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Abstract. Software must be constantly adapted due to evolving domain
knowledge and unanticipated requirements changes. To adapt a system
at run-time we need to reflect on its structure and its behavior. Object-
oriented languages introduced reflection to deal with this issue, however,
no reflective approach up to now has tried to provide a unified solution to
both structural and behavioral reflection. This paper describes Albedo1,
a unified approach to structural and behavioral reflection. Albedo is a
model of fined-grained unanticipated dynamic structural and behavioral
adaptation. Instead of providing reflective capabilities as an external
mechanism we integrate them deeply in the environment. We show how
explicit meta-objects allow us to provide a range of reflective features and
thereby evolve both application models and environments at run-time.

1 Introduction

Classical software development plays out like a finite game with fixed rules and
boundaries. However, evolving software systems are rather an infinite game with-
out fixed rules or boundaries [2]. Large systems not only evolve in the develop-
ment phase, but also at run-time. Development itself is part of the infinite game
of the system. The system may continue to evolve while running.

To enable change at run-time, a system must be self-aware and be able to fully
reflect on itself [14]. A reflective system provides a description of itself that can
be queried (introspection) and changed (intercession) from within. Consequently
the system can reflect on itself and can change its structure and behavior. How-
ever, this is not enough to support full run-time evolution of models. To evolve
a model at run-time it is necessary to access the dynamic representation of a
program, that is, the operational execution of the program. This is called behav-
ioral reflection, pioneered by Smith [18, 19] in the context of Lisp. A reification
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1 In astronomy, albedo is the proportion of the incident light or radiation that is
reflected by a surface, typically that of a planet or moon [The Oxford Dictionary of
English]
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not related to the structure of the language might be required, for example, a
message send.

As an example, let us look at a financial model and how to make it available to
an external audit system. Such a model typically contains sensitive information
and certain properties should not be accessible and modifiable by everybody. We
therefore need a representation of the model that has the same behavior except
for certain restricted accessors. To achieve this, we need to change the model
and integrate contextual security checks. However, such a transformation is not
straightforward and might add unnecessary complexity to the application code.
What we need is to modify the system so that security concerns can be quickly
changed to adapt to new requirements. A reflective system where we can express
from the inside these structural constraints to access or modify certain state will
solve our problem.

It can be argued that this problem can be solved by using Aspect-Oriented
Programming (AOP) [10]. AOP provides a general model for modularizing cross
cutting concerns. Join points define points in the execution of a program that
trigger the execution of additional cross-cutting code called advice. Join points
can be defined on the run-time model (i.e., dependent on control flow). Although
AOP is used to introduce changes into software systems, the focus is on cross-
cutting concerns, rather than on reflecting on the system. Modeling the changes
in the financial problem through AOP will deliver a set of join points which have
a larger semantic gap to the actual requirement than using the reifications of the
system. The reflective approach is better suited for continuous evolution since
join points are harder to reflect upon.

The first object-oriented language to propose a clean reflection approach
was Smalltalk-80 [7] by introducing meta-classes. ObjVlisp [3] and Classtalk [1]
followed this line of research. Meta-classes define the internal structure and be-
havior of a class. There can be only one meta-class per class. There is a sec-
ond approach to reflection in object-oriented languages introduced by Pattie
Maes in 3-KRS [11, 12]. This approach states that each object is related to one
meta-object. A meta-object specifies the structure of the object and how this
object handles messages. Maes also benefited from the work of Kiczales et al. [9]
on meta-object protocols (MOPs) over the CLOS language, an object-oriented
extension of Lisp. The protocol of a meta-object encodes the behavior of the
language. If the MOP is changed the language is changed as well.

To solve the financial model security issue we can either remove methods
from classes or from meta-objects. Depending on the reflection approach we will
be affecting one object or all instances of a class. But the key point to highlight
is that we are dealing with structural elements only.

Regardless of the differences between the reflection approaches, they are built
on structural reifications of the concepts that form the language (classes, objects,
methods, instance variables, etc.), however, this structural approach does not
solve all reflection problems. Assume there is a new requirement which says that
every time the interest rate of a financial instrument is changed a message should



be sent to the central audit system. Thinking in terms of classes, objects and
methods is not enough to solve this requirement.

Following Smith’s work on behavioral reflection McAffer [13] developed CodA,
a system that approaches reflection from the point of view of operational decom-
position. He proposed to separate the description of the computational behavior
of an object from that of its base language structure. This approach divides
the execution of an object into basic operations (e.g., message send and receive,
state access, object creation and deletion, etc.).

Iguana [8] further improved this approach by providing a mechanism, known
as fine-grained MOP, to allow multiple reflective object models to coexist. For
example, one object can have a distributed object model while other objects
in the system have a centralized object model. Although structural approaches
have the advantage of organizing the meta-level in terms of concepts known to
the user like classes and methods, it is hard to integrate new concepts that are
not represented in the language. This is important since it allows the language
to evolve beyond its predefined structure. This approach provides a way of inte-
grating reified concepts that are not originally part of the language through its
operations. There are seven reification categories: object creation and deletion;
message sends, receive and dispatch; and state read and write. Iguana was later
ported to Java [15,16]

The audit requirement can be solved by specifying that a message is sent to
the central audit system every time a state write event related to the financial
instrument interest rate is issued.

Up until now, no approach has tried to provide a unified solution to these
two domains of reflection: structural and behavioral. In this paper we present
Albedo, a model of fine-grained unanticipated dynamic structural and behav-
ioral adaptation. Instead of providing reflective capabilities as an external mech-
anism we integrate them deeply in the environment. We show, by modeling
meta-objects explicitly, how we can extend the environment from both a struc-
tural and behavioral standpoint.

The most relevant characteristics of Albedo are:

– It provides a meta-object approach to reflection.
– The meta level can be organized with language concepts and operational

decomposition.
– The fine-grained MOP allows us to control the scope of the change.

Outline. Section 2 explains how the model behind the Albedo environment
solves both structural and behavioral requirements. In Section 3 we present the
internal implementation of our solution in the context of Smalltalk. Section 4
presents a couple of structural and behavioral reifications and how they are
modeled with meta-objects. In Section 5 we summarize the paper and discuss
future work.



2 Albedo Approach

The Albedo mechanism is placed at the center of the system where every lan-
guage construct is expressed in terms of an Albedo meta-object. In this section
we show the two building blocks of Albedo and how they can solve the previ-
ously presented problems.

..
MetaObject

.interpret: anObject
desinterpret: anObject

.

StructuralMetaObject

.

addMethodNamed: aName performing: aBlock
removeMethodNamed: aName
addStateNamed: aName
removeStateNamed: aName

.

BehavioralMetaObject

.

when: aReificationCategory do: aBlock

Fig. 1. Meta-Objects class diagram.

Figure 1 shows a simplified meta-object class hierarchy diagram. The meta-
object abstraction is reified and it has the responsibility to adapt objects. The
idea is that meta-objects specify how an object meta-level should work.

2.1 Structural Meta-object

The StructuralMetaObject abstraction reifies the meta-object responsible for mod-
eling the structures of a program. An object-oriented program’s canonical struc-
tures are objects and messages. In class-based languages, classes have too many
responsibilities. They are used to model an abstraction, provide an instance cre-
ation mechanism, define the messages the instances know how to answer, and
provide a template that subclasses can extend. In prototype-based languages
the idea of generalization does not exist and new abstractions are built by del-
egating to other abstractions or objects. Traits are an example of a structural
meta-object, created for sharing behavior. A trait [17] is a composable unit
of behavior that can be shared among objects. If several objects share a trait
then they all will be able to understand the messages defined in the trait. The
StructuralMetaObject abstraction provides the means to define meta-objects like
classes, prototypes and traits. New structural abstractions can be defined to ful-
fill some specific requirement. For example we can define the concept of traits
as we discuss in Section 4.

A StructuralMetaObject acts on the basic structural units of an object-oriented
language which are messages, objects and the object state. The responsibilities
of a StructuralMetaObject are:



– Adding a method. A new method is added to the object. A name and the
source code is provided. When the object receives the message it executes
the compiled source code. The source code compilation is performed when
the object is associated with a meta-object. If there is a compilation error
the meta-object association is rolled back.

– Removing a method. The adapted object will not understand a particular
message any more.

– Replacing a method. The method will have another behavior. Source code or
a closure can be provided.

– Adding state. The addition of new state to an object allows the user to add
methods that use that state.

– Removing state. Specific state is removed.

These responsibilities are modeled as meta-actions. A StructuralMetaObject
can be defined as a particular set of these meta-actions that structurally adapt
a particular object. When an object is associated to a meta-object these actions
are executed and the object is adapted accordingly.

Let us consider the financial domain and pick a financial instrument which
has to be audited by an external company. The auditors do not want to see
a report, they want to see the real system and interact with it. This financial
instrument is still active and should become due in some months. Financial
instruments can be renegotiated, changing the due date and recalculating the
taxes under a new contract. We want to hide this kind of behavior from the
audit committee to assure the integrity of the instrument.

The following code fragment shows how this scenario can be achieved with
Albedo:

1 anImmutableBehavior := StructuralMetaObject default.
2 anImmutableBehavior removedMethodNamed: #renegotiate.
3 anImmutableBehavior boundTo: aFinancialInstrument.

Listing 1. Making a financial instrument immutable regarding the renegotiation
behavior.

First, we get the default structural meta-object (line 1) whose responsibil-
ity is to define the allowed behavior for immutable financial instruments. Then
we remove the renegotiate method from the meta object (line 2). Finally, the
meta-object is associated with the financial instrument (line 3). This association
triggers the adaptation of the objects thus removing renegotiate from the set
of messages understood by the financial instrument. If this message is sent to
the financial instrument an error is thrown, however, if this message is sent to
any other financial instrument, even to another instance of the same class, the
original behavior is preserved.

Structural meta-objects deal with the definition of meta-level structural reifi-
cations. How and when they are introduced at run-time is the job of the behav-
ioral meta-object.



2.2 Behavioral Meta-object

The BehavioralMetaObject abstraction reifies the meta-object responsible for
modeling the dynamic representation of a program. By dynamic representa-
tion we refer to the language’s dynamic reifications. This abstraction coresponds
to the work done in Iguana and later used by McAffer in Coda. As McAffer
pointed out, the system is modeled as a set of operations whose occurrences
“can be thought of as events which are required for object execution” [13].

To dynamically adapt the behavior of an object we need to describe what
we would like to do and when. To specify what we would like to apply we
delegate to a specific meta-object with the responsibility of managing an event.
We specify when it should be adapted by using a computational event in the
execution of a program, for example, the creation of an object, sending a message,
etc. A set of canonical events models the basic operations known as dynamic
reification categories. These are not the only reifications possible. New dynamic
reifications can be defined, the only requirement being to specify when they
should be triggered.

The dynamic reification categories are:

– Object creation
– Object deletion
– Message send
– Message receive
– Message dispatch
– State read
– State write

We selected these categories following the Iguana approach. With these basic
categories we are capable of adapting an object’s behavior regarding operations
that are executed over the language building blocks.

For example, let us consider a new requirement which specifies that every
time the interest rate of a financial instrument is changed, a message should be
sent to the central audit system.

1 aMethodLookupMetaObject := BehavioralMetaObject default.
2 aMethodLookupMetaObject
3 when: (StateRead new)
4 do: [:owner :state |
5 CentralAuditSystem
6 interestRateOf: owner
7 changedTo: state].
8 aMethodLookupMetaObject boundTo: aFinancialInstrument.

Listing 2. Dynamically reifying method lookup for a financial instrument.

In line 1 the default behavioral meta-object is obtained. Lines 2–7 show
the usage of reification categories to define when the meta-behavior should to
happen. In this case the central audit system is informed of a change in the
interest rate of an object. In line 8 the object is associated to the meta-object,
and from this point on the new meta-behavior is obtained every time the interest
is changed.



3 Implementation

Albedo is the prototype of our meta-object model approach built in Pharo
Smalltalk2. Reflectivity [4] was used for dynamic adaptation. Reflectiv-
ity provides unanticipated partial behavioral reflection at the sub-method level,
using ASTs rather than source code or bytecode as underlying model of the
software. We decided to use Reflectivity since partial behavioral reflection
as pioneered by Reflex [20] is particularly well-suited for dynamic reifications
because it supports a highly selective means to specify where and when to reify
an abstraction in the system. Partial behavioral reflection offers an even more
flexible approach than pure behavioral reflection. The key advantage is that it
provides a means to selectively trigger reflection, only when specific, predefined
events of interest occur.

The core concept of the Reflex model of partial behavioral reflection is the
link. A link invokes messages on a meta-object at occurrences of marked opera-
tions. The attributes of a link enable further control of the exact message to be
sent to the meta-object. Additionally, an activation condition can be defined for
a link which determines whether or not the link is actually triggered.

source code 
(AST)

meta-object

activation
condition

links

Fig. 2. The reflex model.

Links are associated with AST nodes. Subsequently, the system automatically
generates new bytecodes that take the link into consideration the next time the
method is executed.

Reflectivity integrates itself into Pharo by using the Reflective Meth-
ods abstraction. A Reflective Method knows the AST of the method it repre-
sents. In Pharo classes are first class objects that are available to any program.
They have an instance variable named methodDict which holds an instance of
MethodDictionary – a special sub-class of Dictionary. All methods of a class are
stored in its method dictionary. The VM directly uses the class objects and their
method dictionary when performing message sends. Normally, only instances of
CompiledMethod are stored in the method dictionary of a class but Pharo allow
us to store any kind of object there. The VM recognizes objects that are not
2
http://pharo-project.org/
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instances of CompiledMethod and instead of executing bytecode the VM sends
run:with:in: to the object stored in the method dictionary. When a reflective
method receives this message it processes the adaptations specified in the meta-
object on the AST and generates a new compiled method which is eventually
executed. If no adaptation is present the reflective method caches the compiled
method for performance savings. Figure 3 visualizes this relationship between a
class, the method dictionary and the methods.

..Class. MethodDictionary. CompiledMethod.

ReflectiveMethod

. methodDict.
1

.
*

Fig. 3. Reflective Methods in Method Dictionaries

Reflectivity was conceived as an extension of the Reflex model of Partial
Behavioral Reflection [20]. Reflex was originally realized with Java. Therefore,
our approach can in be implemented in a more static mainstream language like
Java. The reason for choosing Smalltalk and Reflectivity for this work is
that it supports unanticipated use of reflection at runtime [4] and is integrated
with an AST based reflective code model [5]. A Java solution would likely be
more static in nature: links cannot be removed completely (as code cannot be
changed at runtime) and the code model would not be as closely integrated with
the runtime of the language.

4 Discussion

Albedo is not only useful for evolving systems at run-time but it is also useful
for developing new language features. By modeling meta-objects explicitly we
can extend the environment from both a structural and behavioral standpoint.
In this section we discuss the language impact of having a system that can be
extended from a structural and behavioral point of view. Next, we introduce two
examples of reifying language features to show how the language itself can be
modified.

4.1 Traits Example

A trait [17] is a composable unit of behavior that can be shared among objects. If
several objects share a trait then they all will be able to understand the messages
defined in the trait.

Let assume that we want all financial instruments to share the same behavior.
For example, suppose we want to provide a common implementation for the



renegotiation feature. Furthermore we do not want to impose a class hierarchy
structure on all financial instruments to introduce this feature, but instead keep
the possibility to assign the feature dynamically to an instrument. We can easily
fulfill these needs by defining the feature as a trait, however if the host language
does not implement traits we cannot introduce this feature as we would like.
Albedo provides a mechanism to define dynamically the trait abstraction thus
modifying the language model.

1 aTrait := StructuralMetaObject default.
2 aTrait addMethodNamed: #regenerate performing: 'self recalculateTaxes.
3 self recalculateDates'.
4 aFinancialInstrument := aFinancialInstrumentClass new.
5 anotherFinancialInstrument := aFinancialInstrumentClass new.
6 aTrait boundTo: aFinancialInstrument.
7 aTrait boundTo: anotherFinancialInstrument

Listing 3. Building the trait abstraction with structural meta-objects.

First, we introduce the trait abstraction itself as a structural meta-object in
line 1. The message renegotiate is defined in line 2 for this trait, its behavior is
to recalculate taxes and dates. By using the existing Class abstraction defined
with meta-objects we create two financial instruments in lines 4-5. The class
abstraction is built using a structural meta-object and adding a message new
that creates an instance of a class. The class is bound to the instance as a meta-
object. Finally, we associate the trait as the meta-object to both objects thus
making them capable of answering the message renegotiate.

A trait is defined as a StructuralMetaObject. However, by definition, traits
should not have state. To achieve this we need to remove the possibility of
adding state in the trait structural meta-object.

1 aTraitBehavior := StructuralMetaObject default.
2 aTraitBehavior removedMethodNamed: #addStateNamed: .
3 aTraitBehavior removedMethodNamed: #removeStateNamed: .
4 aTraitBehavior boundTo: aTrait.

Listing 4. Making traits stateless.

We first define another structural meta-object called TraitBehavior (line 1).
This abstraction has the responsibility of defining which are the messages a trait
meta-object is capable of answering. In lines 2–3 both state-related messages are
removed from the trait behavior definition. Finally, in line 4 the TraitBehavior is
set as the meta-object of the trait meta-object defining its responsibilities.

4.2 Method Lookup Example

The method-lookup reification defines the process that specifies which method
should be executed when an object receives a message. To reify method-lookup in
some languages it is necessary to perform complex computations, apply method
wrappers, manipulate method dictionaries [6] or adapt byte-code.

Most languages, including Java and Smalltalk, do not reify method lookup.
Being able to change the way a message is mapped to a method has many
applications, for example test coverage, benchmarking and logging. Moreover,



class-based languages impose a method lookup strategy that follows the class
hierarchy. In some cases we need to have a strategy different from the traditional
method lookup. We might not be so sure about how the class hierarchy should be
organized. Here we have to provide a different strategy for matching a message
to a method. For example, a financial instrument needs to reuse the behavior
defined in another financial instrument which is not its super-class. We are not
yet sure how the hierarchy should be reshaped, or if we should use composition
instead of inheritance. So we decide to provide a new method lookup strategy to
the financial instrument for checking first if the method is defined in the second
financial.

To implement method lookup a two-level meta-object structure is required
as shown below.

1 aMethodLookupBehavior := StructuralMetaObject default.
2 aMethodLookupBehavior addStateNamed: #strategy.
3 aMethodLookupMetaObject := BehavioralMetaObject default.
4 aMethodLookupMetaObject
5 when: (MessageReceived new)
6 do: [:receiver :message :args |
7 strategy
8 resolve: message
9 for: receiver

10 with: args ].
11 aMethodLookupBehavior boundTo: aMethodLookupMetaObject
12 aMethodLookupMetaObject boundTo: aFinancialInstrument.

Listing 5. Reifying method lookup with behavioral meta-objects.

The method lookup meta-object itself is a behavioral meta-object that rei-
fies a message received by delegating to a predefined strategy. In lines 1–2 we
define the structural meta-object and introduce a strategy instance variable.
This is a meta-meta-object named aMethodLookupBehavior that specifies that
the interpreted object will have a strategy instance variable. In lines 4–10 the
method lookup meta-object is defined and the MessageReceived behavioral reifi-
cation category is used to adapt how the method lookup should be resolved.
The resolution of the lookup is delegated to the strategy active at run-time. The
strategy can be changed at any point in time, thus delivering different behavior
for the same object receiving the same message. Finally, aMethodLookupBehavior
is associated to the meta-object of aMethodLookupMetaObject. Any object that
is associated with aMethodLookupMetaObject will change the way the method
lookup is resolved for that particular object.

5 Conclusion

In this paper we have introduced Albedo, a unified approach to behavioral
and structural reflection. Albedo is a reflective model and environment for
dynamically defined unforeseen language feature reifications. Even the most basic
constructs of a language are expressed in terms of it. We have shown how different
structural and behavioral meta-objects like traits and method lookup can be
modeled with this environment.

What is more, we provide the means to dynamically define or modify ab-
stractions thus eliminating the limitations of reflective models. This allows us



to redefine static or run-time abstractions and manipulate their structure and
behavior thus helping in the evolution of run-time models.

As future work we would like to analyze the performance impact of Albedo.
We also would like to analyze various use cases to further validate the model.
We would like to further research the composition of different meta-objects.
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