
Do Comments follow Commenting Conventions?
A Case Study in Java and Python

Pooja Rani∗, Suada Abukar∗, Nataliia Stulova ∗, Alexander Bergel†, Oscar Nierstrasz∗

∗Software Composition Group, University of Bern, Bern, Switzerland
†Department of Computer Science, University of Chile, Santiago, Chile

� scg.unibe.ch/staff

Abstract—Assessing code comment quality is known to be a
difficult problem. A number of coding style guidelines have
been created with the aim to encourage writing of informative,
readable, and consistent comments. However, it is not clear from
the research to date which specific aspects of comments the
guidelines cover (e.g., syntax, content, structure). Furthermore,
the extent to which developers follow these guidelines while
writing code comments is unknown.

We analyze various style guidelines in Java and Python and
uncover that the majority of them address more the content
aspect of the comments rather than syntax or formatting, but
when considering the different types of information developers
embed in comments and the concerns they raise on various online
platforms about the commenting practices, existing comment
conventions are not yet specified clearly enough, nor do they
adequately cover important concerns. Our results highlight the
mismatch between developer commenting practices and style
guidelines, and provide several focal points for the design and
improvement of comment quality checking tools.

Index Terms—Comment analysis, Software documentation, Cod-
ing Style Guidelines

I. INTRODUCTION

Developers use several kinds of software documentation, in-
cluding design documents, wikis, and code comments, to un-
derstand and maintain programs. Studies show that developers
trust code comments more than other forms of documenta-
tion [1]. As code comments are usually written in a semi-
structured manner using natural language sentences, and they
are not checked by the compiler, developers have the freedom
to write comments in various ways ([2], [3]).

To encourage developers to write consistent, readable, and
informative code comments, programming language commu-
nities and several large organizations, such as Google and
Apache,1 provide coding style guidelines that also suggest
comment-related conventions ([4], [5], [6]). These conventions
cover various aspects of comments, such as syntactic, stylistic,
or content-related aspects. For instance, “Use 3rd person
(descriptive), not 2nd person (prescriptive)” is an example
of a stylistic comment convention for Java documentation
comments.2 However, to what extent these aspects are covered

1Code style guide section in https://spark.apache.org/contributing.html
2https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

within different style guidelines and languages is not known.
Having an understanding of various commenting conventions
can help developers and researchers know what our current
style guidelines lack. To gain this understanding, we formulate
the research question: RQ1: Which type of comment conven-
tions are suggested by various style guidelines?

As high-quality comments support developers in understand-
ing and maintaining their programs, it is essential to ensure
the adherence of their comments to the style guidelines to
evaluate the overall comment quality. Rani et al. have inves-
tigated class comments of Smalltalk and their adherence to
the commenting conventions provided by a default template
[7]. They found that Smalltalk developers follow writing style
and content-related comment conventions more than 50% of
the time, but they use inconsistent structure and formatting
of comment content. As Java and Python are among the
most popular languages in use, several research works have
focused on studying comments in Java and Python ([8], [9]),
some especially focusing on class comments [10]. However, it
remains largely unknown whether Java and Python developers
adhere to the commenting conventions suggested by the style
guidelines or not. To obtain this understanding, we formulate
another research question: RQ2: To what extent do developers
follow commenting conventions in writing code comments in
Java and Python?

Our initial results show that the majority of style guidelines
propose more content-related conventions than other types of
conventions, but compared to the different types of content
developers actually embed in comments ([8], [9], [10]), and the
concerns they raise on online platforms (e.g., StackOverflow
or Quora) regarding comment conventions [11], it is clear
that existing conventions are neither adequate, nor precise
enough. On the other hand, these style guidelines often include
conventions that are not relevant or applicable in many cases,
leading developers to ignore them.

When the conventions are applicable, developers often follow
the writing style and content conventions (80% of comments),
but violate structure conventions in Java and Python class
comments (nearly 30% of comments), confirming the previous
results for Smalltalk by Rani et al. [7]. Although the project-
specific guidelines provide very few additional class comment

http://scg.unibe.ch/staff/
https://spark.apache.org/contributing.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html


conventions, these conventions are followed more often com-
pared to the conventions suggested by the standard guidelines
both in Java and Python class comments. The data related to
RQ1 and RQ2 is given in the replication package.3

Our results highlight the mismatch between conventions sug-
gested by the style guidelines but not followed by developers
in their projects and vice versa. Verifying this mismatch is
currently not well-supported by tools or linters. The linters
currently support very limited comment conventions [12], [13],
for instance, they are often limited to checking the presence or
absence of documentation comments, or their formatting with
code. Our results indicate the need to conduct extensive studies
on (i) which comment-related conventions linters provide, (ii)
how well linters cover comment conventions from various
style guidelines, and (iii) building tools and techniques to
reduce the mismatch between developer commenting practices
and style guidelines.

II. STUDY DESIGN

Data collection. Rani et al. have previously investigated the
adherence of Smalltalk class comments to the conventions
provided by a default template [7]. To verify their results
across other languages, we analyze class comments in Java
and Python. Rani et al. also investigated class comments of
diverse Java and Python projects that vary in terms of size,
domain, and contributors [10]. We use their dataset of Java
and Python comments for our analysis (RQ1 and RQ2). Table I
shows the list of these projects in the column Project for the
selected languages shown in the column Language.

a) Comment conventions in Style Guidelines (RQ1): The goal
of this RQ is to investigate the type of comment conventions
(or rules) various style guidelines suggest. The term comment
convention refers to suggestions or rules about various aspects
of comments, such as syntax, formatting, content, or writing
style. As a first step, we identify the standard and project-
specific guidelines that the selected projects recommend for
code documentation. Then we extract the comment-related
rules from these guidelines. Table I shows each project in the
column Project and if it supports project-specific guidelines
(X) or not (×) for comments in the column Project guideline.
The column Standard guideline describes the standard guide-
lines that the project mentions on their project page dedicated
to writing comments.

As comment conventions can be scattered across multiple
paragraphs in a style guideline, we scan all sentences and
select those that mention any convention about comments.
A rule can target various types of comments, such as class,
method, package, or inline comments, or part of comments
(e.g., summary, parameters). In case a sentence targets multiple
comment types, we split the rule for each type. In total, we
collected 600 comment-related rules. We organized all rules
into a taxonomy of five main categories: Content, Structure,

3https://doi.org/10.5281/zenodo.5153663

TABLE I
OVERVIEW OF THE SELECTED PROJECTS AND THEIR STYLE GUIDELINES.

Language Project Project guideline Standard guideline
Java Eclipse.cdt X Oracle

Hadoop X Oracle
Vaadin X Oracle
Spark X Oracle
Guava × Google
Guice × Google

Python Django X PEP8/257
Requests X PEP8/257
Pipenv × PEP8/257
Mailpile × PEP8/257
Pandas X Numpy
iPython X PEP8/257, Numpy
Pytorch X Google

Formatting, Syntax, and Writing Style. If a rule does not fit
any of these categories, we put it into the Other category.
The rationale behind the taxonomy is that the approaches
evaluating comment quality can focus on a specific aspect
of comments they want to evaluate and improve. Categories
such as Content and Writing Style, are considered important by
Rani et al. in their work on evaluating Smalltalk comments [7].

According to Rani et al., the Content category contains the
rules that describe which type of information the comment
should contain while the Writing Style category contains
natural-language specific rules, such as grammar, punctuations,
and capitalization. We added three more categories, following
their methodology, to cover other aspects of comments. The
Formatting category deals with the rules related to indentation,
blank lines, or spacing. It often complements Structure cate-
gory conventions. The category Structure contains the rules
about organizing the text, or location of the information in
comments. For example, how the tags/sections/information
should be ordered in the comments. The Syntax category
focuses on the syntax to write a specific type of comments,
for instance, which symbol to use to denote comments. Once
each rule is assigned to a category, we analyze the frequency
of various types of rules in the style guidelines to answer the
RQ1.

b) Adherence of comments to conventions (RQ2): The goal
of this RQ is to verify whether or not developers follow the
comment conventions, i.e., the rules identified in the previous
RQ, in practice in their projects. Currently, there are no tools
available that automatically check comments against all types
of rules, therefore we manually validate a sample of class
comments against the rules applicable to class comments (270
rules out of 600 rules). For the scope of this work, we
first focus on the rule types that require manual validation
due to limited tool support i.e., all types of rules other than
Formatting.

We use the dataset by Rani et al. that provides sample class
comments of the selected projects from Java and Python [10].

https://doi.org/10.5281/zenodo.5153663


They selected a statistically significant sample of class com-
ments from each project with 95% confidence and 5% margin
of error, resulting in a total of 700 class comments for both
languages. In case a comment follows a particular rule, we
label the rule as followed, otherwise as not followed. There
are often cases where a rule is not applicable to the comment
due to the unavailability of that information in the comment.
For instance, the rules verifying syntax, content, or style of
the version information in a class comment cannot be checked
if the version information is not mentioned in the comment.
For such cases, we label such rules as not applicable to the
comment. We exclude a few rules for now that cannot be
verified with the current dataset due to the abstract nature of
a rule, the unavailability of the symbols that denotes the class
comment, or code associated with the class, e.g., to verify the
Oracle rule “for the @deprecated tag, suggest what item to
use instead”, class comment alone is not enough and require
code of the class to verify the replacement item.

We measure how many comments follow a particular rule and
how many do not. One author labels the comments, and the
second author reviews the labeled comments. In cases where
they do not agree, the third author is consulted, and conflicts
are resolved using the majority voting mechanism (Cohens
kappa=0.80).

III. EARLY RESULTS

Fig. 1. Types of conventions in Java and Python guidelines

a) Comment conventions in Style Guidelines (RQ1): Figure 1
shows the total number of conventions for each standard
guideline (Oracle and Google) and project-specific guidelines
(including conventions from the standard guidelines) on the y-
axis. The x-axis indicates the ratio of conventions belonging
to a particular category from our taxonomy. Our results show
that the majority of style guidelines present more rules about
the content to write (Content) in comments, except for the
Google style guideline in Java, which contains more rules on

how to format and structure comments (Formatting, Structure).
Since the Oracle guideline is used as a baseline in several Java
projects, project-specific guidelines suggest few additional
comment conventions, and these conventions often either con-
flict with or clarify the standard guidelines. For example, the
conventions, such as line length limit and indentation with two
spaces, four spaces, or tab, are often among such additional
and conflicting rules across projects. Identifying such rules
and ensuring they are configured properly in tools can help
developers in following them automatically.

Figure 1 also shows the distribution of rule types for Python
style guidelines. Numpy and the projects following it (Pandas
and iPython) contain the most rules about what type of infor-
mation to write in comments and how to write it, compared to
other standard guidelines, such as those of Google, PEP, and
Oracle. For example, the Numpy guideline suggests writing
a short and extended summary of the class, usage examples,
notes and warnings in a class comment, and provides syntax
and style conventions to write these types of information.
Class comments of iPython and Pandas contain all of these
information types and follow the syntax conventions to write
them. Interestingly, developers write such types of information
in all other projects ([9], [10]) regardless of if the project
guideline suggest or not, but they are writing these information
types in inconsistent ways. Previous comment analysis studies
in Java and Python also show that developers embed other,
different types of information in comments, such as Usage,
Expand, Rationale, or Pointer, but we do not find conventions
in the corresponding style guidelines (Google, PEP, Oracle) to
write such types of information ([8], [9]).

We observe that even though style guidelines are intended
to encourage and help developers to write good comments
for all code entities, comment conventions are scattered
across multiple sources, documents, and paragraphs.
Thus, it is not always easy to locate conventions
particular to one entity (class, function, inline), causing
developers to seek conventions using online sources[11].
Finding. The majority of the style guidelines propose more content-
related conventions than other types of conventions, but they are
not easy to locate in the style guidelines, and do not always match
developer commenting practices.

Finding. The Numpy style guideline provides more rigorous content
conventions compared to other style guidelines, such as Oracle,
PEP257, or Google.

b) Comment conventions in Style Guidelines (RQ2): Figure 2
shows the distribution of comments within each project that
follows rules, do not follow them, or to which the rules are
not applicable. For example, in Eclipse on average 27% of the
comments follow the rules, whereas 3% of comments violate
the rules, and 70% of the comments do not have enough
relevant information within them to check them against a
rule. The majority of the class comment rules in Java are
not applicable to selected comments (50-70%) whereas in



49%

16%

47%

11%

54%

49%

38%

27%

32%

25%

24%

63%

53%

7%

5%

10%

3%

6%

10%

12%

3%

3%

2%

2%

3%

2%

44%

79%

43%

86%

40%

42%

50%

70%

65%

73%

74%

35%

45%

Django

iPython

Mailpile

Pandas

Pipenv

Pytorch

Requests

Eclipse

Vaadin

Spark

Hadoop

Guava

Guice

Py
th

on
Ja

va
Follow rules Not follow rules Not applicable rules

Fig. 2. Percentage of comments that follow rules, do not follow them, or to
which rules are not applicable.

Python the ratio is much less. The number of not applicable
rules shows that the style guidelines suggest various comment
conventions, but developers rarely follow them while writing
comments. For instance, the Oracle rules in Java, such as “use
FIXME to flag something that is bogus or broken”, or “use
@serial tag in class comment” are rarely followed. Similarly,
some rules in Python, such as “Docstrings for a class should
list public methods and instance variables” are also rarely
followed.

Finding. Style guidelines suggest various comment conventions, but
developers do not or rarely follow them while writing comments.

Fig. 3. Types of rules followed or not in Java and Python projects

Of the rules that are applicable as shown in Figure 3, writ-
ing style and content rules were more often followed than

syntax and structure rules, confirming previous results for
Smalltalk [7]. It shows that developers are interested in writing
informative comments.

Finding. Compared to Python, Java class comments violate rules less
often (as shown in Figure 3).

Finding. Class comments in Java and Python often follow writing
style and content conventions (80% of comments), but violate struc-
ture conventions (30% of comments).

As discussed before, some rules are often followed, while there
are others that are frequently violated. For instance, the syntax
rule “separate the paragraphs with a <p> paragraph tag” in
Spark is violated often. Similarly, in Pandas the rule “a few
sentences giving an extended summary of the class or method
after the short (one-line) summary” is often followed but the
rule “there should be a blank line between the short summary
and extended summary” is often violated. Such conventions
can be further investigated by surveying developers to know
the specific factors, such as the usage of linters for comments,
team strictness, or developer awareness behind these explicit
instances of rule adherence or violation. Although the project-
specific guidelines provide few additional conventions, these
conventions are followed more often than the conventions
provided by the standard guidelines. For example, the rule Do
not use @author tags is specific to Hadoop and in contrast
with the Oracle style guideline, but it is always followed in
Hadoop comments.

Finding. Project-specific class comment conventions are followed
more often than the conventions suggested by the standard guidelines.

IV. IMPLICATION & RELATED WORK

Impact of commenting conventions. Coding style guidelines
impact program comprehension and maintenance activities.
However, not all conventions from the guidelines have the
same impact on program comprehension activities. Smit et al.
[12] ranked 71 code conventions that are most important to
maintainable code. However, they accounted only for missing
or incomplete Javadoc comments on public types and methods,
and did not account for other comment-related conventions,
especially about their content.

Similarly, most previous work has focused on building tools
for formatting and naming conventions for code entities, while
being very limited on comment conventions [2], [14]. We
provide a dataset of 700 labeled class comments and 600
conventions (taxonomy) for Java and Python that develop-
ers often follow or violate in their comments. It can help
researchers rank the specific comment conventions to find out
their importance and impact on the program comprehension
and maintenance activities.

Comment generation. To reduce developer effort in writing
comments, various researchers have proposed to generate



comments automatically. Moreno et al. proposed a template-
based approach to generate class comments in Java [15]. Given
the importance of including developer commenting practices in
such approaches, and the impact of a template on developers
[7], our results can help researchers design such templates
more carefully.

Adherence of comment conventions. Bafatakis et al. eval-
uated the compliance of Python code snippets posted on
StackOverflow to Python style guidelines [16]. Simmons et
al. investigated the extent to which Data Science projects
follow code standards in Python [13]. However, covering other
important comment conventions and automatically verifying
the adherence of comment conventions to the coding standards
is not yet fully achieved. In our study, we find various
comment conventions, such as grammar rules, the syntax of
writing different types of information that developers often
follow, but which are not covered in such studies. Rani et al.
measured the adherence of Smalltalk class comments to the
default comment template and found that developers follow the
writing conventions of the template [7]. Java and Python do not
provide any default template to write comments but support
multiple style guidelines by organizations and projects. We
studied diverse projects in Java and Python that follow various
style guidelines. We found that developers follow writing and
content conventions more than other types, thus confirming
the results of Rani et al. for Smalltalk.

V. CONCLUSIONS

Given the importance of code comments and consistency
concerns in projects, we study various style guidelines and big
open-source projects in the context of comment conventions.
We highlight the mismatch between what the style guidelines
suggest for comments, and how often developers follow them,
and what conventions developers follow in their comments but
which are not suggested or mentioned by the style guidelines.
Our results indicate the need to conduct extensive studies on
various linters or quality assessment tools to know the extent
they cover comment conventions. We also provide several
focal points for the design and improvement of comment
quality assessment tools.

VI. ACKNOWLEDGEMENT

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Assistance” (SNSF project No. 200020-181973, Feb 1, 2019
- Apr 30, 2022).

REFERENCES

[1] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On
the comprehension of program comprehension,” ACM TOSEM,
vol. 23, no. 4, pp. 31:1–31:37, Sep. 2014. [Online].
Available: http://mobis.informatik.uni-hamburg.de/wp-content/uploads/
2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf

[2] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. New York, NY, USA: ACM, 2014, pp. 281–293. [Online].
Available: http://doi.acm.org/10.1145/2635868.2635883

[3] Y. Padioleau, L. Tan, and Y. Zhou, “Listening to programmers —
taxonomies and characteristics of comments in operating system code,”
in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 331–341.

[4] “Oracle documentation guidelines,” 2020. [Online]. Available: https:
//www.oracle.com/technetwork/java/javase/documentation

[5] W. S. Jr. and E. White, The Elements of Style, 4th ed. Allyn and Bacon,
2000.

[6] “Google style guidelines,” 2020, verified on 10 Jan 2021. [Online].
Available: https://google.github.io/styleguide/

[7] P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O. Nierstrasz,
“What do class comments tell us? An investigation of comment evolution
and practices in Pharo Smalltalk,” arXiv preprint arXiv:2005.11583,
2020, to be Published in Empirical Software Engineering.

[8] L. Pascarella and A. Bacchelli, “Classifying code comments in
Java open-source software systems,” in Proceedings of the 14th
International Conference on Mining Software Repositories, ser.
MSR ’17. IEEE Press, 2017, pp. 227–237. [Online]. Available:
https://doi.org/10.1109/MSR.2017.63

[9] J. Zhang, L. Xu, and Y. Li, “Classifying python code comments
based on supervised learning,” in Web Information Systems and
Applications - 15th International Conference, WISA 2018, Taiyuan,
China, September 14-15, 2018, Proceedings, ser. Lecture Notes in
Computer Science, X. Meng, R. Li, K. Wang, B. Niu, X. Wang,
and G. Zhao, Eds., vol. 11242. Springer, 2018, pp. 39–47. [Online].
Available: https://doi.org/10.1007/978-3-030-02934-0 4

[10] P. Rani, S. Panichella, M. Leuenberger, A. Di Sorbo, and O. Nierstrasz,
“How to identify class comment types? A multi-language approach for
class comment classification,” Journal of Systems and Software, vol.
181, p. 111047, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121221001448

[11] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation
issues unveiled,” in Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, J. M. Atlee, T. Bultan, and J. Whittle,
Eds. IEEE / ACM, 2019, pp. 1199–1210. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00122

[12] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Maintainability
and source code conventions: An analysis of open source projects,”
University of Alberta, Department of Computing Science, Tech. Rep.
TR11, vol. 6, 2011.

[13] A. J. Simmons, S. Barnett, J. Rivera-Villicana, A. Bajaj, and R. Vasa,
“A large-scale comparative analysis of coding standard conformance
in open-source data science projects,” in Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2020, pp. 1–11.

[14] M. Arai, “Development and evaluation of eclipse plugin tool for learning
programming style of java,” in 2014 9th International Conference on
Computer Science & Education. IEEE, 2014, pp. 495–499.

[15] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language summaries
for Java classes,” in IEEE 21st International Conference on Program
Comprehension, ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013,
2013, pp. 23–32.

[16] N. Bafatakis, N. Boecker, W. Boon, M. C. Salazar, J. Krinke, G. Oznacar,
and R. White, “Python coding style compliance on stack overflow,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 210–214.

http://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf
http://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf
http://doi.acm.org/10.1145/2635868.2635883
https://www.oracle.com/technetwork/java/javase/documentation
https://www.oracle.com/technetwork/java/javase/documentation
https://google.github.io/styleguide/
https://doi.org/10.1109/MSR.2017.63
https://doi.org/10.1007/978-3-030-02934-0_4
https://www.sciencedirect.com/science/article/pii/S0164121221001448
https://www.sciencedirect.com/science/article/pii/S0164121221001448
https://doi.org/10.1109/ICSE.2019.00122

