multiple
parts written in different languages and they are distributed. In
this context information concerning the application’s elements
and their relations is spread over various sources. This causes
the developers to lose the overview of the system and hides
inconsistencies in the code. Information can potentially reside
in XML configuration files (to define Enterprise Java Beans
(EJBs) in the version 2.1 [1] or used by the build system),
source code (e.g., Java code or JS Pages), SQL scripts, and so
on. The heterogenous nature of JEAs can make it difficult
to analyze and verify desirable properties and architectural
constraints.

In this paper we tackle the problem of identifying the trans-
action scope of applications. Application transactions have
been defined in JEA to guarantee atomicity of operations and
to provide a certain level of isolation of services accessed by
different clients. Transactions aid the application programmer
to provide the desired level or reliability and consistency. On
the one hand it is important to ensure that critical services
are properly contained within a transaction scope, while on
the other hand starting unnecessary transactions should be
avoided for performance reasons. We define a transaction as

unnecessary if its scope is nested within another transaction
scope. In this paper we consequently focus our attention on
three specific questions:

1) Which methods are involved in a transaction scope and
how are they dispersed?

2) Which methods start unnecessary transactions?

3) Which methods access the database from outside a
transaction?

In Java 2 Enterprise Edition (J2EE), a method can be defined
as part of a transaction by setting certain attributes in the EJB
deployment descriptor of the application. The EJB container
takes these attributes into account to manage application’s
transactions. J2EE specifications defines various transaction
propagation semantics. The most common attribute is required
which creates a new transaction if none is active, or reuse the
existing one. A method without an explicit transaction attribute
can still be part of a transaction if it is has been invoked by
another transactional method.

The advantage of this declarative definition is that it is
not necessary to touch the Java source code to manipulate
them. Nevertheless, the decoupling between the actual method
and its transaction attribute makes it difficult to identify the
transaction scope the method lies in. Developers cannot easily
verify if a method is transactional or not. Furthermore, a
transaction can either be started manually using the Java Trans-
action API or it can be started automatically in applications
by Container-Managed Transactions. As a consequence, the
usage of transactions is not uniform, further complicating their
understanding.

In this paper we present a technique to identify methods and
classes involved in transactions, we present an initial meta-
model for JEAs that enables their analysis, and we propose
three visualizations to highlight anomalies in the definition of
transaction scope. We applied our approach to two different
versions of an industrial case study consisting of over 1500
Java classes. The technique to identify the transaction scope
has been validated by manual inspection mainly using Eclipse.
The manual inspection confirmed a high level of precision
in the identification of all EJBs and other elements shown
in the visualizations. These results have been presented to

http://scg.unibe.ch

the company that provided us with the case study, and their
feedback has been highly positive.

The paper is structured as follows: section II presents the
meta-model that we use to analyze JEAs and the technique
we propose to identify transaction scope and other related
details. In section III we present the visualizations that expose
anomalies in the definition of transaction scope. In section IV
we highlight the differences between the two versions of the
case study analyzed. In section V we relate our approach to
previous work. Finally in section VI we summarize our results,
we describe the future work and we conclude.

II. MODEL AND TECHNIQUE

In this section we present our meta-model for JEAs which
enhances the core of the FAMIX meta-model [2]. We also
define key terminology and we explain how we identify the
scope of transactions.

A. Modeling Java Enterprise Applications

FAMIX [2] is a language independent meta-model that de-
scribes the static structure of object-oriented software systems.
FAMIX forms the core of the Moose [3] platform for software
analysis. We therefore decided to extend the FAMIX meta-
model to accommodate the heterogeneous nature of JEAs.
More specifically, we added entities to describe EJBs and we
extended certain entities already present. A simplified FAMIX
3.0 with our extensions is shown in Figure 1 (our extensions
are shown in bold).

Inheritance

Class Attribute

Access

transaction
isQuery
kindOfQuery

Method

* *

subclass superclass

*

belongsTo

*belongsTo

*accessedIn
*

accesses

Invocation
*

candidate

*

invokedBy

JEEBean

Entity MessagekindOfState
Session

0..1 implementation

isStateful
isStateless

Fig. 1. Enriched FAMIX Meta-Model (extensions are shown in bold)

The new hierarchy on the left represents EJBs. A generic
JEE Bean is related to the class that implements it. Session
specializes JEE Bean by adding an attribute to record if the
Session Bean is stateful or not. Session Beans are used as an
entry point to an application’s services and to manage database
accesses. Each method in a JEE Bean can be defined as being
part of a transaction. We therefore extend the Method entity
with a transaction attribute. Depending on the value of this
attribute, the EJB Container [4] will automatically manage
transactions. For this reason it is important to specify correctly
EJBs and their properties. The transaction attribute is defined

only at the method level. It is also possible to specify that all
the methods of a bean have the same attribute.

A method may also perform a query using the java.sql pack-
age. A method can perform a select on the database using the
method executeQuery and it can modify the database using the
method executeUpdate. The attribute isQuery records whether
the method queries the database. The method kindOfQuery
returns which kind of query it performs. In this work we do
not consider tools to manage persistency such as Hibernate
but we focus instead on direct queries.

To build an actual model, we use inFusion (a newer version
of iPlasma [5]) to parse Java files, and then we separately
parse the XML deployment descriptors to associate methods
with the corresponding transaction attributes.

B. Identifying Transaction Methods

Having a suitable meta-model we can tackle the problem
of identifying transaction scope. We adopt two procedures to
answer respectively the initial questions: (1) Which methods
are involved in a transaction scope and how are they dispersed?
(2) Which methods start unnecessary transactions? (3) Which
methods access the database from outside a transaction?

Application transactions in Java guarantee isolation among
services and group multiple operations in a unique unit of
work. It is not trivial to identify methods involved in a trans-
action because this is a property with both dynamic and static
aspects. A method may be transactional either because it is
specified in the deployment descriptor or because it overrides
or is invoked by a method that is part of a transaction. We
consider the following methods to be part of a transaction[4]:

1) Methods that start a transaction (i.e., their transaction
attribute is ‘Required’ or ‘RequiresNew’).

2) Methods that override methods that start a transaction.

3) Methods with a transaction attribute ‘Mandatory’, ‘Re-
quired’ or ‘Supports’ that are invoked by methods al-
ready being part of a transaction.

4) Methods without a transaction attribute that are invoked
by methods already part of a transaction.

To expose the transaction scope of methods we proceed in
the following way: We define a set of all methods that have a
transaction attribute defined. So the initial set includes methods
that start a transaction, those that override a method that starts
a transaction, and methods that support transactions (a method
supports a transaction if its transaction attribute is not defined
or it is different from ‘never’ and ‘notSupport’ [4]). Then we
traverse breadth-first the invocation tree of methods invoked
by this set. Using this technique we are able to identify all
methods that belong to a transaction scope. Before explaining
how we identify the invocation paths that are encapsulated in
a transaction scope we need some definitions:

• An entry point method is a method that is not invoked
by other methods.

• A safe path is an invocation chain that starts from an
entry point method involved in a transaction.

• An unsafe path is an invocation chain that starts from
an entry point that does not start a transaction.

The following formula describes how we identify an unsafe
path:

α(Q) ∩ ω(α(Q) ∩ E) (1)

where:

M = all methods (2)
I ⊆ M ×M are invocations (3)
E ⊆ M are entry points (4)
T ⊆ M start a transaction (5)
Q ⊆ M perform a query (6)

ω(x) = {y|(x, y) ∈ I∗} (7)
α(y) = {x|(x, y) ∈ I∗ and x /∈ T} (8)

M is the set containing all methods of the system. I
represents the invocation relation between methods. E, T and
Q are respectively the subset of methods that are entry points,
the subset of methods that start a transaction and the subset
of methods that perform a query. I∗ is the transitive closure.
Finally, α(y) returns all methods x preceding y in some
invocation chain, and ω(x) returns all methods y following
x in some invocation chain.

Figure 2 illustrates the steps of an algorithm to compute
Formula 1 and compute unsafe paths. Step 1 consists in the
evaluation of α(Q). In accordance with its definition, the result
of α(Q) is the set of methods that are part of the invocation
chain ending with a method that executes a query and starting
with a method that does not start a transaction. Moreover, none
of the methods returned by this function start a transaction.
Step 2 is to apply ω to the intersection α(Q)∩E. The result of
ω(α(Q)∩E) is the subset of methods contained in α(Q)∩E
that are part of the invocation chain starting from an entry
point that does not start a transaction. Step 3 consists in the
evaluation of the intersection of α(Q) and ω(α(Q) ∩ E) in
order to clean up the set from methods not strictly related
with the unsafe path.

The result is a set containing the methods of all unsafe paths,
namely invocation paths starting from an entry point that do
not start a transaction and ending with a method accessing
the database. In the diagram, the black path is unsafe since it
ultimately performs a query without ever starting a transaction.

III. VISUALIZATIONS

To inspect a JEA from the point of view of application
transactions, we devise three interactive visualizations:

• Transaction flow provides an overview of the methods
involved in transactions (Figure 3),

• Server Layers offers an overview of the typical layers
in a JEA and helps to identify the misplaced transaction
specifications (Figure 4), and

• Unsafe queries reveals the methods that query the
database without being covered by a transaction (Fig-
ure 5).

QEP T

EP

QEP T

EP

QEP T

EP

STEP 1

STEP 2

STEP 3

Fig. 2. Unsafe path identification

These visualizations have been developed using the Mon-
drian visualization engine [6].

In this section we explain in detail each of the three
visualizations. We furthermore evaluate the effectiveness of
each visualization to analyze an industrial content management
system (CMS) to manage customer data. We have analyzed
two versions of the same case study released a year apart.
The older version is composed of 1938 classes and 55 EJBs,
while the newer version is composed of 1527 classes and 43
EJBs. Figures 3, 4 and 5 show elements of the newer version
of the case study.

A. Transaction flow

Figure 3 shows all classes and their methods involved in
a transaction according to the criteria explained in subsec-
tion II-B. Classes and methods are presented as hierarchies that
express invocation order. This means that methods of classes
on top invoke methods of classes below them. Invocations
among classes are represented by gray edges. Internal invoca-
tions among methods of the same class instead are organized
as a hierarchy going from left to right. The colors of the
elements in Figure 3 have the following meaning:

1) Blue methods start a transaction. (1) and (7) in Figure 3.

2) Cyan methods have a transaction attribute equal to
‘Mandatory’, ‘Required’ or ‘Supports’ and are invoked
by methods involved in a transaction. (2) in Figure 3.

3) Magenta methods have a transaction attribute equal to
‘RequiresNew’ and are invoked by methods that start a
transaction. (5) in Figure 3.

4) Grey methods have no transaction attribute and are
invoked by methods already part of a transaction. (3)
and (4) in Figure 3.

5) Orange methods are entry point methods that have a
transaction attribute equal to ‘Supports’. (6) in Figure 3.

Start a Transactions (1)

Support Transactions (6)Inherit Transactions (2)
No attributes defined (3)
Data base accessor (4)

Data base accessor
starting a transaction (7)

Blue Square
Orange Square
Red Square
Cyan Square
Gray Square
Gray Dot

Start an unnecessary
Transactions (5)

(1)

(7)

(2)

(4)

(5)

(3)

(6)

Fig. 3. An excerpt from a Transaction Flow Visualization

The Transaction Flow visualization makes it easy to identify
all methods that start an unnecessary transaction (magenta
methods, (5) in Figure 3). These methods in fact start a
transaction when they could just use the transaction scope of
their invoker method. We say that they start an unnecessary
transaction. Such methods have to be manually checked to
verify whether the nested transaction is useless or not. For
example a new transaction can be explicitly required to log
a message in a database independently of whether the main
transaction commits or rolls back.

All hierarchies having no methods starting a transaction at
the beginning (blue methods) can lead to problems. These
methods support transactions but they do not start one by
themselves. This means that either they are within the scope of
a transaction started from the application front-end (generally
a web interface built using JS Pages but also possibly a GUI
written in Java), or the service it uses lies outside a transaction
scope. We call such hierarchies weak paths. The Transaction
Flow visualization is also useful to identify isolated parts of
the code that are independent of the rest of the application.
In Figure 3 we see two isolated hierarchies at the top left.
Hierarchies like these are interesting to identify because they
represent services that are “self-contained” in the sense that
their entry point and their implementation is not related to
other elements of the application. Such hierarchies may also

be a sign that opportunities for sharing logic between services
have not yet been exploited. On the other hand it is also
possible to identify more complex hierarchies with multiple
entry points sharing various classes. The identification of
these structures may be useful to guide refactoring to make
application services more independent. We now evaluate the
effectiveness of these visualization on the latest version of an
industrial case study.

Case Study: In the case study under analysis all Session
beans have methods with a transaction attribute defined and
almost all methods start a transaction. We can count 489
methods starting a transaction and 1537 methods involved
in a transaction scope. All Session beans appear in the top
of the invocation chain, which means that they are actually
used as access points for the application services. Using the
visualization from Figure 3 we can identify methods that
unnecessarily start a transaction. In our case we detected 5
cases.

At the right and in the middle of Figure 3 there are two
classes containing methods that support transactions but do not
start one. The invocation chains starting from those methods
are the only weak paths in the case study. In this case it is
necessary to check if the transaction is started in the front-
end. If this is the case the EJB container will propagate the

Session Bean in the wrong
layer

Service Layer contains
Session Beans which are

the entry point for the
application services

Logic Layer contains the
classes implementing the

business logic

Data Layer contains the
classes accessing the
database and the data

classes

Fig. 4. An excerpt from a Server Layers Visualization

transaction scope from the front-end, otherwise these methods
are actually operating on the system outside a transaction
scope. By showing the entry points that are a potential issue,
we ease the investigation of the front-end.

At the left part of Figure 3 there are two small hierarchies
starting from a Session Bean without external incoming or
outgoing edges. This suggests either that the services that they
implement are logically independent from other services, or
that the potential for sharing logical functionality with other
services has not been exploited. We say that such hierarchies
have a “service-oriented” design. In Figure 3 there are also
some more complex hierarchies with multiple entry points
sharing various classes. In contrast to the “service-oriented”
hierarchies at the far left, these more complex hierarchies
have multiple entry points that share behavior. We say that
such hierarchies have a “use case-oriented” design, since the
implementation classes support multiple services.

A final point is the method at the top-left of Figure 3. This
method is blue, so it starts a transaction, and it is round,
so it accesses the database. This means that the Session
Bean it belongs to contains behaviour that is not supposed
to be implemented at this level. Ideally the database access

should be contained in dedicated classes and not directly in
Session Beans. This discovery motivates another visualization,
explained in subsection III-B, which is related to the Trans-
action Flow but has the purpose of identifying architectural
violations.

B. Server Layers

Session Beans that start a transaction are used as entry
points for services. It is considered good practice to split EA
components into presentation, domain and data layers [7]. The
domain layer can be further split into a service layer and a
domain model. Figure 4 shows the same classes of Figure 3
reorganized into layers. The layer on top is the service layer,
in the middle there is the logic layer, and on the bottom there
is the data layer. The criteria to split classes into layers are as
follows:

1) In the Service layer are visualized all classes implement-
ing a Session bean.

2) In the Data layer we show all classes that (1) are
part of the invocation chain starting from the classes
belonging to the service layer, and that (2) execute
a query, implement the Java interface Serializable, or

Method performing a select
and an update on the database

Methods performing an
update on the database

Method performing a select
on the database

Test ClassNormal Class

Method performing an
update

Methods performing a select
and an update on the data base

Methods performing an
update on the data base

Methods performing a
select on the data base

Test Class

Normal Class

Method performing a
select

Methods performing a select
and an update on the data base

Methods performing an
update on the data base

Methods performing a
select on the data base

Test Class

Normal Class

Method performing a
select and an update

Methods performing a select
and an update on the data base

Methods performing an
update on the data base

Methods performing a
select on the data base

Test Class

Normal Class

Method not accessing
the database

Fig. 5. An excerpt from an Unsafe Queries Visualization

throw an exception from the java.sql package. In the
case the class implements the interface Serializable it
can be useful, in order to ensure that the class is actually
used to communicate data, to check if the class is also
a data class [8]. This option will be evaluated in future
work.

3) In the Logic layer we show all classes that are part of
the invocation chain that started from classes belonging
to the service layer, but that are not part of the data
layer.

Colors and shapes of objects have the same meaning as
in the Transaction Flow visualization. Edges however have a
different meaning: the gray edges are invocations that jump a
layer by going from the Service layer directly to the Data layer.
The purpose of this visualization is to expose structural viola-
tions of the elements involved in a transaction. In particular we
highlight all Session beans that are in the wrong layer and all
invocations that jump a layer. Such violations of architectural
constraints not only impact program comprehension, but they
may be signs of more serious defects in the application code.
The layers and the rules that we implemented can of course
fail to match a custom layering structure. This is why in the
future we plan to experiment with customization, as in the
case of reflexion models [9].

Case study: In Figure 4 there are several edges from the
session layer directly to the data layer, suggesting that many
services apparently do not have any business logic. Either the
business logic has been moved into the Session bean or into
the classes belonging to the data layer. In both cases we are

dealing with classes that implement behavior external to their
competence. We can count 16 Session Beans with gray edges
starting from them. Another possibility is that a particular
service has no business logic so there are no classes belonging
to that layer. This case is also problematic because a service
should normally touch all layers — a service without business
logic is suspect because it directly exposes the data layer. In
any case, software comprehension is compromised because
knowledge about the purpose and behavior of a service should
appear in the logic layer.

Figure 4 also shows a Session Bean positioned in the
wrong layer (in the whole system we identify four of them).
These Beans have been classified as belonging to the data
layer because they have at least one method that accesses the
database. There are two possible interpretations why this is so:
either the service is just used to send some data back to the
front-end without performing any computation, or the business
logic has been pushed to the Session bean instead of creating
a separate class belonging to the logic layer. This is similar
to the problem related to invocations jumping a layer. In this
case we have discovered methods with a behavior outside of
their competence.

C. Unsafe Queries

If on the one hand we are able to identify methods involved
in a transaction, on the other hand we can show which
methods perform queries outside of a transaction. Identifying
methods that access the database outside a transaction scope
is important to avoid problems of consistency. These methods
cannot know if they are working with consistent data or not.

Instead, participating in a transaction ensures that isolation is
respected even in the presence of multiple concurrent users
of the system. The Unsafe Query visualization shows those
hierarchies that end with classes that execute a query to the
database and are outside a transaction scope. In particular:

• black classes are test classes,

• grey classes are not test classes,

• yellow methods perform a select,

• orange methods perform an update, and

• red methods perform both.
The organization of classes is the same as in the Transaction

Flow: classes are shown considering the invocation order from
the top to the bottom. Edges represent the invocations between
methods. Considering this organization, in the top part of the
Unsafe Queries visualization are the entry points for unsafe
paths. At the bottom, the visualization shows classes that
actually perform queries on the database.

Test classes are identified using a naming convention: A
class whose name matches the regular expression “.*Test.*” or
a class contained in a package hierarchy whose name matches
the regular expression “.*test.*” is considered to be a test
class.

Case study: Considering our case study which is partially
shown in Figure 5, we can see that almost all hierarchies start
with a test class. This means that during normal execution
these paths have to be considered safe. We can count 562
methods outside a transaction scope. In the left part of Figure 5
there is a hierarchy that starts with a gray class. This is an
unsafe path that actually accesses the database by reading
data without being sure that they are consistent. We count 24
methods belonging to this hierarchy. Also interesting are the
two grey classes on the far left of Figure 5. These classes
contain a method that performs an update of the database
(they might contain other methods that are omitted in the
visualizations) and they are not invoked by other methods.
These methods pose a risk since they may be invoked directly
from the front-end without being part of a transaction scope.

IV. COMPARISON OF CASE STUDIES AND VALIDATION

In this section we compare the two versions of our case
study using the visualizations presented in the previous section
to assess the overall quality of the application. In Table I we
present some selected metrics related to the systems under
analysis to give an idea of the dimension and complexity of
the case studies.

Transaction Flow: In Figure 6 we show the Transaction
Flow visualizations of both versions. The visualization shows
that the application has been strongly modified. The number of
single hierarchies without external relations has increased even
if there is still a huge hierarchy with many entry points and
a large number of classes implementing business logic. In the
previous version of the code 10 hierarchies were identifiable,
in the new version 15. This difference suggests that in the past
the application has been designed and developed considering

Old New
Classes 1938 1527
Session beans 49 39
Message-driven beans 6 4
Entity beans 0 0
Averave number of methods per bean 14.29 13.15
Methods starting unnecessary transaction 13 5
Methods starting a transaction 622 489
Methods involved in a transaction 2315 1537
Methods involved in an unsafe path 589 562
Isolated call-hierarchies 10 15

TABLE I
SELECTED CASE STUDY METRICS

the point of view of use cases. In the refactoring process
many classes have been eliminated and the application adopts
a design that is much more service oriented.

Visually, it is also possible to notice that hierarchies are
not only cohesive, but also deeper. More classes and methods
were involved in the business logic needed to fulfill a service
requests. The number of methods starting an unnecessary
transaction are reduced from 13 to 5 and the number of beans
go down from 49 to 39 which means that the implementation
of the services has been modified to eliminate unnecessary
transactions. To summarize, all modifications that have been
performed on the application improve its structure. The new
version of the application is much closer to what we expect
from the structure of a JEA: small call-hierarchies with Session
beans on top, without relations to other hierarchies and without
methods starting unnecessary transactions. Instead all the
services are self-contained and transactions are always started
if necessary.

Server Layers: Using the Service Layers visualization1 we
identified that the business layer is thinner. This characteristic
was visible also in the Transaction Flow visualization but here
it is much more evident because the classes are organized into
layers. It is more evident that during the refactoring process
many classes involved in the computation of requests from
services have been removed. Also there are fewer edges. This
is maybe because of the lower number of Session Beans but
also due to a better organization of the responsibility inside
the application.

Unsafe Queries: Applying the Unsafe Queries visualization2

to the old version of the system we can identify 5 lonely
classes that access the database and 5 hierarchies. In total 10
unsafe paths were identified against 3 in the new version. Also
in this visualization it can be seen how the refactoring process
not only changes the structure but also makes the application’s
services safer and more efficient.

The case studies were helpful to validate the tool and verify
that our technique works correctly not only on small sample
code. The validation has been performed manually mainly

1The picture is not shown here due to space limitations, but can be accessed
at: http://moosetechnology.org/tools/moosejee/casestudy/

2Accessible at: http://moosetechnology.org/tools/moosejee/casestudy/

http://moosetechnology.org/tools/moosejee/casestudy/
http://moosetechnology.org/tools/moosejee/casestudy/

Strongly related hierarchies

Methods starting a
transaction

NEW SYSTEM

OLD SYSTEM

Methods starting an
unnecessary
transaction

Entry points for a
weak path

Methods that inherit
the transaction scope

Strongly related hierarchies

An isolate
hierarchies

Fig. 6. Transaction Flow visualization of two versions of the same case study

using Eclipse. First, we verified that all beans contained in
the deployment description have been imported into the model.
In both versions we correctly imported all beans. Second, we
also manually verified that the transaction attribute is correctly
defined for the beans. In this case all methods have been
assigned the right transaction attributes. Third, using the Call
Hierarchy function of Eclipse we investigated manually a set
of random invocation paths in the real case study confirming
their correctness.

Considering the Server Layers visualization, all Beans were
present in the service layer besides the 4 that access the
database. In the Data layer we were able to identify all
elements accessing the database using the java.sql package.

Considering the Unsafe Queries visualizations we detected
that the methods considered to be entry points for unsafe paths
were actually not invoked by other methods.

The manual inspection confirmed a high level of precision
in the identification of the elements composing the visual-
izations. These results have been presented to the company
that provided us with the case study, and their feedback has
been highly positive. They will inspect all the issues or smells
identified using the tool to modify those parts.

V. RELATED WORK

Marinescu et al. proposed several analyses of Enterprise
Applications (EAs). That work focused on design quality
assessment [10] based on the identification of roles (patterns)
for classes and methods, and on the relation between EA
source code and databases [11]. The latter work provides
a meta-model for relational databases and explains how to
relate that schema with a meta-model for EAs. They also
investigate the relations between persistent data and the EA
proposing an approach to enrich the meaning of foreign
keys of database tables by considering the relations between
methods. Because EAs are polyglot systems composed using
various technologies, it is difficult to describe them with just
a generic meta-model. The risk is to miss the description of
more specific aspects preventing useful analyses such as the
one that we propose. To describe an EA, we need a set of
meta-models at a higher level of abstraction. At the moment
our meta-model covers different aspects from that proposed
by Marinescu.

In software maintenance, system overviews can play an
important role in identifying reusable components and as-
sessing modularization [12]. With a completely different kind
of visualization and context we create some visualizations
with the same purpose: to investigate the presence of visual
patterns and to ease the identification of reusable architectural
components.

Also other teams have worked on architecture recovery and
validation using, for instance, reflexion models [13], [9]. These
models are used to recover architecture by capturing developer
knowledge and then manually mapping this knowledge to the
source code [14], [15]. Through reflexion models it is possible
to expose extra information implicit in the code. Our work

exposes information implicit in the different technologies used
for building Enterprise applications.

Intensional views check conformance of source code to
architectural constraints by means of rules expressed in a ded-
icated logic programming sublanguage [16]. We are unaware
of intensional views being used to analyze heterogeneous
language projects, or to assess the quality of transactional
code.

An interesting study of transactions in EJB has been made
at the Vrije Universiteit Brussels [17]. This work highlights
the separation of concerns in the transaction management of
JEAs. The problem is caused by the scattered definition of
the components involved in a transaction, the operations to
perform in case of rollback, and the handling of the rollback
exception. The work aimed to improve the separation of
concerns by using Aspect-Oriented Programming.

Robillard and Murphy proposed a technique to support the
analysis of concern propagation in the source code using a
Concern Graph [18]. The goal of Concern Graphs was to have
a representation of concerns that can be created, manipulated
and analyzed while spending minimum effort, and to have a
direct mapping to the source code. The Concern Graph has
to be manually built from the source code elements through
a manual investigation of the code while in our case the
procedure is fully automated. Moreover this work is focused
on the source code while the basic problem that we have to
address is that JEAs are not just Java code. We actually merge
information from different sources. In order to address the
same result using Concern Graphs the user should dig into
XML files to identify which classes have a specific property
and then spend time to manually map this information to the
Concern Graph.

VI. CONCLUSION AND FUTURE WORK

In JEAs information is spread in many locations (e.g.,
Java classes, JS Pages, deployment descriptors). By unifying
information from multiple sources it is possible to expose
problems otherwise difficult to discover. Transactions aid the
application programmer with issues like failure recovery and
multi-user programming. Because the definitions of methods
and their transaction attribute are decoupled in JEAs, it is
difficult for developers and designers to identify whether
a method is in a transactional scope or not. Information
unification is one key point. Another one is to present the result
of this unification with visualizations of the whole system code
to expose anomalies.

Our contribution consists of a technique to expose the
transaction scope of the application’s classes and to identify
related issues. To reach this objective we extended the FAMIX
meta-model to accommodate JEAs. We model EJBs to enable
analyses from the perspective of transactions. We developed
three novel visualizations to expose structural and behavioral
anomalies in the definition and use of transaction scope. To
validate the approach, we implemented our complete approach
on top of the Moose analysis platform.

The visualizations and the results have been presented to
the company that provided us with the case study, and their
feedback has been highly positive. The customer checked the
anomalies that we identified. They discovered that in the last
version of the code all 5 methods starting an unnecessary
transaction do so deliberately (for example to obtain a separate
transaction scope for logging purposes). They will perform
further investigation on the methods that support transactions
without starting them and on the strongly related hierarchies
for an eventual refactoring. The Session Beans accessing the
database directly without passing through all the layers actu-
ally perform read operations on the database for visualization
purposes unrelated to the business logic, so they decided not
to modify them. They also plan a further investigation into the
hierarchies outside any transaction scope that actually access
the data base to assess eventual problems. They also would
like to periodically check their code with these instruments to
monitor the status of their application.

Future work will have to take into account other aspects to
improve the quality of the presented technique and to address
other investigations on JEAs:

The call graphs built from the application analyzed do
not use any kind of type approximation. This fact does not
affect the techniques and the considerations presented in the
paper. Nevertheless using a different and more precise call
graph on the same application could lead to different results.
In particular the unsafe query visualization will have more
benefits from a more accurate call graph revealing more
precise hierarchies of classes not included in a transaction
scope.

In this paper we focused our work on application trans-
actions defined using the deployment descriptor (Container-
Managed Transaction Demarcation), but it is possible to define
by hand the transaction scope in the code using the Java
Transaction API (Bean-Managed Transaction Demarcation). In
the next steps of this work we will tackle this aspect too.

Furthermore, we will also include other kinds of elements,
such as JS Pages, into the Presentation Layer [7] and we
will integrate them into the Server Layers visualization. We
also plan to evaluate the relation between JEAs and databases
linking methods to the tables that they access.

Another important step will be to use the information
contained into the file version repository to trace the evolution
of software elements. Thanks to this information it will be
possible to create novel visualizations to more easily compare
the same perspective through different versions.

EJB version 3.0 [19] differs significantly from version 2.1.
It will be necessary to take into account all these differences
in order to extend the same analysis to EJB 3.0.

This effort represents an initial step to create a set of tech-
niques and instruments to expose problems and to investigate
the elements composing JEAs. The final objective is to build a
generic and extensible representation of JEAs to enable their
analysis. The effort spent to analyze JEAs will be incorporated
in this larger representation. Thanks to the descriptions ranging
from course-grain to fine-grain it will be possible to analyze

large and heterogeneous EAs without losing the possibility to
perform analysis on specific aspects such as transaction scope.

Acknowledgments - We gratefully acknowledge the finan-
cial support of the Hasler Foundation for the project “Enabling
the evolution of J2EE applications through reverse engineering
and quality assurance” (Project no. 2234, Oct. 2007 – Sept.
2010) and the financial support of CHOOSE, the Swiss Group
for Object-Oriented Systems and Environments. We also
gratefully acknowledge the contribution of our (anonymous)
industrial partner for providing the case study used in this
work. We thank David Röthlisberger, Jorge Ressia and Erwann
Wernli for their comments on drafts of this paper.

REFERENCES

[1] L. G. DeMichiel, “Enterprise JavaBeans specification, version 2.1,” Sun
Microsystems, Nov. 2003.

[2] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A meta-model
for language-independent refactoring,” in Proceedings of ISPSE 2000).
IEEE Computer Society Press, pp. 157–167.

[3] O. Nierstrasz, S. Ducasse, and T. Gı̂rba, “The story of Moose: an agile
reengineering environment,” in Proceedings of ESEC/FSE 2005. New
York NY: ACM Press, pp. 1–10, invited paper.

[4] E. Armstrong, J. Ball, S. Bodoff, D. B. Carson, I. Evans, D. Green,
K. Haase, and E. Jendrock, “The J2EE 1.4 tutorial,” Dec. 2005.

[5] C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, and R. Wettel,
“iPlasma: An integrated platform for quality assessment of object-
oriented design,” in Proceedings of ICSM 2005, pp. 77–80, tool demo.

[6] M. Meyer, T. Gı̂rba, and M. Lungu, “Mondrian: An agile visualization
framework,” in ACM Symposium on Software Visualization (SoftVis’06).
New York, NY, USA: ACM Press, 2006, pp. 135–144.

[7] M. Fowler, Patterns of Enterprise Application Architecture. Addison
Wesley, 2005.

[8] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[9] G. C. Murphy and D. Notkin, “Reengineering with reflexion models:
A case study,” IEEE Computer, vol. 8, pp. 29–36, 1997.

[10] C. Marinescu, “Identification of design roles for the assessment of design
quality in enterprise applications,” in Proceedings of ICPC 2006. Los
Alamitos CA: IEEE Computer Society Press, pp. 169–180.

[11] C. Marinescu and I. Jurca, “A meta-model for enterprise applications,”
in SYNASC ’06: Proceedings of the Eighth International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing. Washing-
ton, DC, USA: IEEE Computer Society, 2006, pp. 187–194.

[12] J.-F. Girard and R. Koschke, “Finding components in a hierarchy of
modules: a step towards architectural understanding,” in ICSM. IEEE
Press, 1997.

[13] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
Bridging the gap between source and high-level models,” in Proceedings
of SIGSOFT ’95, Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering. ACM Press, 1995, pp. 18–28.

[14] R. Koschke and D. Simon, “Hierarchical reflexion models,” in Proceed-
ings of the 10th Working Conference on Reverse Engineering (WCRE
2003). IEEE Computer Society, 2003, p. 36.

[15] A. Christl, R. Koschke, and M.-A. Storey, “Equipping the reflexion
method with automated clustering,” in WCRE ’05: Proceedings of the
12th Working Conference on Reverse Engineering, 2005, pp. 89–98.

[16] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts, “Co-evolving code and
design with intensional views — a case study,” Journal of Computer
Languages, Systems and Structures, vol. 32, no. 2, pp. 140–156, 2006.

[17] J. Fabry, “Transaction management in EJBs: Better separation of
concerns with AOP,” in Proc. of the 3rd AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (ACP4IS),
Y. Coady and D. Lorenz, Eds., Mar. 2004, pp. 20–25.

[18] M. P. Robillard and G. C. Murphy, “Concern graphs: finding and de-
scribing concerns using structural program dependencies,” in ICSE’02:
Proceedings of the 24th International Conference on Software Engineer-
ing. New York, NY, USA: ACM Press, 2002, pp. 406–416.

[19] M. K. Linda DeMichiel, “JSR 220: Enterprise JavaBeans specification,
version 3.0,” Sun Microsystems, May 2006.

