
Why Smalltalk Wins the Host Languages Shootout

Lukas Renggli
renggli@iam.unibe.ch

Tudor Gîrba
girba@iam.unibe.ch

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

ABSTRACT
Integration of multiple languages into each other and into
an existing development environment is a difficult task. As
a consequence, developers often end up using only internal
DSLs that strictly rely on the constraints imposed by the host
language. Infrastructures do exist to mix languages, but they
often do it at the price of losing the development tools of the
host language. Instead of inventing a completely new infras-
tructure, our solution is to integrate new languages deeply
into the existing host environment and reuse the infrastruc-
ture offered by it. In this paper we show why Smalltalk is
the best practical choice for such a host language.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.13 [Software Engineering]: Domain engineer-
ing; D.3.2 [Programming languages]: Smalltalk

General Terms
Design, Languages

Keywords
Embedded Languages, Domain-Specific Languages, Program-
ming Environments and Tools

1. INTRODUCTION
With the increasing demand to combine multiple languages

within a single project, different solutions have been proposed
to simplify the process of building and using polyglot pro-
gramming environments. While these solutions have their
strengths at various levels, they do not cover the complete
spectrum of integrating these languages and of offering de-
velopment tools for them.

We use the term host language to refer to the language that
is used as the basis for implementing new languages and for
gluing them together. Furthermore, we define context specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWST’09 August 31, 2009, Brest, France.
Copyright 2009 ACM 978-1-60558-899-5 ...$10.00.

languages as languages that are embedded in a host language,
but active only within certain well-defined contexts.

As a running example we use the Extended Backus-Naur
Form [15], as a simple language extension to an existing
host language. The possibility to use the EBNF directly
within the code of the host language raises the conciseness
of a parser definition considerably. An example grammar to
parse numbers might look like this:

digit = ”0” | ”1” | ... | ”9” ;
number = [”−”] digit { digit } [”.”digit { digit }] ;

This language would have to coexist with the host and
possibly with other languages. This co-habitation should be
transparent in the sense that objects can be passed through
code written in multiple languages. Furthermore, ideally the
environment should provide development tools, like syntax
highlighting and debugging, that can be used uniformly
across languages.

In this paper we evaluate seven general purpose languages
(C++, C#, Java, Javascript, Lisp, Ruby, and Smalltalk)
from the point of view of the mechanisms they offer for
language integration. The shutout is performed as follows:
we first identify the requirements for a host environment, we
distill the features of a programming language that would
support these requirements and we compare the considered
languages. From our comparison, Smalltalk wins the shutout.

The paper is structured as follows: Section 2 details the re-
quirements for a host environment and compares with related
work. Section 3 gives a quick introduction to the Helvetia
system. Our main contribution is presented in Section 4
where we discuss the advantages and disadvantages of using
Smalltalk as the host environment. Section 5 concludes the
paper.

2. REQUIREMENTS FOR A HOST ENVI-
RONMENT

We identify three major features that are generally needed
to support the embedding and combining of multiple lan-
guages into a single host environment:

Multiple context specific languages. Different languages
and the host language should be mixable in arbitrary
ways. Language changes should not be limited to file
boundaries, but should depend on the location in the
source code only. In the example of the EBNF language
extension, we would like to define the grammar close
together with the associated production actions that
are specified using the host language syntax.

107

http://scg.unibe.ch/

Homogeneous language integration. It should be possi-
ble to pass values from one language to another without
requiring a conversion in-between. Similar transparent
interaction between the meta-level where a language is
defined and the base-level where a language is applied
should be possible. Homogeneous language integration
[11] enables all languages to be aware of each other
and make use of the common reflective facilities of the
host system to reason about themselves. In our run-
ning example we would like to directly access and use
the grammar and the resulting tokens from the host
language.

Homogeneous tool integration. Language users demand
sophisticated tool support for the languages they are
using. For example, they would like to step with a
single debugger through a method that mixes various
languages. To debug a grammar definition, we would
like to be able to step both through EBNF and through
the production actions using the debugger of the host
environment.

The most basic approach is to derive a new pseudo-language
from an existing API. This technique is known as a Fluent
Interface, a form of an internal DSL. While this approach ful-
fills all the above properties, it is often not powerful enough
as the language is constrained by the syntax and the seman-
tics of the host environment. For example, instead of using
the concise EBNF language constructs we would need to
express grammars using a verbose series of message sends
written in the host language.

Systems with meta-programming facilities like Scheme,
Converge [14] or MetaOCaml [5] avoid that problem by
providing compile time code generation, however they often
lack sophisticated tool support.

Similarly, extensible compilers like JastAdd [9] or Xoc [6]
allow language designers to tweak the host language compiler,
but usually don’t provide a way to integrate the modified
language into the existing tools. None of the systems offers
tight IDE integration, and the transformed code cannot be
debugged at the source level.

Language workbenches like JetBrain MPS [8] or Intentional
Software [12] come with a specialized IDE for language en-
gineering. They provide a special workflow to define new
languages and they provide tools for language development
and application. The problem with these approaches is that
they do not build on top of existing tools and host languages,
but instead provide their own custom toolset.

We implemented a host environment, Helvetia, using a
different strategy. We chose a host environment and we ex-
tended the existing compiler and programming environment
to allow us to parameterize them for language extensions. To
support our approach the host environment needs to support
the following six features:

1. A minimal syntax makes a language a good source and
target for program transformation.

2. Dynamic semantics allows language designers to change
and extend the behavior of existing classes. Further-
more, dynamic typing lets developers replace objects
as long as the replacement understands the expected
messages.

3. Reflective facilities makes the structure and behavior
of a system observable and changeable. This is crucial
for tools as well as the language extensions themselves.

4. A homogeneous language is a language that is imple-
mented in itself, thus is specifically easy to extend and
change.

5. Homogeneous tools are tools that are written in the
host language itself. Again this makes them viable for
change.

6. Being able to change a language on the fly makes
the development process faster and quick language
experiments feasible.

After careful consideration we chose Smalltalk as the host
language for Helvetia. Helvetia covers all above men-
tioned requirements and transparently blends into Smalltalk
and its development tools. While the abstract approach is
not limited to Smalltalk, the choice of Smalltalk did present
several practical benefits over other solutions. This paper
distills our experience and presents the arguments for why
Smalltalk is the best choice.

3. HELVETIA IN A NUTSHELL
In this section we present Helvetia1 shortly. The goal

of this description is not necessarily to describe Helvetia
completely, but rather to provide the necessary background
from a user perspective.

Helvetia is an extensible framework that enables language
designers to cleanly extend compiler and development tools
of the standard Smalltalk IDE. As depicted in Figure 1,
our approach reuses the existing tool-chain of editor, parser,
compiler and debugger by leveraging the abstract syntax tree
(AST) of the host environment. Different languages cleanly
blend into each other and into existing code. The same tools
can be reused with different language extensions.

Compiler

Editor

Debugger

<<extends>>

<<extends>>

<<extends>>

Language
ExtensionLanguage

Extensions

<
<

us
es

>
>

Figure 1: The Helvetia System.

The Helvetia framework is lightweight in the sense that
it is implemented in less than 900 lines of code. Helvetia
makes heavy use of libraries that are part of the Smalltalk
system:

1The implementation along with its source code and exam-
ples can be downloaded from http://scg.unibe.ch/research/
helvetia.

108

http://scg.unibe.ch/research/helvetia
http://scg.unibe.ch/research/helvetia

• The Refactoring Engine [10] is central to any Smalltalk
system. Helvetia mostly makes use of its rewrite
engine to declarative specify transformations of the
abstract syntax tree (AST).

• The New Compiler is an extensible compiler built on
top of the AST of the refactoring engine. It transforms
ASTs to bytecodes that can be directly executed by
the virtual machine (VM).

• SmaCC [4] is an LALR based parser generator frame-
work used for example by the New Compiler to parse
Smalltalk source code. PetitParser is a lightweight al-
ternative based on parsing expression grammars (PEG).

Figure 2: The Smalltalk browser opened on the
EBNF language with adapted syntax highlighting
and auto completion.

Furthermore, Helvetia uses and extends tools:

• The OmniBrowser framework is a toolkit to build ex-
tensible development tools, see Figure 2. Helvetia
extends the standard code browsers and debuggers
with custom functionality, such as contextual language
specific menu actions.

• Shout and eCompletion are the standard plugins for
syntax highlighting and auto completion. We extended
these tools to be able to use them on arbitrary lan-
guages.

Figure 3: Stepping through a mixture of EBNF and
the host language using the standard debugger.

Figure 3 shows how we step through a custom language
to define grammars using the traditional Smalltalk debugger.
The debugger displays the original source-code and properly
highlights the current execution location, even though the
code has been transformed to a standard Smalltalk AST
to get into an executable state. Language specific syntax
highlighting is provided as in any other editor.

4. WHY SMALLTALK
In this section we present the case for why Smalltalk is

an optimal solution as host environment in comparison to
other programming languages. Table 1 provides a summary
of the features supported by the considered programming
languages: a filled circle denotes that the language supports
fully the given feature, while a half-filled circle means that
the feature is only partially supported or that it requires
additional workarounds to access it. Each of the features is
presented in detail in the following subsections.

4.1 Minimal Syntax
Smalltalk has a minimal syntax2, and Smalltalk compilers

rarely have more than ten different node types to support
the full language. Depending on the implementation details,
the following node types are supported:

1. A method node is used to describe the method signature
and method body.

2. A sequence node is used to describe a sequence of
statements and a preceding declaration of temporary
variables.

3. A message send node is used to describe a method
invocation on a receiver with a given set of arguments.

4. A cascade node describes a series of message sends to
the same receiver.

5. A block node describes a block closure and its argu-
ments.

6. A return node is used to describe a return from a
method or block.

7. A variable node describes a temporary, instance or
global variable reference.

8. An assignment node describes a variable assignment.

9. A literal node describes literal values, such as numbers,
characters, strings, symbols or boolean values.

The rest of the language features come from the Smalltalk
library. Contrary to most other programming languages,
control structures are modelled using message sends and
block closures, thus the compiler does not require specific
node types to handle these.

The simplicity of Smalltalk makes it a very attractive target
for language transformation both from arbitrary languages
to Smalltalk or within the Smalltalk language itself. In the
first case a parser can directly build a Smalltalk AST, in
simple cases just consisting of a series of message sends.

2Jokingly it is often remarked that a description of the syntax
would fit on a business card.

109

C
+

+

C
#

J
a
v
a

J
a
v
a
sc

ri
p
t

L
is

p

R
u

b
y

S
m

a
ll
ta

lk

4.1 Minimal Syntax # # # # #
4.2 Dynamic Semantics # G# #
4.3 Reflective Facilities G# G# G# G# G#
4.4 Homogeneous Languages # # # # #
4.5 Homogeneous Tools # # G# G# G# #
4.6 On-the-fly Programming # # # G# G# G#

Table 1: Comparison of different main-stream programming languages and their suitability for language
engineering. Legend: # no support, G# partial support, full support.

Transformations within the language only need to match a
few basic cases to cover the complete language specification.

In the example of the EBNF language we transform the
input into a series of message sends that construct an object
model of the grammar. The example grammar presented in
Section 1 is transformed to the AST of the following two
Smalltalk methods:

digit
ˆ $0 asParser to: $9 asParser

number
ˆ $− asParser optional , self digit plus , ($. asParser , self

digit plus) optional

The only contenders in this area are Lisp-like languages.
This family of programming languages provides s-expressions
(parenthesized lists) as their central language construct. This
means that source code is written in an extremely uniform
way that is directly related to the abstract syntax tree. As
such Lisp is very well suited for macro programming. On
the other hand, the syntax of Smalltalk is close to natural
language, and thus targeted at readability while still being
simple enough for transformations.

4.2 Dynamic Semantics
Smalltalk is built around objects, polymorphism and dy-

namic dispatch. This together with the fact that everything
is a message send is an advantage when it comes to changing
the semantics. For example, to change the default lower
index of arrays of 1 to something else, is simply a matter
of creating a custom subclass of Array and overriding the
methods at: to read and at:put: to write an array cell.

In the example of the EBNF language we extended the
classes of common Smalltalk objects with the message asParser
, so that these objects can be converted to a parsers that
accept themselves. This is used in the transformed code
to construct a parser for a character. $0 asParser returns
a parser that parses the character 0, see the listing in Sec-
tion 4.1.

However even though it is advertised that everything in
Smalltalk is a message send, this is not entirely true. For
example, reading from and writing to temporary, instance
and global variables is not performed using a message send,
but through primitive bytecodes.

Bracha et al. [2] have demonstrated with NewSpeak that
we can build a Smalltalk-like system that accesses state
through message sends only. This presents the advantage

that state access can be overridden and intercepted as it
is currently done with method polymorphism. Intercepting
state changes is useful to automatically notify observers that
are interested in how a particular object changes.

Most programming languages today provide static built-in
types that have fixed semantics and that cannot be changed.
Furthermore, it is often not possible to extend the existing
system or library classes with new code (e.g., Java). C#
provides an extension mechanism through partial classes,
however this mechanism does not allow us to extend existing
tools as the partial class and its extensions must reside in the
same module. In dynamic languages like Ruby and Javascript
it is typically possible to extend existing classes with new
methods like Smalltalk does.

4.3 Reflective Facilities
The Helvetia system heavily depends on the reflective

features of the host language. We use the reflective infrastruc-
ture to scope language extensions to classes, class hierarchies,
packages, etc. The EBNF language extension if for example
scoped to the subclasses of a generic parser class.

Furthermore the transformation of the parse trees are
performed using the rewrite tools of the Smalltalk refactoring
engine. Instead of relying on string transformations or code
generation, we transform the language extension AST into
the Smalltalk AST and we directly pass it to the compiler.
This approach allows us to keep accurate source location
information, which is crucial to facilitate contextual error
reporting and highlighting in the debugger.

However, while Smalltalk has an excellent infrastructure
for reflection, it lacks features that are central to meta-
programming. Traditionally new code fragments are specified
using strings and string concatenation. This leads to fragile
code and makes it difficult to debug, as the origin of the code
cannot be tracked. A slightly better solution is to manually
instantiate and compose the AST nodes. In this case the
origin can be tracked, but the code is still hard to read and
debug.

Quasiquoting facilities known from Lisp [1] or OMeta-
Caml’s staging constructs [13] promise rescue. We extended
the Smalltalk language with an expressive quasiquoting in-
frastructure. We introduce the following operators, that can
be used as a prefix for any Smalltalk expression:

• Quasiquote. An expression prefixed with `` is delayed
in execution and represents the AST of the enclosed
expression at runtime.

110

• Unquote. An expression prefixed with `, can be
used within a quasiquoted expression. It is executed
when the AST is built can be used to combine smaller
quasiquoted values to larger ones.

• Splice. An expression prefixed with `@ is evaluated
at compile-time and the result is spliced-into the code.
If the returned expression is not an AST, it is auto-
matically lifted to the AST level, e.g., by introducing
a literal node.

As an example we use these operators to generate code to
calculate xn, where n is a positive integer. The method below
is a recursive definition of this method written in regular
Smalltalk:

raise: x to: n
ˆ n = 1

ifTrue: [x]
ifFalse: [(self raise: x to: n − 1) ∗ x]

If we want to avoid the recursion at runtime and instead
generate code that directly calculates the result for a given
integer n we annotate the code with quasiquote and unquote
operators:

raise: aNode to: n
ˆ n = 1

ifTrue: [aNode]
ifFalse: [``(`,(self raise: aNode to: n − 1) ∗ `,aNode)]

When evaluating self raise: ``x to: 3 with a variable node
``x, a parse tree is constructed that multiplies the variable
x three times with itself yielding x ∗ x ∗ x. Using the splice
operator we can insert the generated parse tree anywhere
into the source code. For example:

qubic: x
ˆ `@(self raise: x to: 3)

This creates code equivalent to:

qubic: x
ˆ x ∗ x ∗ x

In our running example, the quasiquoting facilities simpli-
fies the code transformation from the EBNF to the host lan-
guage. The three examples below show different approaches
to generate a small part of the code we saw in action in
Figure 3. Specifically we show how the repeat statement is
composed:

1. String Concatenation..
The most trivial way to do this is to (1) print out the inner

node, (2) concatenate it with the repeat message that is
part of the API of the language grammar model and returns
a repeat clause, and (3) then re-parse the complete string.
Code like this is hard to debug and with pretty printing and
parsing origin information is lost. Furthermore, repeatedly
parsing and pretty printing code is also very inefficient.

Parser parseExpression: '(' , aNode prettyPrinted , ') repeat'

2. Manual AST Composition..
Another possibility consists to manually construct the AST.

In this case the node is composed with the repeat message.
This approach works reasonably well, but it gets cumbersome

with more complicated examples. The compiler cannot check
up front if the resulting code is valid and it is not immediately
obvious for developers to see what code gets generated.

RBMessageNode receiver: aNode selector: #repeat

3. Quasiquoting..
Using the introduced quasiquoting facilities code is easily

generated. Furthermore, it is immediately visible what kind
of code is generated and the compiler can validate the code
generation in advance.

``(`,aNode repeat)

The presented quasiquoting language extension to Small-
talk is simple and does not conflict with the existing syntax.
We strongly encourage the Smalltalk ANSI committee to
include quasiquoting in a future standard proposal. The fact
that Smalltalk entirely lacks sophisticated facilities for meta-
programming could be fixed by implementing quasiquoting
as a language extension.

Unfortunately only very few mainstream programming lan-
guages (e.g., Javascript) provide rich structural and compu-
tational reflection. Furthermore, even fewer provide support
that goes beyond basic structural reflection at the level of
classes or methods. C# 3.0 provides only partial access to the
AST of statically declared expressions using expression trees.
Only in Lisp and Smalltalk we do have direct access to the
AST. Although Helvetia does not strictly require reflective
facilities to change the running application, having read-write
access to the AST greatly simplified its implementation.

For a detailled comparison of the reflective features in
different programming languages we refer the reader to the
work of Bracha et al. [3].

4.4 Homogeneous Languages
Smalltalk being implemented in itself, makes it a viable

target for language experiments. Although Smalltalk does
not come with a fully extensible compiler, this can be easily
added by introducing hook methods into the standard com-
piler framework that is itself implemented in Smalltalk. We
have done so as described in Section 3.

In Smalltalk classes can define a custom parser and com-
piler by overriding the method compilerClass. Helvetia does
so by overriding this method in Object, the root of the class
hierarchy. This enables Helvetia to return a more sophis-
ticated facade object that scopes language changes even
further, not only at the level of classes, but also at the level
of methods and at the sub-method level [7]. As the parser,
the compiler and the executable bytecode are fully accessible
using the reflective environment, any part of the system can
be customized, extended or even replaced.

Furthermore, since all executable code eventually ends
up in a compiled method object that the VM knows how
to interpret, any code can be invoked without knowing its
origin. As the object model is the one of the host system,
objects can be transparently passed around and used by
different language extensions. Thus, different languages can
live homogeneously next to each other and interact in a
natural and transparent way.

For example, our EBNF language would just return a series
of parse tokens by default. To attach production actions to
the grammar we need to be able to intermix the EBNF with

111

normal Smalltalk code. In the excerpt below we show that we
can use normal Smalltalk code to define a production action
right after the grammar specification. In this case aToken
implicitly refers to the character consumed. We use normal
Smalltalk code to convert this character into a number:

digit = ”0” | ”1” | ... | ”9” ;
aToken asciiValue − $0 asciiValue

Language extensions are scoped to certain parts of the
system (e.g., specific classes or packages). When using the
reflective facilities of the host system, different languages are
aware of each other and can be closely integrated.

None of today’s popular programming languages provide
out of the box support for the use of different parsers and
compilers. Thus people have to use a source-to-source trans-
formation in a pre-compilation phase, or rely on a custom
compiler. This leads to various problems: (1) the interaction
between different languages is difficult, (2) incompatibilities
exist between the custom AST representations and the do-
main models involved, and (3) it is often not possible to trace
easily the transformed code back to the original source.

Another language besides Smalltalk that provides homo-
geneous language is Lisp. In Lisp, reader macros are used to
read and transform the source code to s-expressions. Com-
mon Lisp comes with a set of reader macros that define the
standard language, and custom ones can be added by devel-
opers to extend and change the syntax of the host language.
The system knows about all the active reader macros and
uses s-expressions as the common representation of data.

4.5 Homogeneous Tools
Arguments similar to those given in the previous section

can also be given in relation to tools integration. All Small-
talk development tools are implemented themselves in Small-
talk and can be modified on the fly. This makes it easy for
building and integrating languages into these tools. Since
the tools rely on the reflection facilities, many parts of the
editors can be changed just by providing different answers
to their queries. For example:

• Syntax highlighting (see Figure 2) is typically imple-
mented by traversing the parse tree of the edited method.
As long as this tree can be properly visited by the syn-
tax highlighter, the code editors do not care about the
language that is being edited. The only information a
language extension needs to provide is some color and
style information so that the parse tree tokens can be
highlighted accordingly.

• Code completion (see Figure 2) typically works on the
parse tree. Language extensions are able to provide
possible completion tokens that are presented to the
developer.

• Code debugging (see Figure 3) works at the bytecode
level. To highlight the current execution position in the
source code, the debugger uses a source map provided
by the compiler that encodes text ranges to bytecodes.
By providing a custom source map, it is possible to
accurately step through a mixture of different languages
with a single debugger. The debugger interprets the
bytecodes and uses the source map regardless of how
the language looks like to the developers.

Eclipse, NetBeans and IntelliJ IDEA are full featured Java
IDEs implemented in Java. As such, these IDEs provide ho-
mogeneous tools that can be extended through an expressive
plugin architecture. However, developers are restricted to
the provided interface and are often required to restart the
complete IDE when a plugin changes. LispWorks is an IDE
for Lisp development resembling Smalltalk IDEs. While it
provides a rich API to extend its tools, the source code is not
available and thus the developer is restricted to the provided
extension points.

Having the live source code of all tools at hand is a big
advantage for efficient language development and integration.
In Smalltalk the compiler, editor, debugger, etc. can be
changed, adapted or extended without limiting the developer
to a plugin architecture imposed by the vendor.

4.6 On-the-fly Programming
The image encapsulates the running Smalltalk system. It

includes all objects, all classes and their source code, and
the currently executed threads. An image can be saved to
the file-system at any time and in any state, and re-run on
a different machine. When working in a Smalltalk system,
code is compiled and installed into the running system. The
typical edit-compile-run cycle is avoided, as soon as the
source code is edited, it is automatically compiled and used
by the running system.

Having an ever running system makes it viable to quickly
develop and test new language features in the context of a
domain. The language change is immediately available and
can be tested in the running system using the objects already
present.

When a language definition changes, it is often required
that the users of this language are recompiled. In a reflec-
tive system like Smalltalk the clients of a language can be
enumerated and asked to recompile themselves. This is a
similar query to the functionality of displaying senders and
implementors of a particular method selector.

While many dynamic languages (e.g., Lisp, Ruby, Java-
script) provide similar functionality through their interactive
consoles, they do not take it as far as Smalltalk does. For
example, it is often not possible to fix a bug from within the
debugger, or to change the way the console works while it is
running. The fact that source code primarily lives in files,
makes it hard to interact with the code using a first-class
representation.

Smalltalk being an ever living object space presents also
presents practical disadvantages, as it makes it difficult to
make changes in certain parts of the system, e.g., changing
the compiler while it is being used to compile its own source
code. To circumvent these types of problems, in practice
we always keep the original compiler around so that it can
replace the default compiler in case something goes wrong.

Another related problem is the fact that language exten-
sions need to be available before any of the client code is
loaded. This enforces that language extensions are packaged
and loaded separately beforehand.

5. CONCLUSION
Context specific languages are languages that are embed-

ded in a host language, but active only within certain well-
defined contexts. Embedding such new languages into an
existing host environment is currently not well supported.
Instead, to accommodate them we need to extend an existing

112

language with a proper environment.
We built such an environment by expressing foreign lan-

guages in terms of the AST of the host language. This
is the shortest path to reusing the host language tools, as
they all work on the standard reflective facilities of the host
language’s code model.

The contribution of this paper is to distill our experience
of using Smalltalk as the host language. We considered
multiple language environments from the point of view of
their suitability as possible hosts. In essence, we argue that
Smalltalk is a prime candidate for a system like Helvetia.
Other languages considered (as seen in Table 1) fall short
from various points of view. Lisp is a strong contender,
however it lacks support of having full access to compiler
and tools in the running system.

While Smalltalk is a good practical solution, it still is not
ideal. To easily specify code transformation we had to extend
the language with a quasiquoting mechanism. Another prob-
lem is that Smalltalk does not give us access to the execution
semantics of the VM. Accommodating a language that is
not message-based (e.g., Prolog or Haskell) is difficult and
requires mapping the semantics of the new language [16] to
the message-based one of the Smalltalk VM.

Acknowledgments
We thank Oscar Nierstrasz for his feedback on earlier drafts
of this paper. We gratefully acknowledge the financial sup-
port of the Swiss National Science Foundation for the project
“Bringing Models Closer to Code” (SNF Project No. 200020-
121594, Oct. 2008 – Sept. 2010). We also thank CHOOSE,
the special interest group for Object-Oriented Systems and
Environments of the Swiss Informatics Society, for its finan-
cial contribution to the presentation of this paper.

6. REFERENCES
[1] A. Bawden. Quasiquotation in Lisp. In Partial

Evaluation and Semantic-Based Program Manipulation,
pages 4–12, 1999.

[2] G. Bracha. Executable grammars in Newspeak.
Electron. Notes Theor. Comput. Sci., 193:3–18, 2007.

[3] G. Bracha and D. Ungar. Mirrors: design principles for
meta-level facilities of object-oriented programming
languages. In Proceedings of the International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’04), ACM
SIGPLAN Notices, pages 331–344, New York, NY,
USA, 2004. ACM Press.

[4] J. Brant and D. Roberts. SmaCC, a Smalltalk
Compiler-Compiler.
http://www.refactory.com/Software/SmaCC/.

[5] C. Calcagno, W. Taha, L. Huang, and X. Leroy.
Implementing multi-stage languages using ASTs,

GenSym, and Reflection. In In Krzysztof Czarnecki,
Frank Pfenning, and Yannis Smaragdakis, editors,
Generative Programming and Component Engineering
(GPCE), Lecture Notes in Computer Science, pages
57–76. Springer-Verlag, 2003.

[6] R. Cox, T. Bergan, A. T. Clements, F. Kaashoek, and
E. Kohler. Xoc, an extension-oriented compiler for
systems programming. SIGARCH Comput. Archit.
News, 36(1):244–254, 2008.

[7] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall.
Sub-method reflection. In Journal of Object Technology,
Special Issue. Proceedings of TOOLS Europe 2007,
volume 6/9, pages 231–251. ETH, Oct. 2007.

[8] S. Dimitriev. Language oriented programming: The
next programming paradigm. onBoard Online
Magazine, 1(1), Nov. 2004.

[9] T. Ekman and G. Hedin. The JastAdd extensible Java
compiler. In R. P. Gabriel, D. F. Bacon, C. V. Lopes,
and G. L. S. Jr., editors, OOPSLA ’07: Proceedings of
the 22nd annual ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 1–18, New York, NY, USA,
2007. ACM Press.

[10] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke.
An automated refactoring tool. In Proceedings of
ICAST ’96, Chicago, IL, Apr. 1996.

[11] T. Sheard. Accomplishments and research challenges in
meta-programming. In SAIG 2001: Proceedings of the
Second International Workshop on Semantics,
Applications, and Implementation of Program
Generation, pages 2–44, London, UK, 2001.
Springer-Verlag.

[12] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and
D. White. Java on the bare metal of wireless sensor
devices: the squawk java virtual machine. In VEE ’06:
Proceedings of the 2nd international conference on
Virtual execution environments, pages 78–88, New
York, NY, USA, 2006. ACM Press.

[13] W. Taha. A gentle introduction to multi-stage
programming. In Domain-Specific Program Generation,
pages 30–50, 2003.

[14] L. Tratt. Domain specific language implementation via
compile-time meta-programming. ACM TOPLAS,
30(6):1–40, 2008.

[15] N. Wirth. What can we do about the unnecessary
diversity of notation for syntactic definitions?
Commun. ACM, 20(11):822–823, 1977.

[16] R. Wuyts. A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design
and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

113

	Introduction
	Requirements for a host environment
	Helvetia in a Nutshell
	Why Smalltalk
	Minimal Syntax
	Dynamic Semantics
	Reflective Facilities
	Homogeneous Languages
	Homogeneous Tools
	On-the-fly Programming

	Conclusion
	References

