
Using Context Information to Re-architect a System∗

Laura Ponisio, Oscar Nierstrasz
Software Composition Group

University of Bern
Switzerland

{ponisio,oscar}@iam.unibe.ch

Abstract

Successful software systems cope with complexity by or-
ganizing classes into packages. However, a particular or-
ganization may be neither straightforward nor obvious for
a given developer. As a consequence, classes can be mis-
placed, leading to duplicated code and ripple effects with
minor changes effecting multiple packages.

We claim that contextual information is the key to re-
architecture a system. Exploiting contextual information,
we propose a technique to detect misplaced classes by an-
alyzing how client packages access the classes of a given
provider package. We define locality as a measure of the
degree to which classes reused by common clients appear
in the same package. We then use locality to guide a sim-
ulated annealing algorithm to obtain optimal placements
of classes in packages. The result is the identification of
classes that are candidates for relocation.

We apply the technique to three applications and validate
the usefulness of our approach via developer interviews.

Keywords: Packages, software measurement, simulated
annealing, program understanding, reverse engineering

1 Introduction

Where was that class that I always forget to update each
time I make a change on this one? Where was the class that
was doing something similar to what this one does? Not
having this information at ones fingertips results in delays,
duplication, and bugs which lead to seriously hindering the
maintenance of an object-oriented system [11].

Class management, however, can be facilitated by the
intelligent use of a group of classes. In the context of
this paper, a package is a group containing definitions of
classes. Packages are important because they are units of

∗In Proceedings of the 3rd Software Measurement European Forum
2006 (SMEF’06), 2006, pp. 91-103.

organization [8]. Years of modularization folklore encour-
age developers to put related classes in the same package
to make systems more flexible with respect to changing re-
quirements. However, as the system evolves, the organi-
zation of classes into packages degrades. Different clients
have different views regarding which classes are related,
and therefore, in which package a class should be defined.
In other words, the locality of a group of related classes is
altered or destroyed by dispersing the classes into different
packages. This different perspectives transform the original
design into an unclear one, which in turn hinders the main-
tenance of the system. The question now is how to re-gain
a high locality of the classes and how to understand the lo-
cality and the whole system [1].

Previous approaches neglected the perspective of the
client. We claim that context information is the key issue
to re-architecture a system. To base understanding only on
internal attributes of the software entities is not enough. We
have also to look at the way the software entities are used.

We have developed a technique to detect classes that are
misplaced. Part of the challenge was to answer the question:
misplaced with respect to what? If different viewers of a
set of classes have different interests, it is not realistic to
suppose that developers would agree about what is the ideal
way of partitioning the system. And if we cannot measure
it yet, how can we reason about it?

Contextual information indicates similarities between
classes through the way classes defined in a package are
used. Based on this information, our technique uses a visu-
alization that points out classes potentially misplaced.

The user of this technique benefits by getting a better
understanding of the system. In the first place, getting a
mental picture of the overall state of the system regarding
locality of classes. In the second place, the developer ben-
efits by getting hints of which classes are misplaced, where
they potentially belong, and which misplacement to tackle
first. Our approach does not automatically apply changes to
the code.

We validate this technique by applying it to three real

1

systems, describing how they communicate design princi-
ples violation and how they help the developer to under-
stand the system in common software analysis tasks.

Structure of the paper. In Section 2 we present our ap-
proach in a nutshell. In Section 3 we explain how we rep-
resent packages. In Section 4 we define locality. In Sec-
tion 5 we present the optimization algorithm used to obtain
solutions with maximum or near maximum locality. In Sec-
tion 6 we show the results of applying out methodology to
the case studies. In Section 7 we elaborate some discus-
sion and future work. In Section 8 we refer to related work
before concluding in Section 9.

2 Context Information in a Nutshell

Our ultimate goal is to improve the system in the sense
that classes that are used together are in the same package.
As a result, we propose an operational technique (a pro-
cedure) to represent and manage the location of classes into
packages in large object-oriented systems. But first we have
to understand and represent how classes in a package belong
together. We exploit the information present in the context,
i.e., how the classes are used. Let us present a metaphor
from every day life that describes the idea behind our ap-
proach to catch the locality of the classes.

Example Books related to the subject green may be-
long to different editorial offices, have different authors and
have, in short, no explicit attribute that connects them, but
they also belong to a group: the group of books consulted
by readers of subject green.

If we were organizing a library, it would make sense to
put on the same shelf the books that belong to the same
field of study. That is straightforward if we know the field
of each book, but not if we are unaware of it. However,
even without knowledge about the contents of the books,
we could observe that every group of readers is interested
mainly in one field. If that is the case, a book read only by
people interested in subject blue that is on the same shelf
as books read by students interested in subject green would
call our attention and most people would agree that it is out
of place. Figure 1 depicts this situation.

We expand this idea to understand locality in large object
oriented systems. More concretely, to describe the locality
of the classes of a package.

Now Figure 1 does not represent books anymore, but
code. It depicts four packages of a system containing
classes. We believe that most of the developers would agree
that the locality of these packages would increase if the blue
class where defined in the blue package, instead of being
defined in the green package.

Figure 1. In this library, among the green
books there is one read by the people that
read only blue books.

This example presented the idea behind our technique to
find classes that are misplaced: two classes are related if
they are used by the same package. We define locality of
a package as a quantification of how much its classes are
related.

There are conditions under which this quantification
holds. Indeed, there are some restrictions that determine
if a package is a good indicator. For instance, if a package
P accesses every class in every package, then P does not
provide information. Our solution in this case is simply to
ignore P .

3 Package Representation and Analysis

Software doesn’t have any form. Opposed to mechani-
cal simulation, where real objects are represented in two or
three dimensions, software is intangible [10]. We choose a
rectangle as the shape to represent packages and classes [7].

The goal is to capture characteristics of the packages
or classes that we consider relevant for understanding the
code, and to associate them through metrics with the rect-
angle size and color. Figure 2 shows the mapping from code
to our visualization.

P Q

The size of each small rectangle represents the
services that each class provides to its neighbors

(the other pink rectangles, which are
classes defined in the same package).

This class is defined in P and is accessed from classes defined in Q.
It has neither dependencies with other classes defined in P.

Therefore, it is potentially misplaced. It is represented by a pink
rectangle in the contextual information visualization.

Packages represented in contextual information visualization

Figure 2. Two packages and their representa-
tion in contextual information visualization.

2

The big rectangle represents a package, and the small
ones inside it represent the classes defined in the package.
The color shows the locality of the classes. If the class is
misplaced, it is drawn as a rectangle inside the package
where it is defined and painted with the color of another
package (a potential destination).

3.1 Contextual Information Inside the Package

Understanding the distribution of classes into packages
is one way of analyzing the pros and cons of re-structuring
a large-scale software system.

With visualization described in the previous section, the
developer receives hints about which classes to move and
where, but nothing about what he should tackle first.

Contextual information provides a solution to this prob-
lem. It captures this pulling in forces with the happiness of
a class.

3.2 The Happiness of a Class

Classes interact to perform tasks. They are naturally so-
ciable. Therefore they are happy when they have clients in
package where they are defined. The more services a class
provides to its neighbors, the happier it is.

With the locality, we detect classes whose clients belong
to foreign packages. When a class is used by some foreign
clients and the neighbors are used by a complete different
group, this circumstance pulls the class out. But this infor-
mation omits the reasons why the class is in the package.
For instance, there can be structural reasons supporting the
placement of a class in a determined package.

This two classes are marked as
misplaced, but they are happy to be there

because they have clients
among the other classes in T

This classe defined in S is misplaced.
The context uses this class in a different way as it uses the neighbors of the

class. And the class does not have clients in S.

Figure 3. Visualization of the happiness of a
class given by the context information.

By adding size to the rectangles representing classes,
the proposed visualization can show not only the misplaced

classes, but also hints that tell the developer which move-
ments are more important than others.

The next section details the procedure to automatically
find the misplaced classes and the advice as to where they
could be defined.

4 Capturing Locality

Locality captures the degree to which classes in a pack-
age P belong together.

Cohesion measures also the degree to which classes be-
long together [4], the difference being that cohesion is de-
rived through the explicit dependencies between the classes
in P , whereas locality is derived through the contextual in-
formation. More concretely, locality is derived from the
way classes are used. It represents the forces of the con-
text pulling classes together or apart.

Given a set D of explicit dependencies between classes
defined in packages, locality counts how many classes in the
package are used by the same client. In Figure 4(b) all the
classes are accessed by classes in the two client packages.
But in Figure 4(a) class H seems to not to belong to the
package P1.

P2

Client

Class E

Class D

Client

Client

Client packages use classes C,
D and E

P1

Client

class H

class A

Client

Client

Client packages use either
class A and B of class H

(a) class H is candidate to be misplaced (b) None of the classes is specially accessed

dependencies of kind references from any class in client packages
to some of the classes of P1 and P2

class B

Class C

Figure 4. Deriving locality from the context.

4.1 The Model

Our source model consists of classes, packages, and de-
pendencies. To express the cohesion measures unambigu-
ously we provide the following set-theoretic formalism.

An object-oriented system consists of a set of classes, C,
where A, B, C range over classes.

A,B,C ∈ C

Let P be some partitioning of C, where P,Q,R range over
partitions.

P,Q,R ∈ P

3

There are dependencies between classes. Each dependency
is of kind references or inherits.

inherits, references ⊆ C × C

Each dependency determines a client and provider

depends ⊆ C × C

The clients of a class are the classes that depend on it:

clients(C) = {A ∈ C | A depends C}

A partition P may contain classes that have clients in
other partitions. These classes constitute the interface of
P .

interface(P) = {C ∈ P | clients(C)− P 6= ∅}

The classes of P that do not belong to the interface of P
are internals and we ignore them.

inherits represents the single-inheritance definition, the
subclass being the client being and the superclass being the
provider.

references, represent explicit references to a class such
as the ones created during class instantiation.

Finally, we acknowledge every dependency between two
classes. For instance, if A instantiates B three times, then
we have three dependencies between A and B where A is
client of B.

4.1.1 The Definition of Locality

We need a way to quantify the special accesses on a class
regarding those of its neighbours. This is the definition of
locality of a package.

Definition 1 We define Locality (loc) of a package as the
sum of pairs of classes from the interface of a package hav-
ing a common client package (f), divided by the number of
pairs that can be formed with all classes in the interface.

loc =
∑

a,b∈I

f(a, b)
#Pairs

Where

I = interface(P)
#Pairs = |I|×(|I|−1)

2
C = clients(a) ∩ clients(b)

f(a, b) =
{

1, if C 6= ∅
0, otherwise

Note that if #Pairs = 0 (i.e.,, if | I |= 0 or 1), then loc is
undefined, since we cannot infer anything from the context
if the context does not use the package.

But given a new configuration of classes in the system,
we want to know how is the locality for the whole system, to
know if we are doing better or worse by moving the classes.
We quantify that with the average of loc applied to the pack-
ages.

Definition 2 We define average locality of a system avloc
as the average of the values of loc of the packages.

avloc =
∑
p∈P

loc (p)
| P |

We determine manually which are the packages that
should participate in the analysis. Packages without clients
are excluded because we cannot infer the locality of its in-
terface classes. Packages that access ubiquitously classes in
other packages are ignored because their dependencies do
not provide meaningful information. For example package
P that access only three packages, tells about the locality of
the classes defined in those packages. However, P access-
ing every class in every package in the system carries poor
information about those accessed packages.

5 Simulated Annealing Guided by Context
Information

In 1983 Kirkpatrick et al. [9] proved that the search of an
optimal solution in combinatorial optimization algorithms
is analogous to a method that models the search of a state
of balance of a solid. In the field of thermodynamics, that
method is well know as simulated annealing (SA).

When using simulated annealing to make glass, for
example, the system starts at a high temperature with
molecules moving randomly. The higher the temperature,
the more the molecules move. After some time the sys-
tem cools down. Eventually, it cools down enough for the
molecules to form a glass, which is the resulting solid. If the
glass contains defects, the system is heated again followed
by the cooling time. This process is repeated until finding a
satisfactory result, in our example, a glass with none or with
acceptable defects, or having reached a condition to stop.

Because of the analogy existing between the method that
models the search of a state of balance in a solid, and the
combinatorial optimization method, the later was named
simulated annealing as well.

We use the simulated annealing method to find an opti-
mized solution to the problem of locality. First, we define
the problem as distributing classes into packages maximiz-
ing locality in large systems in reasonable time. Then we
provide a function to guide the algorithm towards the opti-
mal solution and the possible movements of classes between
packages.

4

The simulated annealing algorithm starts then to search
for the optimal solution, or for solutions close to the optimal
one.

However, our interest is not in finding the optimal solu-
tion. Even if this solution could be found, nothing guaran-
tees that all the developers will agree that this is the ideal
partitioning of the system.

Our interest is in obtaining the movement of classes
around packages that led the optimization function to be
closer to the optimal value. It is this information that we
visualize.

The movements In the context of thermodynamics,
molecules move randomly. In the context of using context
information to re-architecture a system in software engi-
neering, the movement of molecules represents the move-
ment of classes from one package to another. In a software
system there are constraints that determine which classes
can moved. Due to this constraints and for reasons of per-
formance, the movements in our approach are guided rather
than random.

Experiments giving total freedom in choosing randomly
the next package to be acted upon were inefficient. We
therefore optimized the algorithm. The modification con-
sisted in ordering the packages according to a criterion, for
instance the cohesion of the package, and apply random
movements on those packages with lower cohesion.

The Optimization Function The simulating annealing
algorithm needs an objective function to guide it to find so-
lutions tending to the optimal one. Because our focus is to
understand the locality, we define the optimal solution as
the one that maximizes the average locality of the system.
The optimization function is in this case (1 - avloc), which
is based on avloc as it was defined in Section 4.1.1. The
objective function ranges between 0 and 1.

6 Analysis of the Context Information

In order to study the effectiveness of our approach, we
applied in three real systems to perform common tasks in
reverse engineering such as the analysis of coupling and co-
hesion, and the understanding of the architecture.

Code should always exhibit low coupling and high cohe-
sion, and the architecture of the system (e.g., layered, black-
board, etc.) should be respected. In the following examples
we apply the proposed contextual information approach to
real systems and show how we use it to perform the analysis
tasks.

6.1 SYSTEM I

SYSTEM I consists of 138 classes distributed into six

packages. It has a layered architecture with package Q and
S being in the lowest layer, and packages P and R in the
layer immediately above. All its subsystems use a common
structure defined in package S. Figure 5 shows the locality
of SYSTEM I obtained using the contextual information.

P Q R S T U

Figure 5. SYSTEM I Example. More than one
color in a package indicates potential lack of
locality. Size of smaller rectangles represent
forces pulling the class towards the package.

6.1.1 Pattern 1: The Library

We observe a significantly bigger package, Q containing
86 classes, more than the half of the classes of the system.
Most of the classes in this package are not connected to
each other. We see only one rectangle significantly bigger
than the others. This represents an exceptional class who is
related to the others by being their superclass or referenced
statically (e.g., instantiated).

The small size in most of the red rectangles show that
coupling between the classes in package Q is low. How-
ever, the visualization shows that there is no evidence that
moving its classes somewhere else would increase the av-
erage locality of the system. If used at all, the shape of Q
suggests that it could be, for instance, a big library.

6.1.2 Pattern 2: The Newcomer

If we focus our attention on packages S and T , we observe
that there seems to be a close interaction among those. T

5

depends on S, and S depends on T . The small cyan rect-
angles in R and S, indicate that T consumes services from
classes in package R as well, being almost the exclusive
client of classes defined in R and S.

It is surprising that two classes in T call attention to-
wards the locality, but at the same time they have higher
coupling with the other classes defined in T . They are,
therefore, happy to be defined in T , and their size is a hint
to the developer of the presence of a possible anti-pattern or
bad smell.

Closer inspection of the code determined that a later ad-
dition of methods in package S added a violation of the
layered architecture. This methods, belonging to classes in
S (which is in the lowest layer), reference explicitly classes
defined in a higher-layer package as T . If we know that S
is in a lower layer that T , then the picture denounces the
existence of dependencies from a package in a lower layer
towards a package in a higher layer.

This situation was a consequence of T being a later add-
on, and those foreign cyan classes in R and S being added
only to satisfy needs of the new client, T .

6.1.3 Pattern 3: The Remainer

In package U , most of the classes have low coupling among
them, indicating a potentially low-cohesive package. Be-
sides, two of the lowest-coupled classes are hinted to be put
in two other different packages. This looks like plainly mis-
placed classes.

Inspection of the code indicated that they were obsolete
classes, one implementing printing debugging facilities to
debug the code of a class defined in P , and the other an ob-
solete builder statically referenced by the class responsible
for the user interface. This last class was defined in R. The
classes were misplaced, for the developers agreed that they
belong to the trash.

6.2 CODECRAWLER

CODECRAWLER is a small software visualization tool
[7]1 With 244 classes distributed in eleven packages,
CODECRAWLER was built under the same design principles
than SYSTEM I, but with the difference that while SYSTEM
I is heavily evolving, CODECRAWLER is already a mature
tool. Figure 6 shows a visualization of CODECRAWLER.
The uniformity of colors show a high modularization of the
packages. Only three of the eleven packages show more
than their own color, and in all the cases, the classes hinted
to be relocated do not have particularly strong coupling with
the others in the package, which is a sign of good design.

1See http://www.iam.unibe.ch/ scg/Research/CodeCrawler/ for more
information.

P Q R S T U V W X Y Z

Figure 6. CODECRAWLER Example. Uniformity
of one color in most of the packages indi-
cates high modularization. Only in three spe-
cific places there are potentially misplaced
classes.

6.3 An Industrial System

BASE VISUALWORKS is an industrial system, developed
over the last 16 years. It contains the runtime entities of
the Cincom VisualWorks Smalltalk environment2. These
range from the classes, and memory objects to the compiler
framework, debugger, code browser, and the support for
the operating system. Its 2022 classes are distributed into
fourteen subsystems, each containing packages. Of those
packages, we chose to analyze Collections, which
contains 228 classes distributed among eight packages.
Collections is strategic because it contains the classes
related to or supporting the collection structure.

6.3.1 Pattern 4: The Friendly Package

The contextual information visualization in Figure 7 shows
high locality in packages P , R and S, and low locality
in packages Q, T , U , and W . Half of the packages in
Collections has high locality and the other has poor
or extremely low locality.

The structure of package U is particular: it is an ex-
tremely friendly package. The many colors of the rectan-
gles in of U indicate that there are strong forces pulling its
classes apart. This means that its classes are separately ac-
cessed by a significant number of packages of the subsys-
tem, namely four out of the eight .

Three classes that seem to be pulled towards U (the little
black rectangles) are defined in packages T and W . How-
ever, two of those classes are happy in T . Their size, being

2 http://www.cincomsmalltalk.com

6

P WVUTSRQ

Figure 7. Collections Example. Package U
shows extremely low locality. The distribu-
tion of its classes indicates it is completely
anomalous, or a package with a special pur-
pose.

larger than the rest of the classes in T , indicates that they
provide services to classes defined in T .

Observed with traditional approaches based only on in-
ternal attributes, the classes in U would expose low cou-
pling among them, and U would indicate common low co-
hesion. Context information shows how exceptional U is.
Its classes are so much distributed, that the visualization in-
dicates and anomalous package or a package having a spe-
cial purpose. It could indicate the existence of a design de-
cision supporting the presence of U .

With contextual information visualization showing this
pattern, the developer is encouraged to do more investiga-
tion before doing a possible dangerous refactoring.

Analysis of code confirmed the uniqueness of U : it con-
tains abstract classes which are root of inheritance hierar-
chies contained in the neighbor packages, and must there-
fore be loaded first.

7 Discussion and Future Work

Our approach builds on existing measurements, a simu-
lated annealing algorithm, and a visualization technique.

The novelty of this work’s contribution resides in using
contextual information of the package, exploiting external
attributes as well as the internal ones.

Part of the contribution of this work is the effort of un-
derstanding the locality of the system, which resulted in a
definition of locality, as a first step to quantify it.

We assume that there is no universal partitioning of the
classes in the system that satisfies the different perspectives
of all the developers and users of the system. Therefore,
we do not attempt to claim in this work that locality is a
full measurement. It remains to be proved that locality is an
homomorphism from the system entities into numbers, and

that it thus satisfy the representation condition of measure-
ment [4]. However, there is intelligence about some classes
that must be located in the same package, reasoning under
the principle that classes that are used together should be
defined together.

A Substitute for the Optimization Function The opti-
mization function can be replaced for another based in a
established measurement to suit the goals of optimization.
For instance, the optimization function can be based on co-
hesion and coupling metrics, and use different relationships
between classes such as inheritance definition. For reasons
of space, this task is left as future work.

Scalability This approach has shown to be scalable in
two aspects, namely the ability to communicate the intan-
gible picture of the package modularization of large object-
oriented software systems, and the flexibility to suit a wide
spectrum of goals to optimize, which can be accomplished
by substituting the optimization function.

8 Related Work

Visualizing large-scale software to understand its prop-
erties is an old and challenging task. Previous software vi-
sualization techniques represented entities of code such as
classes or packages with a variety of devices, ranging from
rectangles [6] to bugs and compass-type plots [?, ?]. This
techniques were not originally devised to understand local-
ity, but other aspects of the code. They are too coarse to
capture the locality attribute of packages, and they do not
exploit the information hidden in the context. Without rep-
resenting the contextual information, structural properties
influencing the distribution of classes remain unseen.

To cope with the problem of poorly understood factors
that influence software evolution and reliability, Langelier
et al. [?] propose to combine automatic analysis with human
expertise. This hybrid technique facilitates the analysis, un-
derstanding and evaluation of software quality in large-scale
software systems. The framework is based on visualization
so that human expertise can compensate the limitations of
automatic analysis when they are applied to complex soft-
ware attributes.

Our technique can be used to support the application of
the existing scientific methods to the problem of software
quality improvement.

A case in point is Basili’s Quality Improvement
Paradigm (QIP) method [?]. Our approach could be used
within this method as a concrete technique to understand
and improve the goal of optimizing locality in packages.

7

Of the various levels at which the process of software de-
velopment can be viewed, if the topmost level is where the
engineer thinks about the technology, and the lowest level
is where the developer thinks about the implementation de-
tails, then the QIP is at a higher level than the technique
proposed in this work. However, our contextual information
technique can be used to support the learning and feedback
activities of software development. It complements there-
fore QIP by providing an automatic method for understand-
ing goals, obtained previously with the application of QIP.

9 Conclusion

The contribution of this article is a novel technique to
analyze the locality of classes defined in packages in large
object-oriented systems.

We claim that contextual information is key to under-
stand and re-architecture a system.

Traditional approaches ignore the value of contextual
information to convey insights about the organization of
the classes into packages. However, this work shows how
our technique detects misplaced classes from the way the
classes are used.

To support the analysis of locality of classes into pack-
ages, we define a process and a visualization layout.

Finally, we have applied our technique to three real sys-
tems and showed how it facilitates their understanding.

References

[1] V. Basili. Evolving and packaging reading technolo-
gies. Journal Systems and Software, 38(1):3–12, 1997.

[2] J. Bieman and L.M.Ott. Measuring functional cohe-
sion. IEEE Transactions on Software Engineering,
20(8):644–658, Aug. 1994.

[3] L. C. Briand, S. Morasca, and V. Basili. Property-
based software engineering measurement. Transac-
tions on Software Engineering, 22(1):68–86, 1996.

[4] N. Fenton, S. L. Pfleeger, and R. L. Glass. Science and
Substance: A Challenge to Software Engineers. IEEE
Software, (7):86–95, July 1994.

[5] B. Henderson-Sellers. Object-Oriented Metrics: Mea-
sures of Complexity. Prentice-Hall, 1996.

[6] M. Lanza. Codecrawler — lessons learned in building
a software visualization tool. In Proceedings of CSMR
2003, pages 409–418. IEEE Press, 2003.

[7] M. Lanza and S. Ducasse. Polymetric views—
a lightweight visual approach to reverse engineer-
ing. IEEE Transactions on Software Engineering,
29(9):782–795, Sept. 2003.

[8] R. C. Martin. Agile Software Development. Principles,
Patterns, and Practices. Prentice-Hall, 2002.

[9] K. S., G. C. D. Jr., and V. M. P. Optimization by
simulated annealing. In Readings in computer vision:
issues, problems, principles, and paradigms, pages
606–615, 1987.

[10] J. T. Stasko and E. Zhang. Focus+context display
and navigation techniques for enhancing radial, space-
filling hierarchy visualizations. In INFOVIS, pages
57–, 2000.

[11] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured design. IBM Systems Journal, 13(2):115–
139, 1974.

Acknowledgments

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “RE-
CAST: Evolution of Object Oriented Applications” (SNF
Project No. 620-066077, Sept. 2002 - Aug. 2006)

8

	Introduction
	Context Information in a Nutshell
	Package Representation and Analysis
	Contextual Information Inside the Package
	The Happiness of a Class

	Capturing Locality
	The Model
	The Definition of Locality

	Simulated Annealing Guided by Context Information
	Analysis of the Context Information
	System I
	Pattern 1: The Library
	Pattern 2: The Newcomer
	Pattern 3: The Remainer

	CodeCrawler
	An Industrial System
	Pattern 4: The Friendly Package

	Discussion and Future Work
	Related Work
	Conclusion

