
Evaluating Code Duplication to Identify Rich
Business Objects from Data Transfer Objects

Fabrizio Perin and Tudor Gı̂rba

Software Composition Group
University of Bern, Switzerland
http://scg.unibe.ch

Abstract—Java Enterprise Applications (JEAs) are complex
software systems written using multiple technologies. Moreover
they are usually distributed systems and use a database to deal
with persistence. A particular problem that appears in the design
of these systems is the lack of a rich business model. In this
paper we propose a technique to support the recovery of such
rich business objects starting from anemic Data Transfer Objects
(DTOs). Exposing the code duplications in the application’s
elements using the DTOs we suggest which business logic can
be moved into the DTOs from the other classes.
Keywords: Reverse engineering, Java, Enterprise Application,
Software Visualization.

I. INTRODUCTION

Enterprise Applications are complex, large and usually
distributed systems that handle large amounts of data. Even
though these systems are typically implemented using a base
language, such as Java, the complexity of these systems re-
quires new kinds of concepts and technologies. The ecosystem
around Java Enterprise Edition (JEE) offers several tech-
nologies to accommodate the technical requirements of such
systems.

Two key design constraints are given by the distribution of
the remote services and the persistency of data. In JEE, this
is typically supported through SessionBeans and EntityBeans
respectively [1] [2]. When two services can live on two
different machines, they need to exchange data remotely. To
make this dialog efficient, these services typically bundle the
data in one carrier and transmit it in bulk. Such a carrier is
called Data Transfer Object (DTO). Fowler describes such a
DTO as “an object that carries data between processes in
order to reduce the number of method calls.” [3]

While these technologies do offer strong technical support,
in many systems it can be noticed how even if the base
language is called object-oriented, the design of the resulting
system is very much procedural: the behavior typically lies in
the SessionBeans, while the data lies in the EntityBeans and
DTOs. These systems would benefit from a refactoring towards
a stronger business model that unifies behavior and data and
to which SessionBeans would delegate responsibilities.

In this paper, we propose a visualization that helps in the
initial phase of identifying such a rich object model. Our
strategy is to expose the DTOs and the way they are used
by the different services. In particular, we are looking at two

different relationships: the calls between services and DTOs
and the code duplication in these classes.

II. DTOS ANALYSIS AND EVALUATION

Code duplications between classes sharing the same DTOs
can be a sign that certain business logic can possibly be
factored out, either in the DTO, or in another class. In order to
evaluate the effectiveness of this hypothesis we create a novel
software visualization, called DTO Constellation.

Figure 1 shows the visualization as applied to an industrial
content management system (CMS) to manage customer data.
Gray squares represent DTOs while white squares are Java
classes that invoke some methods of the DTOs. The light
gray edges represent an invocation from one class to another
while black edges represent code duplication. The graph is
then laid out using a force based layout that reveals clusters
of connected entities.

The visualization is drawn using the Mondrian visualization
engine [4], while the code duplication is retrieved by Small-
Dude, a duplication detector included in the Moose analysis
platform [5].

In our example, the DTOs are visually clustered in 3 groups
each composed of several classes. Manual inspection of the
code verifies that these elements actually have a common
context and all together collaborate to manage logically related
data.

Interestingly, the classes in the middle of Figure 1 are
connecting two different clusters of elements. These classes
are actually Session Beans that need to collect data from two
different contexts exposing a relation between them that would
not be evident otherwise.

The most interesting exposed elements are the code dupli-
cations expressed by the black edges. There are three kinds
of code duplication present: (1) duplication between classes
using the same DTO, (2) duplication between DTOs, and (3)
duplications between classes of two different clusters.

The first kind of duplication suggests the presence of code
that could be factored out from the classes suffering the
duplication.

The second kind of duplication can highlight the presence
of DTOs sharing the same data or sharing the same logic to
manage different data. A further inspection of these elements

http://scg.unibe.ch


DTO

Code 
duplication 

between 
DTOs

Normal 
Class

Invocation

Logical 
groups

Code 
duplication 

between 
classes using 

the same 
DTO

Classes 
connecting 
two logical 

groups

Code 
duplication 

between 
classes of 
different 
logical 
groups

Fig. 1. Prototype of Visualizations to highlight the relations between DTOs
and to inspect the code duplications

can drive the merging of two DTOs into one or the redistri-
bution of the management of the data and the data itself.

By investigating non-evident relations among software ele-
ments and using this information to drive the refactoring, the
third kind of code duplication can highlight the presence of
the same business logic being used to manage different kind
of data.

The duplications between classes using the DTOs relate
to some shared business logic that could be factored out. In
contrast, the duplication between two DTOs reveal shared data
that can be factored out in a smarter DTO hierarchy.

III. CONCLUSIONS AND FUTURE WORKS

In this paper we propose to support the refactoring towards
the creation of rich business in an Enterprise Application. We
achieve this by analyzing the DTOs and their relations with
other classes. To this end, we visualize the calls and the code
duplications present in the classes related with the DTOs. We
applied it to an industrial case study, and we were able to
identify three logical sets of data objects, to identify three
kind of duplication, and to identify SessionBeans that used
data from two disjoint group of elements.

We plan to continue in this direction, and to refine the

presented technique and visualization. We plan also to perform
other kind of analyses on DTOs.

First, we intend to evaluate the relations between and
EntityBeans and DTOs. By evaluating the relations among
the DTOs, the Entity Beans and the database it is possible
to see which are the data used by a DTO. We can match
the database tables to the DTOs that use them, thus logically
grouping these tables. We can also evaluate which data from
the database tables are actually used, leading to an analysis of
the organization of the data in the database.

Second, we plan use static data flow analysis [6] to trace
a DTO in the source code to highlight how the actual data
moves inside the application.

Third, exposing the relations among DTOs and other soft-
ware element can help us to logically group application’s
elements that share the same data. Comparing this clustering
with the existing static package organization or the run-time
architecture can provide helpful insight when refactoring the
application’s structure.

In order to validate this work we plan to perform experi-
ments using industrial partners.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the
Hasler Foundation for the project “Enabling the evolution
of J2EE applications through reverse engineering and quality
assurance” (Project no. 2234, Oct. 2007 – Sept. 2010). We also
gratefully acknowledge the contribution of our (anonymous)
industrial partner for providing the case study used in this
work. We thank Oscar Nierstrasz, Jorge Ressia and Erwann
Wernli for their comments on drafts of this paper.

REFERENCES

[1] L. G. DeMichiel, “Enterprise JavaBeans specification, version 2.1,” Sun
Microsystems, Nov. 2003.

[2] M. K. Linda DeMichiel, “JSR 220: Enterprise JavaBeans specification,
version 3.0,” Sun Microsystems, May 2006.

[3] M. Fowler, Patterns of Enterprise Application Architecture. Addison
Wesley, 2005.

[4] M. Meyer, T. Gı̂rba, and M. Lungu, “Mondrian: An agile visualization
framework,” in ACM Symposium on Software Visualization (SoftVis’06).
New York, NY, USA: ACM Press, 2006, pp. 135–144. [Online].
Available: http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf

[5] O. Nierstrasz, S. Ducasse, and T. Gı̂rba, “The story of Moose: an
agile reengineering environment,” in Proceedings of the European
Software Engineering Conference (ESEC/FSE’05). New York NY:
ACM Press, 2005, pp. 1–10, invited paper. [Online]. Available:
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf

[6] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in 2001
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE’01). New York, NY, USA: ACM, 2001,
pp. 54–61.

2

http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://scg.unibe.ch/archive/papers/Nier05cStoryOfMoose.pdf

	Introduction
	DTOs Analysis and Evaluation
	Conclusions and future works
	References

