
Transactional Memory for Smalltalk?

Lukas Renggli and Oscar Nierstrasz

Software Composition Group, University of Bern
{renggli,oscar}@iam.unibe.ch

scg.unibe.ch

Abstract. Concurrency control in Smalltalk is based on locks and is
therefore notoriously difficult to use. Even though some implementa-
tions provide high-level constructs, these add complexity and potentially
hard-to-detect bugs to the application. Transactional memory is an at-
tractive mechanism that does not have the drawbacks of locks, however
the underlying implementation is often difficult to integrate into an ex-
isting language. In this paper we show how we have introduced trans-
actional semantics in Smalltalk by using the reflective facilities of the
language. Our approach is based on method annotations, incremental
parse tree transformations and an optimistic commit protocol. We re-
port on a practical case study, benchmarks and further and on-going
work.
Keywords. Transactional Memory, Concurrent Programming, Language
Constructs and Features

1 The need for transactions

Smalltalk has inherently weak support for concurrent programming and synchro-
nization. Smalltalk-80 [1] only proposes semaphores as a means for synchronizing
processes and achieving mutual exclusion. The ANSI standard of Smalltalk [2]
does not refer to synchronization at all.

Only a few current Smalltalk implementations provide more sophisticated
synchronization support. VisualWorks Smalltalk provides a reentrant lock im-
plementation that enables a process to enter the same critical section multiple
times. Other processes get blocked until the owning process leaves the critical
section. Unfortunately this kind of synchronization has its drawbacks and is
notoriously difficult to use [3]:

Deadlocks. If there are cyclic dependencies between resources and processes,
applications may deadlock. This problem can be avoided by acquiring re-
sources in a fixed order, however in practice this is often difficult to achieve.

Starvation. A process that never leaves a critical section, due to a bug in the
software or an unforeseen error, will continue to hold the lock forever. Other
processes that would like to enter the critical section starve.

? Proceedings of the 2007 International Conference on Dynamic Languages (ICDL
2007), ACM Digital Library, pp. 207-221. DOI 10.1145/1352678.1352692

2 L. Renggli, O. Nierstrasz

Priority Inversion. Usually schedulers guarantee that processes receive CPU
time according to their priority. However, if a low priority thread is within
a critical section when a high priority process would like to enter, the high
priority thread must wait.

Squeak Smalltalk [4] includes an implementation of monitors [5], a common
approach to synchronize the use of shared data among different processes. In
contrast to mutual exclusion with the reentrant lock, with monitors, a process
can wait inside its critical section for other resources while temporarily releasing
the monitor. Although this avoids deadlock situations, the use of monitors is
difficult and often requires additional code to specify guard conditions. Moreover,
if the process is preempted while holding the monitor, everybody else is blocked.
Beginners are often overwhelmed by the complexity of using monitors as Squeak
does not offer method synchronization as found in Java.

Transactional memory [6, 7] provides a convenient way to access shared mem-
ory by concurrent processes, without the pitfalls of locks and the complexity of
monitors. Transactional memory allows developers to declare that certain parts
of the code should run atomically: this means the code is either executed as a
whole or has no effect. Moreover transactions run in isolation, which means they
do not affect and are not affected by changes going on in the system at the same
time. Upon commit the changes of a transaction are applied atomically and be-
come visible to other processes. Optimistic transactions do not lock anything,
but rather conflicts are detected upon commit and either lead to an abort or
retry of the transaction.

Most relational and object databases available in Smalltalk provide database
transactions following the ACID properties: Atomicity, consistency, isolation,
and durability. However, they all provide this functionality for persistent objects
only, not as a general construct for concurrent programming. These implemen-
tations often rely on external implementations of transactional semantics. Gem-
Stone Smalltalk [8] is a commercially available object database, that directly
runs Smalltalk code. As such, GemStone provides transactional semantics on
the VM level. Guerraoui et al. [9] developed GARF, a Smalltalk framework for
distributed shared object environments. Their focus is not on local concurrency
control, but on distributed object synchronization and message passing. They
state that “A transactional mechanism should however be integrated within group
communication to support multi-server request atomicity.” [10]. Jean-Pier Briot
proposed Actalk [11], an environment where Actors communicate concurrently
with asynchronous message passing. The use of an Actor model is intrusive. It
implies a shift of the programming paradigm, where there is no global state and
therefor no concurrency issues.

In this paper we present an implementation of transactions in Squeak based
on source-code transformation. In this way most code is free of concurrency an-
notations, and transactional code is automatically generated only in the contexts
where it is actually needed.

The specific contributions of this paper are:

Transactional Memory for Smalltalk 3

– The implementation of transactional semantics in Smalltalk, using the re-
flective capabilities of the language.

– A mechanism to specify context-dependent code using method annotations,
for example to intercept the evaluation of primitive methods.

– Incremental, on-the-fly parse tree transformation for different execution con-
texts.

– Efficient, context-dependent code execution using the default execution mech-
anisms of the VM.

Section 2 presents some basic usage patterns of our implementation. Sec-
tion 3 shows the implementation of transactions in Squeak without modifying
the underlying VM. Section 4 validates our approach by running a collection of
benchmarks and by applying the concept to a real world application. Section 5
concludes this article with some remarks about ongoing and future work.

2 Programming with transactions

Transactions offer an intuitively simple mechanism for synchronization concur-
rent actions. They do not require users to declare specific locks or guard con-
ditions that have to be fulfilled. Moreover transactions can be used without
prior knowledge of the specific objects that might be modified. Transactions are
global, yet multiple transactions can run in parallel. The commit protocol checks
for conflicts and makes the changes visible to other processes atomically.

tree := BTree new.
lock := Semaphore forMutualExclusion.

” writing ”
lock critical: [tree at: #a put: 1].

” reading ”
lock critical: [tree at: #a].

tree := BTree new.

” writing ”
[tree at: #a put: 1] atomic.

” reading ”
tree at: #a.

Fig. 1. Lock-based vs. Transactional accesses of a shared data structure.

On the left side of Figure 1 we see the traditional way of using a semaphore
to ensure mutual exclusion on a tree data structure. The key problem is that
all read and write accesses to the tree must be guarded using the same lock to
guarantee safety. A thread-safe tree must be fully protected in all of its public
methods. Furthermore, we cannot easily have a second, unprotected interface to
the same tree for use in a single-threaded context.

On the right side of Figure 1 we present the code that is needed to safely
access the collection using a transaction: the write access is put into a block that
tells the Smalltalk environment to execute its body within a transaction. The
read access can happen without further concurrency control. As long as all write

4 L. Renggli, O. Nierstrasz

accesses occur within the context of a transaction, read accesses are guaranteed
to be safe. The optimistic commit protocol of the transaction guarantees safety
by (i) ensuring that no write conflicts have occurred with respect to the previous
saved state, and (ii) atomically updating the global object state.

To make the code using transactions as simple as possible we provide two
methods for running code as part of a transaction. These methods are extensions
to the standard Smalltalk library, and do not affect the language syntax or
runtime.

– #atomic causes the receiving block closure to run as a new transaction. Upon
termination of the block, any changes are committed atomically. If a conflict
is detected, all modifications are cancelled and a commit conflict exception
is raised.

– #atomicIfConflict: causes the receiving block to run as a new transaction.
Instead of raising an exception if a conflict occurs, the block argument is
evaluated. This enables developers to take a specific action, such as retrying
the transaction or exploring the conflicting changes.

Further convenience methods can easily be built out of these two methods,
for example a method to retry a transaction up to fixed number of times, or only
to enter a transaction if a certain condition holds.

3 Inside transactions

We introduce transactions to Smalltalk without modifying the underlying Vir-
tual Machine (VM). Our approach is based on earlier proposals in which source
code is automatically and transparently transformed to access optimistic trans-
actional object memory, rather than directly accessing objects [12, 13]. The key
advantage of this approach is that most source code can be written without
embedding any explicit concurrency control statements. Transactional code is
automatically generated where it is needed. Furthermore, in contrast to the ear-
lier approaches, we generate the needed transactional code dynamically where
and when it is needed, and caching the generating code for future invocations.

In a nutshell, our approach works as follows:

– Every method in the system may be compiled to two versions: one to be exe-
cuted in the normal execution context, and the other within a transactional
context. Contrary to the other approaches we do this incrementally and on
the fly using a compiler plugin.

– State access in transactional methods is automatically transformed to use
an indirection through the transaction context.

– We use method annotations to control the automatic code transformation or
to provide different code. Unlike earlier approaches, we take into account the
use of primitives and exception of file-system access by providing alternative
code to be used in a transactional context.

Transactional Memory for Smalltalk 5

– When entering a transactional context we record the transaction (an object)
in the current process (also an object).

– All objects touched during a transaction are atomically taken a snapshot of.
Each snapshot consists of two copies of the original object: one that reflects
the initial state and one that is altered during the transaction. For efficiency
reasons immutable objects are excluded from snapshots.

– Upon commit we check for conflicts by atomically comparing the state of
the object at the beginning of the transaction to the current version in
memory. If no conflict is detected, the changes are committed. In case of a
conflict the system is left in the state as it was before the transaction and an
exception is raised that provides information for further reflection, namely
all the changes, the conflicting changes and the transaction itself.

The key novelties of our approach lie in the use of annotations and reflec-
tion to lazily generate the transactional versions of methods, and the ability to
provide alternative code to use in place of primitives during transactions.

In the following two sections we describe (1) the compilation to transactional
code, and (2) the implementation of the transactional object model.

3.1 Compiling to transactional code

We transform methods by changing read and write accesses to make use of
transactional object memory. Methods are transformed using a new version of
the behavioral reflection framework Geppetto [14] which is based on sub-method
reflection [15], allowing us to declaratively reify and transform an abstract syntax
tree (AST) before compiling to byte-code.

selector
parseTree

CompiledMethod

selector
*

methods

/selector
/parseTree

AtomicMethod

atomicMethod
1

method

1

name
superclass
subclasses
instanceVariables

Class

Fig. 2. Static Compilation Model

Whenever the source code of a method is accepted, as seen in Figure 2,
our compiler plugin creates an additional compiled method that implements the
behaviour to be used within the context of a transaction. The following basic
transformations are performed:

6 L. Renggli, O. Nierstrasz

1. Reading from instance variables and global variables is transformed to send
the messages #atomicInstVarAt: or #atomicValue respectively. This allows
us to implement these two messages to read the current value from within
a transactional context instead of directly accessing the variables within the
receiving object.

2. Writing to instance and global variables is transformed to send the messages
#atomicInstVarAt:put: or #atomicValue: respectively. Again this allows
us to intercept state access and handle it from within the current transaction.

3. Sending a message from inside a transactional method will actually send
a different message name, namely we prepend # atomic to the original
selector name.

BTree�at: aKey put: anObject
| leaf |
leaf := root leafForKey: aKey.

leaf insertKey: aKey value: anObject.
root := leaf root.
ˆ anObject

BTree� atomic at: aKey put: anObject
| leaf |
leaf := (self atomicInstVarAt: 1)

atomic leafForKey: aKey.
leaf atomic insertKey: aKey value: anObject.
self atomicInstVarAt: 1 put: leaf atomic root.
ˆ anObject

Fig. 3. Original vs. transformed code.

Having applied these three transformations to the code, the two compiled
methods are stored in the method dictionary of their owning class. To tell the
two methods apart, the atomic version of the method has # atomic prepended
to its name. These methods are hidden, and are only called from generate code
within an atomic context. Transactional methods are filtered from the code edi-
tors, so they are not visible to the developer and development tools but only to
the VM. On the left side of Figure 3 we present the code of a method as the
developer implemented it, whereas on the right side we show the same method
as it is compiled for the atomic context. All message sends are prepended with
atomic and instance variable access is dispatched trough special methods
using the slot index as argument.

A transaction is created by sending the message #atomic to a block contain-
ing normal (non-transactional) Smalltalk code. The code within such a block is
statically transformed to evaluate within a transactional context. We have seen
an example for such a call in the introductionary example in Figure 1. Methods
that send #atomic are special, because the code outside this block is compiled
normally, whereas we apply the transformations as described above to the inside
of the block closure.

Squeak includes a few primitive methods that access and modify state. The
most prominent of these are #at: and #at:put: to access the elements of
variable-sized objects. Moreover there are also some central collection and stream
methods that are implemented within the VM for efficiency. As primitive op-
erations are written in C and statically compiled into the VM, we cannot use

Transactional Memory for Smalltalk 7

Geppetto to modify state-access. The only possibility to reify these methods is
to replace them with non-primitive methods.

Annotation Source Code Transform

(no annotation, default) method body yes
<atomic:> argument yes
<atomicUseUntransformed> method body no
<atomicUseUntransformed:> argument no

Table 1. Method annotations are used to control how the compiler transforms source
code for the transactional context.

We make use of annotations to further control the way in which transac-
tional code may be generated. Table 1 summarizes the effect of the following
annotations:

– <atomicUseUntransformed> avoids doing any code transformation. This
means the normal and the transactional method will be the same, so no
transformation is needed. In the current implementation this is mostly used
for exception handing, as this code should continue to work through the
boundaries of transactions.

– <atomic:> uses the method identified as its argument as the source for the
code transformation. We use this for primitives that are implemented for
efficiency reasons only. For example the method #replaceFrom:to:with:-
startingAt: in the class Array calls the primitive 105 and is used to copy
elements from one collection to another one. With the method annotation
we tell the compiler that it should instead transform and install the method
#atomicReplaceFrom:to:with:startingAt: that has the same behavior
but is implemented in Smalltalk.

Array�replaceFrom: start to: stop with: replacement startingAt: repStart
”Primitive. This destructively replaces elements from start to stop
in the receiver starting at index, repStart, in the collection,
replacement. Optional.”

<primitive: 105>
<atomic: #atomicReplaceFrom:to:with:startingAt:>
super replaceFrom: start to: stop with: replacement startingAt: repStart

Array�atomicReplaceFrom: start to: stop with: replacement startingAt: repStart
| index repOff |
repOff := repStart - start.
index := start - 1.
[(index := index + 1) <= stop]

whileTrue: [self at: index put: (replacement at: repOff + index)]

8 L. Renggli, O. Nierstrasz

– <atomicUseUntransformed:> uses the method identified as its argument
as untransformed atomic code. We use this mainly in infrastructural code
to dispatch primitive requests that access state to the working copy of the
receiver. For example indexed slot access is handled through primitives in
Squeak. The method #at: in the class Object calls the primitive 60 to
fetch the contents of an indexed element. The method annotation tells the
compiler to use #atomicAt: instead. This method delegates the request to
the current working copy of the object.

Object�at: index
”Primitive. Assumes receiver has indexed slots. Answer the value of an
indexable element in the receiver. Fail if the argument index is not an
Integer or is out of bounds.”

<primitive: 60>
<atomicUseUntransformed: #atomicAt:>
self primitiveFail

Object�atomicAt: index
ˆ self workingCopy at: index’

Compiling all the methods of the system is costly both in time and memory.
Most methods available in the system are never called from within a transac-
tional context and therefore do not need to be translated. The dynamic nature
of Smalltalk makes it difficult to determine statically the required set of trans-
actional methods, however it allows us to compile methods lazily when they are
about to be executed. This produces a slowdown the first time a method is exe-
cuted within a transactional context, but subsequent invocations are dispatched
using the normal mechanisms of the VM and therefore run at full speed.

Most transactional systems prohibit system calls and filesystem access during
transactions [16, 17]. Our approach allows replacement code to be specified for
use within a transactional context. For example, when deleting a file the action
is recorded with a custom change object and atomically applied together with
the other changes upon successful commit of the transaction:

FileDirectory�deleteFile: aString
<primitive: ’primitiveFileDelete’ module: ’FilePlugin’>
<atomicUseUntransformed: #atomicDeleteFile:>

FileDirectory�atomicDeleteFile: aString
Processor activeProcess currentTransaction

addChange: (CustomChange onApply: [self deleteFile: aString])

Our model also allows exceptions to be thrown and handled inside the trans-
action boundaries. An exception that leaves the boundaries of a transaction
causes that transaction to abort and the exception to be re-raised in the non-
transactional context.

Transactional Memory for Smalltalk 9

3.2 Transactions at runtime

When entering a transaction we create a new transaction object and store it
in an instance variable of the current process, as depicted in Figure 4. When
leaving a transaction we set the current transaction reference back to nil. In
this way we can efficiently determine the current transaction from anywhere in
our application. Moreover we capture an escape continuation upon entry, to be
able to abort the current transaction by doing a non-local jump to the calling
context.

apply
hasChanged
hasConflict

Change

object

*
changes

Process 0..1
currentTransaction

do: aBlock
retry: aBlock
checkpoint
abort: anObject

escapeContext
Transaction

previousCopy
workingCopy

ObjectChange

applyBlock
conflictTestBlock

CustomChange

*

Fig. 4. Dynamic model of transactions at runtime

After having entered a transactional context, all the executed code is in its
transformed form. This means that state access goes through special accessor
methods and all message sends are redirected to their transactional counterparts.
Like that transactional code execution works the same as normal code execution:
it shares the same object memory but it uses a different access strategy to access
state.

We adopt a conventional optimistic transaction protocol [18]. Whenever an
object is touched within the context of a transaction for the first time (read or
written), the transaction instantiates a new change object ObjectChange. This
change object contains references to two copies of the object. The previous-
Copy contains an immutable copy for detecting conflicts. The workingCopy is a
mutable copy of the object being used during the transaction. The change object
knows if it has a conflict (the original object is not the same as the previous copy)
and if it has changed (original object is not the same as the working copy).

We also provide a custom change object CustomChange that is used to record
irreversible actions that should only be applied during the atomic commit phase
if there are conflicts. We have seen the use of such a custom change in Section 3.1,
where we presented a possible solution for file-deletion within a transactional
context.

At the end of the transaction we have to acquire a form of “global lock” on
the object memory to be able to check for conflicts and commit the changes.
We use #valueUnpreemptively implemented on block closures to ensure that

10 L. Renggli, O. Nierstrasz

no other process is running at the same time. As a first step we check if any
of the changes we gathered during the transaction has a conflict and raise an
exception if this is the case. Otherwise we copy the changes from the working
copies to the original objects. The time required to hold the lock and to validate
and apply the changes linearly depends on the number of objects involved in the
transaction.

These are some important properties of our transactional model [19]:

Repeatable read. Reads are repeatable. Since data that is read within a trans-
action is copied, repeated reads from within a transaction are consistent.
Changes outside the transaction are not visible after a first read.

Optimistic write. Our transactional memory writes optimistically [20]. The
transaction boundaries are controlled by working on copies of the objects.

Lazy version management. We create copies of objects that are read and
written within transactions. This requires an extra redirection for accessing
the state and a considerable amount of memory and processing time for
copying the involved objects. Aborting a transaction is cheap as no state has
to be restored.

Lazy conflict detection. Assuming that conflicts are rare, conflicts are checked
before committing data. This check happens atomically together with the
commit.

Lazy conflict resolution. Conflicts are resolved by dropping (or retrying) the
transaction that produces the conflict when committing. The changes are
eventually collected by the garbage collector.

4 Validation

First we assess the cost transactions by means of benchmarks that compare
the running time of actions performed with and without transactions. Then
we compare the cost of thread-safety realized with semaphores to that of our
implementation with transactional memory.

4.1 Micro benchmarks

We performed several micro benchmarks to establish the runtime cost of using
our implementation of transactional memory for Smalltalk. Table 2 shows the
times and ratios of performing basic actions, such as invoking a method or ac-
cessing state. t1 is the time required to perform the action 107 times outside a
transactional context, and t2 is the time required to perform the same action
within a transactional context. The benchmarks were performed on an Apple
MacBook Pro, 2.16 GHz Intel Core Duo in Squeak 3.9. The required transac-
tional methods were compiled in advance.

The activation time is the time required to enter a transaction as compared
to the time required to evaluate a block closure. The ratio indicates that entering
a transaction is 31 times slower than entering a block closure. This results from

Transactional Memory for Smalltalk 11

Operation t1 t2 ratio

Activation 2.75 85.27 31.03
Method invocation 1.98 1.98 1.00
Special method invocation 1.14 2.00 1.75
Instance variable read 1.03 20.72 20.08
Instance variable write 1.13 21.04 18.60
Indexed variable read 1.11 19.92 17.93
Indexed variable write 1.21 20.22 16.75
Global variable read 1.03 20.89 20.25
Global variable write 1.15 21.72 18.92

Table 2. t1: time in seconds for 107 runs in a non-transactional context, t2: time in
seconds for 107 runs in a transactional context, ratio: t2/t1, the penalty when used in
a transactional context.

the fact that entering a transactions requires several objects to be instantiated
to track the changes of the transaction. Moreover the transaction is recorded in
the current process and an escape context must be captured to be able to abort
a running transaction.

Normal method invocation does not show any speed penalty. In all the bench-
marks we assume that the transactional methods are already compiled. For some
common selectors, such as #+, #*, #=, #size, #at:put:, #new, #class, etc.,
Squeak uses special byte codes to make the invocation about twice as fast as a
common send. In a transactional context these byte codes cannot be used any-
more and have to be replaced by normal message sends, resulting in a penalty
for special method invocations.

State access within a transactional context is fairly expensive. For instance,
indexed and global variable reads and writes produce very similar results: in
the current implementation these are about 20 times slower than their non-
transactional counterparts. As we have seen in Section 3.2, accessing state of
an object requires to lookup the current transaction, the change object and to
dispatch the state access to its working copy. This whole procedure involves
several message sends that cannot be easily optimized in Smalltalk. Further
improvements are possible by writing primitives (or introducing new byte-codes)
that can more efficiently dispatch that kind of request.

Here we have been comparing the cost of thread-safe actions to unsafe actions.
A fairer comparison would be that between thread-safe actions implemented
with semaphores and thread-safe transactions. We discuss this in the following
section.

4.2 Real world example using transactional memory

We applied our transactional model to Pier, a web-based content management
system [21, Chapter 3]. Pier uses a tightly-connected graph of objects to repre-
sent pages and their content. Edit operations on pages use the Command design
pattern and are executed while holding a global lock. Some operations, such as

12 L. Renggli, O. Nierstrasz

adding or removing a page, require the system to walk through the whole object
graph to invalidate links. This results in a significant amount of time that all
other commands are blocked, even though edit operations rarely conflict with
each other.

Before executing a command Pier checks for conflicts on the current page, to
avoid that changes of other users accidently get overridden. It does not check for
conflicts that could be caused by the need to update links in other parts of the
object model. Pier normally does not lock read operations, such as browsing the
web site, as they are very common and would introduce a major bottleneck. In
rare cases users could therefore encounter an inconsistent state of a particular
page.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

0 10 20 30 40 50 60 70 80 90 100

non-synchronized lock-based transactional

n

t [ms]

Fig. 5. Average execution time for non-synchronized, lock-based and transactional ex-
ecution time t to complete n = 1..100 concurrent edit operations in Pier.

To assess the effectiveness of transactional memory for Smalltalk, we remove
the global lock in Pier and wrap the execution of the command within a trans-
actional context. This means that edit commands can now be evaluated concur-
rently while still ensuring consistency. Moreover we could remove the manual
checks for conflicts as these are now detected and handled by the transaction in
a complete manner. Page views are now guaranteed to see a consistent state of
the web site, as all the changes are applied atomically through a transaction.

Figure 5 shows the average execution time of an edit command that changes
the contents of a single page. Using a script we simulated n = 1..100 concurrent
edit operations on different pages, so no conflicts could occur. Interestingly the
overhead is just over 100 ms for transactions over locks. The transactions are
short, involve only few objects and little state access. Memory requirements
are moderate: the edit operation touches 39 objects, whereof the transaction

Transactional Memory for Smalltalk 13

requires 2 copies of each object to track changes. In this particular use case, a
single transaction consumes 2’556 bytes of additional memory.

We believe that the transactional approach would be considerably faster than
the lock-based one, if the Squeak VM would exploit multiple CPUs to process
concurrent requests.

5 Conclusion and future work

Smalltalk VMs traditionally offer poor support for concurrency control. Existing
Smalltalk dialects provide only lock-based concurrency control, with the excep-
tion of GemStone Smalltalk, which provides transactions only for database code.
In this paper we have presented an implementation of optimistic transactions
for Squeak Smalltalk without modifying the underlying VM.

Our prototype implementation demonstrates that any Smalltalk can profit
from having a transactional model. The implementation can be potentially ported
to any of today’s available Smalltalk platforms, as it is purely based on parse tree
transformation of source code. The fact that the whole implementation is written
in Smalltalk makes it an ideal platform to experiment with different transaction
policies and implementation strategies. Changes to the transactional runtime
system and transactional code can be applied and compiled on the fly, so there
is no need to restart or rebuild the system.

Our approach works well with external libraries. New code that is loaded
into the Smalltalk environment is transformed lazily within the context of a
transaction. Primitive methods, filesystem I/O and exceptions work well together
with transactions, as special transformation rules can be specified using method
annotations. Contrary to other approaches our implementation integrates well
with garbage collection, as the transactions are fully implemented in the object
system of Smalltalk.

State access within a transaction is about 20 times slower than usual, which
is a big penalty to pay. The integration of transactions with the object model
at the VM level would certainly lead to much better performance, however we
would also lose the flexibility to be able to quickly change the semantics of the
transactional mechanisms. Code not using transactions continues to work exactly
as before. The traditional mechanisms used for concurrency control can be even
mixed with transactions.

As future work we would like to investigate how to further improve the speed
of our model. We would like to investigate other areas of applicability, such as
atomic loading of source code. In Smalltalk this is traditionally done in an incre-
mental manner and poses certain problems, for example when the application is
supposed to continue running while loading.

Furthermore we would like to see how to apply our approach to other dynamic
programming languages, such as Python or Ruby. We expect the implementation
in those scripting languages to be much more difficult than in Smalltalk, as both
languages have major parts of their library implemented in C. Also they both lack
direct support to transform source code using high-level AST representations.

14 L. Renggli, O. Nierstrasz

Our approach to implementing optimistic transactions in Smalltalk can be
seen as a special case of context-oriented programming [22], a programming
paradigm that supports context-dependent behaviour. Transactional behaviour
is automatically dispatched whenever we enter a transactional context. We be-
lieve that this approach can be extended more generally to support other forms
of context-dependent concurrency control: instead of littering code with explicit
calls to specific concurrency mechanisms, one should be able to simply annotate
code with the concurrency properties one would like to ensure, and depending
on the runtime context the appropriate behaviour will be automatically selected.
We also intend to explore more efficient approaches to implementing contextual
behaviour, in particular the use of scoped reflection [23] to control the temporal
and spatial context in which reflective behaviour is active.

Acknowledgments

We thank Tudor Gı̂rba for his careful review of a draft of this paper.
We gratefully acknowledge the financial support of the Swiss National Science

Foundation for the project “Analyzing, capturing and taming software change”
(SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008).

References

1. Goldberg, A., Robson, D.: Smalltalk 80: the Language and its Implementation.
Addison Wesley, Reading, Mass. (May 1983)

2. American National Standards Institute, Inc.: Draft American National Standard
for Information Systems — Programming Languages — Smalltalk. American Na-
tional Standards Institute (1997)

3. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Object-
Oriented Programming, Systems, Languages, and Applications. ACM Press, New
York, NY, USA (October 2003) 388–402

4. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: The
story of Squeak, A practical Smalltalk written in itself. In: Proceedings OOPSLA
’97, ACM SIGPLAN Notices, ACM Press (November 1997) 318–326

5. Hansen, P.B.: Monitors and Concurrent Pascal: a personal history. ACM Press,
New York, NY, USA (1996)

6. Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming
Languages and Systems 13(1) (January 1991) 124–149

7. Herlihy, M.P., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proceedings of the 20. Annual International Symposium
on Computer Architecture. (1993)

8. Butterworth, P., Otis, A., Stein, J.: The GemStone object database management
system. Commun. ACM 34(10) (1991) 64–77

9. Guerraoui, R., Garbinato, B., Mazouni, K.R.: The garf library of dsm consistency
models. In: EW 6: Proceedings of the 6th workshop on ACM SIGOPS European
workshop, New York, NY, USA, ACM Press (1994) 51–56

10. Guerraoui, R., Felber, P., Garbinato, B., Mazouni, K.: System support for object
groups. In: OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, New York,
NY, USA, ACM Press (1998) 244–258

Transactional Memory for Smalltalk 15

11. Briot, J.P.: Actalk: A testbed for classifying and designing actor languages in the
Smalltalk-80 environment. In Cook, S., ed.: Proceedings ECOOP ’89, Nottingham,
Cambridge University Press (July 1989) 109–129

12. Hindman, B., Grossman, D.: Atomicity via source-to-source translation. In: MSPC
’06: Proceedings of the 2006 workshop on Memory system performance and cor-
rectness, New York, NY, USA, ACM Press (2006) 82–91

13. Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy, B.R., Saha, B., Shpeisman,
T.: Compiler and runtime support for efficient software transactional memory. In:
PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, New York, NY, USA, ACM Press (2006)
26–37

14. Röthlisberger, D., Denker, M., Tanter, É.: Unanticipated partial behavioral reflec-
tion: Adapting applications at runtime. Journal of Computer Languages, Systems
and Structures (2007) To appear.

15. Denker, M., Ducasse, S., Lienhard, A., Marschall, P.: Sub-method reflection. Jour-
nal of Object Technology 6(9) (September 2007) To appear.

16. Lie, S.: Hardware support for unbounded transactional memory. Master’s thesis,
Massachusetts Institute of Technology (May 2004)

17. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: Log-
based transactional memory. In: Proceedings of the 12th International Symposium
on High-Performance Computer Architecture. IEEE Computer Society (February
2006) 254–265

18. Lea, D.: Concurrent Programming in Java, Second Edition: Design principles and
Patterns. 2nd edn. The Java Series. Addison Wesley (1999)

19. Bobba, J., Moore, K.E., Yen, L., Volos, H., Hill, M.D., Swift, M.M., Wood, D.A.:
Performance pathologies in hardware transactional memory. In: Proceedings of the
34rd Annual International Symposium on Computer Architecture. International
Symposium on Computer Architecture (June 2007)

20. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
TODS 6(2) (June 1981)

21. Renggli, L.: Magritte – meta-described web application development. Master’s
thesis, University of Bern (June 2006)

22. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented program-
ming: An overview of ContextL. In: Proceedings of the Dynamic Languages Sym-
posium (DLS) ’05, co-organized with OOPSLA’05, New York, NY, USA, ACM
Press (October 2005)

23. Nierstrasz, O., Denker, M., Gı̂rba, T., Lienhard, A.: Analyzing, capturing and
taming software change. In: Proceedings of the Workshop on Revival of Dynamic
Languages (co-located with ECOOP’06). (July 2006)

