
MooseJEE: A Moose Extension to Enable the
assessment of JEAs

Fabrizio Perin

Software Composition Group
University of Bern, Switzerland
http://scg.unibe.ch

Abstract—Java Enterprise Applications (JEAs) are large sys-
tems that integrate multiple technologies and programming
languages. With the purpose to support the analysis of JEAs we
have developed MooseJEE an extension of the Moose environment
capable to model the typical elements of JEAs.
Keywords: Java enterprise, Tool, Reverse engineering.

I. INTRODUCTION

Java Enterprise Applications (JEAs) are large systems writ-
ten in multiple languages and integrating various technologies.
Information concerning the application’s elements and their
relationships is spread over various source files. This causes
developers to lose the overview of the system and hides
inconsistencies in the code.

To address these problems we have developed MooseJEE
an extension to the Moose1 environment that supports the
inspection and analysis of JEAs. Specifically, MooseJEE pro-
vides importers to collect information from various sources,
a number of dedicated software visualizations, and a code
browser to explore the issues detected by MooseJEE directly
in the application source code. The MooseJEE importers are
necessary to collect additional information about JEAs not
present in the Java source code (e.g., information from XML
configuration files or SQL scripts). The MooseJEE visualiza-
tions tackle the problems of identifying the transaction scope
of applications and exposing architectural inconsistencies [1].
While software visualizations are useful to obtain an overview
of the system, it is also important to maintain the relations
with the code under analysis. This is why we developed the
MooseJEE code browser that allow the inspection of the source
code directly into the Moose environment.

We introduce MooseJEE and its features in section II, we
present the MooseJEE code browser in section III and we
present a usage scenario in section IV.

II. MOOSEJEE

MooseJEE is an extension of Moose[2], a language-
independent environment for reverse- and re-engineering com-
plex software systems. Moose internally uses FAMIX [3],
a language-independent meta model, to describe the static
structure of object-oriented software systems. FAMIX was

1http://www.moosetechnology.org/

not able to express completely the complexity and the het-
erogenous nature of JEAs. This is why we have extended the
FAMIX meta model with representations of typical elements
of JEAs. These extensions are needed to represent Enterprise
Java Beans (EJBs), the usage of relational databases, and
architectural layers typically found in JEAs [4].

Armed with a suitable meta model to describe JEAs, we
extend the standard Moose environment with functions to
import information from multiple sources and to inspect this
information. All these functions are accessible through the
standard Moose Panel.

MooseJEE adds two importers to the standard Moose panel
menu to load into the Moose environment the model of a JEA.
It has been necessary to create different importers to take into
account the significant differences between EJB version 2.1 [5]
and version 3.0 [6]. To build an actual model we use inFusion
(the successor of iPlasma [7]) to parse Java files and build a
basic model, and then we separately parse other information
sources (e.g., the ejb–jar XML file) and integrate the new data
into the model. Triggering one of the two importers causes a
wizard to appear and prompt the user for all the information
required to set up the model.

The following operations are performed by the importers:
• Common operations

1) Create a model from an MSE file.
2) Annotate the methods, the classes and the packages

of the model indicating if they are part of a Trans-
action Scope or an Unsafe Path [1].

3) (optional) Open a code browser or a software visu-
alization on the imported project.

• EJB 2.1
1) Import information about EJBs from the ejb-jar.xml

file.
• EJB 3.0

1) Import information about EJBs from Java annota-
tions.

2) Import information about the relational database
from SQL files.

3) Describe the relations between the database ele-
ments and the software elements.

The functions previously described can also be manually
triggered directly on a Moose model already imported using

http://scg.unibe.ch


Fig. 1. Code browser for Java Enterprise applications (package, class and method names obscured due to NDA)

standard instruments in the Moose panel. These utilities have
been grouped in a new menu entry called “JEAs Menu” of the
standard context menu of Moose models.

The current implementation of MooseJEE contains software
visualizations useful for the recovery and analysis of transac-
tion scope in JEAs. These visualizations are accessible from
a new entry called “JEAs Visualizations” of the context menu
of any class group entry in the Moose Panel.

III. CODE BROWSER

Visualizations provide valuable instruments to obtain an
overview of a system but the risk is to lose the contact with
the source code. The code browser is therefore an important
instrument in the process of software understanding to offer
an immediate comparison between the visualizations and the
source code. This is why we have developed a code browser
that also incorporates two software visualization. The browser
has been developed using Glamour [8], a framework dedicated
to building browsers.

The code browser (Figure 1) is organized as follows: the first
panel contains the list of the project’s packages, the second

contains the list of classes contained in the selected package,
the third contains the list of methods of the selected class and
the class blueprint [9]. In the panel below it is possible to
see the source code of the selected class or method and the
transaction flow visualization of the hierarchy containing the
selected class. In the first three panels the elements that are part
of a transaction scope or part of an unsafe path that access the
database are highlighted with a gray label. An unsafe path is
an invocation chain that starts from an entry point method that
does not start an application transaction [1]. It is also possible
to filter the elements by clicking on the gray label indicating a
property, only the elements with that property will be shown.
The code browser does not aim to substitute the development
environment but just to provide an instrument to inspect the
source code directly from Moose.

IV. TOOL DEMONSTRATION

We will demonstrate how to use the MooseJEE extension
to perform an inspection of the transaction scope consis-
tency in JEAs. It is possible to download MooseJEE from
http://scg.unibe.ch/research/Moose-JEE; this

http://scg.unibe.ch/research/Moose-JEE


Support Transactions (3)

Data base accessor 
starting a transaction (1)

Blue Square
Orange Square
Red Square
Cyan Square
Gray Square
Gray Dot

Start an unnecessary 
Transactions (2)

(1)

(2) (3)(3)

"Self-contained" 
hierarchy

Fig. 2. An excerpt from a Transaction Flow Visualization with some important elements highlighted

site also provides the installation instructions and a video of
the following scenario.

The application that MooseJEE can analyze are: all the JEAs
using EJBs 2.1 and EJBs 3.0. MooseJEE importers can collect
information about the Java Beans from the Java annotations
and from the ejb-jar XML configuration file. MooseJEE can
recognized the accesses to a data base if the application
uses the Java.sql package. If the application uses tools like
Hibernate to deal with the persistency MooseJEE will not be
able to identify the data base accesses. This limitation will be
cover on the future steps of the work.

Before launching MooseJEE it is necessary to use inFusion2

to generate an MSE file of the Java application that the user
wants to analyze. inFusion is an integrated environment for
performing code and architectural reviews of object-oriented
and procedural software systems. With the MSE file of the
application available it is possible to start using MooseJEE
from the standard Moose Panel.

The scenario will deal with three software visualizations
having the following purposes:

a) Transaction Flow: this visualization has been built
to analyze the application transaction scope in JEAs, see
Figure 2. The main purpose is to expose all the methods
that can start a transaction when it is not strictly necessary
((2) in Figure 2) and to highlight the presence of invocation
chains that support the usage of transaction but that do not

2http://www.intooitus.com/inFusion-tryit.html

start one by themselves ((3) in Figure 2). The “Transaction
Flow” visualization is also useful to identify parts of code
that are “self-contained” in the sense that their entry point
and their implementation is not related to other elements of
the application. On the other hand it is also possible to identify
more complex hierarchies with multiple entry points sharing
various classes. The identification of these structures may be
useful to guide refactoring to make application services more
independent.

b) Unsafe Query: thank to this visualization it is possible
to identify the methods that are not involved in an applica-
tion transaction but access the database. This inspection is
important because helps to identify part of code managing
with possible inconsistent data into the application and also
highlights flows of execution that cannot be rollbacked.

c) Server Layers: this visualization exposes structural vi-
olations of the elements involved in a transaction. In particular
it highlights all Session beans that are in the wrong layer and
all invocations that jump a layer. Such violations of architec-
tural constraints not only impact program comprehension, but
they may be signs of more serious defects in the application
code. e.g., in Figure 2 the method marked with (1) is a method
that access the data base but it is actually contained in a session
bean. This fact imply that the Session Bean containing that
method is considered part of the data layer [4] and not part of
the Service Layer [4].

In Table I are listed the steps to perform an inspection of
the transaction scope consistency in a JEAs.



Steps Output Comments

Common Steps

1 Create the MSE file of the application
using inFusion An MSE file

Refer to the inFusion web site for fur-
ther information http://www.intooitus.com/
inFusion-tryit.html

2 Select in the Moose Panel Menu the im-
porter for EJBs 2.1

A wizard appears asking the user to insert
various pieces of information

The wizard requires information like the
location on the disk of the MSE file of the
application and other similar requests

3 Fulfill the requests of the wizard’s panels
that will appear in sequence

At the end of the import process, appears
in the Moose Panel appear the name of the
model imported

A progress bar will appear to keep the user
informed about the ongoing import process

4 Select the model in the Moose Panel
At the end of the computation a pane ap-
pears on the right showing some elements
contained into the model

Refer to the Moose web site for more
details about the Moose Panel http://www.
moosetechnology.org/

Transaction Flow

5
Right click on the “All model classes”
entry and select “Transaction Flow” under
the “JEAs Visualizations” entry

A Transaction Flow visualization appears,
see Figure 2 More details about the visualization in [1]

6

Right click on the Moose model contained
in the Moose Panel and we select “Code
Browser for JEA” contained into the “JEAs
Menu” entry.

A code browser opens allowing the access
to the source code of the application see
Figure 1

Unsafe Query

5
Right click on the “All model classes”
entry and select “Unsafe Query” under the
“JEAs Visualizations” entry

An Unsafe Query visualization appears [1] More details about the visualization in [1]

6

Right click on the Moose model contained
in the Moose Panel and we select “Code
Browser for JEA” contained into the “JEAs
Menu” entry.

A code browser opens allowing the access
to the source code of the application

Server Layer

5
Right click on the “All model classes”
entry and select “Server Layer” under the
“JEAs Visualizations” entry

A Server Layer visualization appears [1] More details about the visualization in [1]

TABLE I
STEPS TO FOLLOW TO DISCOVER INCONSISTENCIES IN THE TRANSACTION SCOPE OF A JEA.

Acknowledgments - We gratefully acknowledge the finan-
cial support of the Hasler Foundation for the project “Enabling
the evolution of J2EE applications through reverse engineering
and quality assurance” (Project no. 2234, Oct. 2007 – Sept.
2010). We also gratefully acknowledge the contribution of
our (anonymous) industrial partner for providing the case
study used in this work. We thank Oscar Nierstrasz, David
Röthlisberger, Jorge Ressia and Lukas Renggli for their com-
ments on drafts of this paper.

REFERENCES

[1] F. Perin, T. Gı̂rba, and O. Nierstrasz, “Recovery and analysis of transac-
tion scope from scattered information in java enterprise applications,” in
Proceedings of International Conference on Software Maintenance 2010,
Sep. 2010, to appear.

[2] O. Nierstrasz, S. Ducasse, and T. Gı̂rba, “The story of Moose: an agile
reengineering environment,” in Proceedings of ESEC/FSE 2005. New
York NY: ACM Press, pp. 1–10, invited paper. [Online]. Available:
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf

[3] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A meta-model
for language-independent refactoring,” in Proceedings of ISPSE 2000.
IEEE Computer Society Press, pp. 157–167. [Online]. Available:
http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf

[4] M. Fowler, Patterns of Enterprise Application Architecture. Addison
Wesley, 2005.

[5] L. G. DeMichiel, “Enterprise JavaBeans specification, version 2.1,” Sun
Microsystems, Nov. 2003.

[6] M. K. Linda DeMichiel, “JSR 220: Enterprise JavaBeans specification,
version 3.0,” Sun Microsystems, May 2006.

[7] C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, and R. Wettel,
“iPlasma: An integrated platform for quality assessment of object-oriented
design,” in Proceedings of ICSM 2005, pp. 77–80, tool demo.

[8] P. Bunge, T. Gı̂rba, L. Renggli, J. Ressia, and D. Röthlisberger,
“Scripting browsers with Glamour,” European Smalltalk User Group
2009 Technology Innovation Awards, Aug. 2009, glamour was awarded
the 3rd prize. [Online]. Available: http://scg.unibe.ch/archive/reports/
Bung09bGlamour.pdf

[9] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer-Verlag, 2006. [Online]. Available: http://www.springer.com/
alert/urltracking.do?id=5907042

http://www.intooitus.com/inFusion-tryit.html
http://www.intooitus.com/inFusion-tryit.html
http://www.moosetechnology.org/
http://www.moosetechnology.org/
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf
http://scg.unibe.ch/archive/papers/Tich00bRefactoringMetamodel.pdf
http://scg.unibe.ch/archive/reports/Bung09bGlamour.pdf
http://scg.unibe.ch/archive/reports/Bung09bGlamour.pdf
http://www.springer.com/alert/urltracking.do?id=5907042
http://www.springer.com/alert/urltracking.do?id=5907042

