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Abstract
Reuse in object-oriented languages typically focuses on in-
heritance. Numerous techniques have been developed to pro-
vide finer-grained reuse of methods, such as flavors, mixins
and traits. These techniques, however, only deal with reuse
at the level of classes.

Class-based reuse is inherently static. Increasing use
of reflection and meta-programming techniques in real
world applications underline the need for more dynamic
approaches. New approaches have shifted to object-specific
reuse. However, these techniques fail to provide a complete
solution to the composition issues arising during reuse.

We propose a new approach that deals with reuse at the
object level and that supports behavioral composition. We
introduce a new abstraction called a talent which models
features that are shared between objects of different class
hierarchies. Talents provide a composition mechanism that
is as flexible as that of traits but which is dynamic.

1. Introduction
Classes in object-oriented languages define the behavior of
their instances. Inheritance is the principle mechanism for
sharing common features between classes. Single inheri-
tance is not expressive enough to model common features
shared by classes in a complex hierarchy. Due to this sev-
eral forms of multiple inheritance have been proposed [3,
19, 28, 36, 38]. However, multiple inheritance introduces
problems that are difficult to resolve [10, 39]. One can argue
that these problems arise due to the conflict between the two
separate roles of a class, namely that of serving as a factory
for instances, as well as serving as a repository for shared
behaviour for all instances. As a consequence, finer-grained
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reuse mechanisms, such as flavors [29] and mixins [5], were
introduced to compose classes from various features.

Although mixins succeed in offering a separate mecha-
nism for reuse they must be composed linearly, thus intro-
ducing new difficulties in resolving conflicts at composition
time. Traits [12, 37] overcome some of these limitations by
eliminating the need for linear ordering. Instead dedicated
operators are used to resolve conflicts. Nevertheless, both
mixins and traits are inherently static, since they can only be
used to define new classes.

Ruby [25] relaxes this limitation by allowing mixins to
be applied to individual objects. Object-specific mixins how-
ever still suffer from the same compositional limitations of
class-based mixins, since they must still be applied linearly
to resolve conflicts.

In this paper we introduce talents, object-specific units
of reuse which model features that an object can acquire at
run-time. Like a trait, a talent represents a set of methods
that constitute part of the behavior of an object. Unlike traits,
talents can be acquired (or lost) dynamically. When a talent
is applied to an object, no other instance of the object’s
class are affected. Talents may be composed of other talents,
however, as with traits, the composition order is irrelevant.
Conflicts must be explicitly resolved.

Like traits, talents can be flattened, either by incorporat-
ing the talent into an existing class, or by introducing a new
class with the new methods. However, flattening is purely
static and results in the loss of the dynamic description of
the talent on the object. Flattening is not mandatory, on the
contrary, it is just a convenience feature which shows how
traits are a subset of talents.

The contributions of this paper are:

• We identify static problems associated with multiple in-
heritance, mixins and traits.

• We introduce talents, an object-specific behavior com-
position model that removes the limitations of static ap-
proaches.

• We describe a Smalltalk prototype of our approach.
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• We describe two flattening techniques which merge the
behavior adaptations into the original class hierarchy or
into a new class.

Outline. In Section 2 we motivate the problem. Section 3
explains the talent approach, its composition operations and
a solution to the motivating problem. the flattening tech-
niques. In Section 4 we present the internal implementation
of our solution in the context of Smalltalk. In Section 5 we
discuss related work. Section 6 discussed about talents fea-
tures like state sharing, scoping and flattening. In Section 7
we present examples to illustrate the various used of talents.
Section 8 summarizes the paper and discusses future work.

2. Motivating Example
Moose is a platform for software and data analysis that pro-
vides facilities to model, query, visualize and interact with
data [17, 30]. Moose represents the source code in a model
described by FAMIX, a language-independent meta-model
[40]. The model of a given software system consists of en-
tities representing various software artifacts such as meth-
ods (through instances of FAMIXMethod) or classes (through
instances of FAMIXClass).

Each type of entity offers a set of dedicated analysis
actions. For example, a FAMIXClass offers the possibility of
visualizing its internal structure, and a FAMIXMethod offers the
ability to browse its source code.

Moose can model applications written in different pro-
gramming languages, like Smalltalk, Java, and C++. These
models are built with the language independent FAMIX
meta-model. However, each language has its own partic-
ularities which are introduced as methods in the different
entities of the meta-model. There are different extensions
which model these particularities for each language. For ex-
ample, the Java extension adds the method namespace to the
FAMIXClass, while the Smalltalk extension adds the method
isExtended. Smalltalk however does not support namespaces,
and Java does not support extended classes. Additionally, to
identify test classes Java and Smalltalk require different im-
plementations of the method isTestClass in FAMIXClass.

Another problem with the extensions for particular lan-
guages is that the user has to deal with classes that have
far more methods than the model instances actually support.
Dealing with unused code reduces the developer productiv-
ity and it is error prone.

A possible solution is to create subclasses for each sup-
ported language. However, there are some situation in which
the model requires a combination of extensions: Moose JEE
[32, 33] — a Moose extension to analyze Java Enterprise
Applications (JEAs) — requires a combination of Java and
Enterprise Application specific extensions. This leads to an
impractical explosion of the number of subclasses. More-
over, possible combinations are hard to predict in advance.

Multiple inheritance can be used to compose the different
behaviors a particular Moose entity requires. However, the

diamond problem makes it difficult to handle the situation
where two languages want to add a method of the same
name. Mixins address the composition problem by applying
a composition order, this however might lead to fragile code
and subtle bugs. Traits offer a solution that is neutral to
composition order, but traits neither solve the problem of the
explosion in the number of classes to be defined, nor do they
address the problem of dynamically selecting the behavior.
Traits are composed statically into classes before instances
can benefit from them.

We need a mechanism capable of dynamically composing
various behaviors for different Moose entities. We should be
able to add, remove, and change methods. This new Moose
entity definition should not interfere with the behavior of
other entities in other models used concurrently. We would
like to be able to have coexisting models of different lan-
guages, formed by Moose entities with specialized behavior.

3. Talents in a Nutshell
In this section we present our approach. We propose com-
posable units of behavior for objects, called talents. These
abstractions solve the issues presented in other approaches.

The prototype of talents1 and the examples presented in
this paper are implemented in Pharo Smalltalk2, an open-
source Smalltalk [18] implementation.

3.1 Defining Talents
A talent specifies a set of methods which may be added to,
or removed from, the behavior of an object. Although the
methods of a talent may directly access the state of an object,
it is recommended to use accessor methods instead.

We will illustrate the use of talents with the Moose exten-
sion example introduced in the previous section.

A talent is an object that specifies methods that can be
added to an existing object. A talent can be assigned to any
object in the system to add or remove behavior.

1 aTalent := Talent new.

2 aTalent

3 defineMethod: #isTestClass

4 do: '^ self inheritsFromClassNamed: #TestCase'.

5 aClass := FAMIXClass new.

6 aClass acquire: aTalent.

We can observe that first a generic talent is instantiated
and then a method is defined. The method isTestClass is
used to test if a class inherits from TestCase. In lines 5–
6 we can see that a FAMIX class is instantiated acquiring
the previous talent. When the method acquire: is called,
the object — in this case the FAMIX class — is adapted.
Only this FAMIXClass instance is affected, no other instance
is modified by the talent. There is one more particularity with
this example.

1 http://scg.unibe.ch/research/talents/
2 http://www.pharo-project.org/
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Talents can also remove methods from the object that
acquires them.

1 aTalent := Talent new.

2 aTalent excludeMethod: #clientClasses.

3 aClass := FAMIXClass new.

4 aClass acquire: aTalent.

In this case the existing method clientClasses is removed
from this particular class instance. Sending this message
will now trigger the standard doesNotUnderstand: error of
Smalltalk.

3.2 Composing Objects from Talents
Talent composition order is irrelevant, so conflicting tal-
ent methods must be explicitly disambiguated. Contrary to
traits, the talent definition of a method takes precedence if
the object acquiring the talent already has the same method.
Once an object is bound to a talent then it is clear that this
object needs to specialize its behavior. This precedence can
be overridden if it is explicitly stated during the composition
by removing the definition of the methods from the talent.

In the next example we will compose a group with two
talents. One expresses the fact that a Java class is in a names-
pace, the other that a JEE class is a test class.

1 javaClassTalent := Talent new.

2 javaClassTalent

3 defineMethod: #namespace

4 do: '^ self owningScope'.

5 jeeClassTalent := Talent new.

6 jeeClassTalent

7 defineMethod: #isTestClass

8 do: '^ self methods anySatisfy: [ :each | each

isTestMethod ]'.

9 aClass := FAMIXClass new.

10 aClass acquire: javaClassTalent , jeeClassTalent.

In line 10 we can observe that the composition of talents
is achieved by sending the comma message (,). The com-
posed talents will allow the FAMIX class instance to dynam-
ically reuse the behavior expressed in both talents.

3.3 Conflict Resolution
A conflict arises if and only if two talents being composed
provide different implementations for the same method.
Conflicting talents cannot be composed, so the conflict has
to be resolved to enable the composition.

To gain access to the different implementations of con-
flicting methods, talents support an alias operation. An alias
makes a conflicting talent method available by using another
name.

Talent composition also supports exclusion, which allows
one to avoid a conflict before it occurs. The composition
clause allows the user to exclude methods from a talent when
it is composed. This suppresses these methods and allows
the composite entity to acquire the otherwise conflicting
implementation provided by another talent.

We would like models originating from JEE applications
to support both Java and JEE extensions. Composing these

two talents however generates a conflict for the methods
isTestClass for a FAMIX class entity. The next example
produces a conflict on line 10 since both talents define a
different implementation of the isTestClass method.

1 javaClassTalent := Talent new.

2 javaClassTalent

3 defineMethod: #isTestClass

4 do: '^ self methods anySatisfy: [ :m | m

isAnnotatedWith: #Test ]'.

5 jeeClassTalent := Talent new.

6 jeeClassTalent

7 defineMethod: #isTestClass

8 do: '^ self inheritsFrom: #TestCase'.

9 aClass := FAMIXClass new.

10 aClass acquire: javaClassTalent , jeeClassTalent.

There are different ways to resolve this situation. The first
is to define aliases, like in traits, to avoid the name collision:

10 aClass acquire: javaClassTalent , (jeeClassTalent @ {

#isTestClass -> #isJEETestClass}).

When the talent is acquired the method isJEETestClass is
installed instead of isTestClass, thus avoiding the conflict.
Any other method or another talent can then make use of
this aliasing.

Another option is to remove those methods that do not
make sense for the specific object being adapted.

10 aClass acquire: javaClassTalent , (jeeClassTalent -

#isTestClass).

By removing the definition of the JEE class talent the Java
class talent method is correctly composed.

Each FAMIX extension can be defined as a set of talents,
each for a single entity, i.e., class, method, annotation, etc.
For example, we have the Java class talent which models
the methods required by the Java extension to FAMIX class
entity. We also have a Smalltalk class talent as well as a JEE
talent that model further extensions.

4. Implementation
In this section we describe how talents are implemented.

4.1 Bifröst
Talents are built on top of the Bifröst reflection frame-
work [35]. Bifröst offers fine-grained unanticipated dynamic
structural and behavioral reflection through meta-objects.
Instead of providing reflective capabilities as an external
mechanism we integrate them deeply into the environment.
Explicit meta-objects allow us to provide a range of reflec-
tive features and thereby evolve both application models and
the host language at run-time. Meta-objects provide a sound
basis for building different coexisting meta-level architec-
tures by bringing traditional object-oriented techniques to
the meta-level.

In recent years researchers have worked on the idea of
applying traditional object-oriented techniques to the meta-
level while attempting to solve various practical problems
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motivated by applications [26]. These approaches, however,
offer specialized solutions arising from the perspective of
particular use cases.

The Bifröst model solves the main problems of previ-
ous approaches while providing the main reflection require-
ments.

Partial Reflection. Bifröst allows meta-objects to be bound
to any object in the system thus reflecting selected parts
of an application.

Selective Reification. When and where a particular reifica-
tion should be reified is managed by the different meta-
objects.

Unanticipated Changes. At any point in time a meta-object
can be bound to any object thus supporting unanticipated
changes.

Meta-level Composition. Composable meta-objects provide
the mean for bringing together different adaptations.

Runtime Integration. Bifröst’s reflective model lives en-
tirely in the language model, so there is no VM modi-
fication or low level adaptation required.

4.2 Talents
Figure 1 shows the normal message send of isTestClass to
an instance of FAMIXClass. The method lookup starts on the
class finding the definition of the method and then executing
it for the message receiver.

However, if we would like to factor the FAMIXClass JEE
behavior out we can define a talent that models this. Each
talent is modeled with a structural meta-object. A structural
meta-object abstraction provides the means to define meta-
objects like classes and prototypes. New structural abstrac-
tions can be defined to fulfill some specific requirement.
These meta-object responsibilities are: adding and remov-
ing methods, and adding and removing state to an object. A
composed meta-object is used to model composed talents.
The specific behavior for defining and removing methods
is delegated to the addition and removal of behavior in the
structural meta-object.

In Figure 2 we can observe the the object diagram for
a FAMIX class which has acquired a talent that models
JEE behavior. The method lookup starts in the class of the
receiver. Originally, the FAMIXClass class did not define a
method isTestClass, however, the application of the talent
defined this method. Talents do not affect the behavior of
development tools in any way. This method is responsible
for delegating the execution of the message to the receiver’s
talent. If the object does not have a talent, the normal method
lookup is executed, thus talents do not affect other instances’
behavior of the class. In this case, aFAMIXClass has a talent
that defines the method isTestClass, which is executed for
the message receiver.

5. Related Work
In this section we compare talents to other approaches to
share behavior.

Mixins
Flavors [29] was the first attempt to address the problem
of reuse across a class hierarchy. Flavors are small, incom-
plete implementations of classes, that can be ”mixed in” at
arbitrary places in the class hierarchy More sophisticated
notions of mixins were subsequently developed by Bracha
and Cook [5], Mens and van Limberghen [27], Flatt, Kr-
ishnamurthi and Felleisen [14], and Ancona, Lagorio and
Zucca [1].

Mixins present drawbacks when dealing with composi-
tion. Mixins use single inheritance for composing features
and extending classes. Mixins have to be composed linearly
thus limiting the ability to define the glue code necessary to
avoid conflicts. However, although this inheritance operator
is well-suited for deriving new classes from existing ones, it
is not appropriate for composing reusable building blocks

Bracha developed Jigsaw [4], a modularity framework
which defines module composition operators merge, over-
ride, copy as and restrict. These operators inspired the sum,
override, alias and exclusion operators on traits. Jigsaw mod-
els a complete framework for module manipulation provid-
ing namespaces, declared types and requirements, full re-
naming, and semantically meaningful nesting.

Ruby [25] introduced mixins as a building block of
reusability, called modules. Moreover, modules can be ap-
plied to specific objects without modifying other instances of
the class. However, object-specific modules suffer from the
same composition limitation as modules applied to classes:
they have to be applied linearly. Aliasing of methods is
possible for avoiding name collisions, as well as remov-
ing method in the target object. However, objects or classes
methods cannot be removed if they are not already imple-
mented. This follows the concept of linearization of mixins.
Talents can be applied without an order. Moreover, a talent
composition delivers a new talent that can be reused and ap-
plied to other objects. Filters in ruby provide a mechanism
for composing behavior into preexisting methods. However,
they do not provide support for defining how modules de-
fined methods should be composed for a single object.

CLOS
CLOS [8] is an object-oriented extension of Lisp. Multi-
ple inheritance in CLOS [22, 31] imposes a linear order on
the superclasses. This linearization often leads to unexpected
behavior because it is not always clear how a complex mul-
tiple inheritance hierarchy should be linearized [13]. CLOS
also provides a mechanism for modifying the behavior of
specific instances by changing the class of an instance using
the generic function change-class. However, these modifica-
tions do not provide any composition mechanisms, render-
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Figure 1. Default message send and method look up resolution.
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Figure 2. Talent modeling the Moose FAMIX class behavior for the method isTestClass.

ing this technique dependent on custom code provided by
the user.

Traits
Traits [12, 37] overcome the limitations of previous ap-
proaches. A trait is a set of methods that can be reused by
different classes. The main advantage of traits is that their
composition does not depend on a linear ordering. Traits are
composed using a set of operators — symmetric combina-
tion, exclusion, and aliasing — allowing a fair amount of
composition flexibility. Traits are purely static since their

semantics specify that traits can always be “flattened” to
an equivalent class hierarchy without traits, but possibly
with duplicated code. As a consequence traits can neither
be added nor removed at run-time. Moreover, traits were not
conceived to model object-specific behavior reuse.

Object Extensions
Self [41] is a prototype-based language which follows the
concepts introduced by Lieberman [23]. In Self there is no
notion of class; each object conceptually defines its own for-
mat, methods, and inheritance relations. Objects are derived
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from other objects by cloning and modification. Objects can
have one or more prototypes, and any object can be the pro-
totype of any other object. If the method for a message send
is not found in the receiving object then it is delegated to the
parent of that object. In addition, Self also has the notion of
trait objects that serve as repositories for sharing behavior
and state among multiple objects. One or more trait objects
can be dynamically selected as the parent(s) of any object.
Selector lookups unresolved in the child are passed to the
parents; it is an error for a selector to be found in more than
one parent. Self traits do not provide a mechanism to fine
tune the method composition.

Object extension [9, 16] provides a mechanism for self-
inflicted object changes. Since there is no template serving
as the object’s class, only the object’s methods can access the
newly introduced method or data members. Ghelli et al. [16]
suggested a calculus in which conflicting changes cannot
occur, by letting the same object assume different roles in
different contexts.

Drossopoulou proposed Fickle [11], a language for dy-
namic object re-classification. Re-classification changes at
run-time the class membership of an object while retaining
its identity. This approach proposes language features for ob-
ject re-classification to extend an imperative, typed, class-
based, object-oriented language. Even though objects may
be re-classified across classes with different members, they
will never attempt to access non-existing members.

Cohen and Gil introduced the concept of object evolu-
tion [7]. This approach proposes three variants of evolu-
tion, relying on inheritance, mixins and shakeins [34]. The
authors introduce the notion of evolvers, a mechanism for
maintaining class invariants in the course of reclassifica-
tion [11]. This approach is oriented towards dynamic reuse
in languages with types. Shakeins provide a type-free ab-
straction, however, there are no composition operators to aid
the developer in solving more complex scenarios.

Bracha et al. [6] proposed a new implementation of
nested classes for managing modularity in Newspeak. Newspeak
is class-based language with virtual classes. Class refer-
ences are dynamically determined at runtime; all names
in Newspeak are method invocations thus all classes are
virtual. Nested classes were first introduced in Beta [24].
Classes declarations can be nested to an arbitrarily depth.
Since all references to names are treated as method invo-
cations any object member declaration can be overridden.
The references in an object to nested classes are going to be
solved when these classes are late bound to the classes defi-
nition in the active module the object it is in. Talents model a
similar abstraction to modules, for dynamically composing
the behavior of objects. However, Newspeak modules do not
provide composition operators similar to talents. Composed
talents can remove, alias, or override method definitions.
Removing method definitions is not a feature provided by

Newspeak modules . In Newspeak composition would be
done in the module or in the nested classes explicitly.

Aspect Oriented Programming
Aspect Oriented Programming (AOP) [20] provides a gen-
eral model for modularizing cross cutting concerns. Join
points define points in the execution of a program that trigger
the execution of additional cross-cutting code called advice.
Join points can be defined on the run-time model (i.e., de-
pendent on control flow). Both aspects and talents can add
new methods to existing classes. Most implementations of
aspect-oriented programming such as AspectJ [21] support
weaving code at more fine-grained join points such as field
accesses, which is not supported by talents. Although AOP
is used to introduce changes into software systems, the focus
is on cross-cutting concerns, rather than on reflecting on the
system.

Aspects are concerns that cannot be cleanly encapsulated
in a generalized abstraction (i.e., object, method, mixin).
This means that in contrast to talents, aspects are neither
designed nor used to build dynamic abstraction and com-
ponents from scratch, but rather to alter the performance or
semantics of the components in systemic ways.

6. Discussion
In this section we discuss other benefits that talents bring to
Smalltalk.

6.1 State
Bifröst structural meta-objects provide features for adding
and removing state from a single object. Theoretically, tal-
ents can provide something that trait cannot, state. Moreover,
talents will provide operators for composing state adapta-
tions. This composition is not present in object-specific tech-
niques like mixins and Newspeak modules.

However, stateful traits [2] have shown that state compo-
sition is not simple to achieve.

6.2 Scoping
Scoping talents dynamically is of key importance because
it allows us to reflect in which context the added features
should be active and also to control the extend of the system
that is modified. An object might require to have certain
features in one context while having others features in a
different context. Let us analyze two examples to understand
the motivation for talents scoping.

A bank financial system is divided in two main layers: the
domain and the persistency layer. The domain layer models
the financial system requirements and features. The persis-
tency layer deals with the requirements of persisting the do-
main abstraction in a relational database. When testing the
domain behavior of this application we do not want to trigger
database-related behavior. Normally, this is solved through
mocking or dependency injection . However, these solutions
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are not simple to implement in large and legacy systems
which are not fully understood, and where any change can
bring undesired side effects. Scoped talents can solve this
situation by defining a scope around the test cases. When
the tests are executed the database access objects are mod-
ified by a talent which mocks the execution of database re-
lated actions. In a highly-available system which cannot be
stopped, like a financial trading operation, scoped talents can
help in actions like: auditing for the central financial author-
ity, introducing lazy persistency for updating the database,
logging. This is similar to the idea of modules in Newspeak.

6.3 Flattening
Flattening is the technique that folds into a class all the
behavior that has been added to and object. There are two
types of flattening in talents:

Flattening on the original class. Once an object has been
composed with multiple talents it has a particular behavior.
The developer can analyze this added behavior and from a
modeling point of view realize that all instances of the ob-
ject’s class should have these changes. This kind of flattening
applies the talent composition to the object’s class.

Flattening on a new class. On the other hand the devel-
oper might realize that the new responsibilities of the object
is relevant enough to be modeled with a separate abstrac-
tion. Thus a new class has to be created cloning the com-
posed object behavior. This new class will inherit from the
previous object class. Deleted methods will be added with a
shouldNotCallMethod exception to avoid inheriting the imple-
mentation.

7. Examples
In this section we present a number of example applications
of talents.

7.1 Mocking
Let us assume that we need to test a class which models
a solvency analysis of the assets of a financial institution
customer. The method we need to test is SolvencyAnalysis>>

isSolvent: aCustomer. This method delegates to SolvencyAnalysis

>>assetsOf: aCustomer which executes a complex calculation
of the various assets and portfolios of the customer.

We are only interested in isolating the behavior of isSolvent:
, we are not interested in the complexities of assetsOf:

1 SolvencyAnalysisTest>>testIsSolvent

2 | aCustomer anAnalysis |

3 aCustomer := Customer named: 'test'.

4 anAnalysis := SolvencyAnalysis new.

5 anAnalysis method: #assetsOf: shouldReturn: 1.

6 self assert: ( anAnalysis isSolvent: aCustomer ).

7 anAnalysis method: #assetsOf: shouldReturn: -1.

8 self deny: ( anAnalysis isSolvent: aCustomer ).

We added the method method:shouldReturn: to the class
Object which creates a talent with a method named as the
first argument and with the body provided by the second

argument. In line 5 and 7 you can see the use of this behavior.
If the method assetsOf: return a positive amount then the
customer is solvent otherwise not.

7.2 Compiler examples
Cohen and Gil provide an example in the context of object
evolution [7]. In many compiler designs, the parser gener-
ates an Abstract Syntax Tree (AST) from the source code;
the back-end then processes this tree. Often, the parser does
not have the knowledge required for classifying a given AST
node at its most refined representation level. For example,
in the Smalltalk compiler’s parser a variable access is mod-
els as an ASTVariableNode, there is no distinction between
instance variables, class variables, global or temporals. As
the compiler advances through its phases these AST nodes
are going to be classified in an abstraction called the lexi-
cal scope tree. However, when analyzing the AST structure
we require information about types of variables and scopes.
Using talents we can add behavior to AST variable nodes to
specify them as instance variable, class variables and tem-
porals. We can also remove methods from AST nodes that
do not make sense for the new specification of the node. The
talent composition mechanism will be particularly useful in
merging these different talents on AST nodes.

7.3 State Pattern
The state pattern [15] models the different states a domain
object might have. When this object needs to do something
then it delegates the decision of what to do to its state. A
class per object state is created with the required behavior.
Sometimes, multiple instances of each state are created and
sometimes a singleton pattern [15] is used.

Instead of having a state abstract class and then concrete
subclasses for each of the more specific states we could use
talents. We will have a single state class and then create as
many instances as different states are. We can model each
specific state with a different talent that is applied to the
state’s instances, thus avoiding the creation of multiple state
specific classes.

8. Conclusion
This paper presented talents, a dynamic compositional model
for reusing behavior. Talents are composed using a set of
operations: composition, exclusion and aliasing. These op-
erations provide a flexible composition mechanism while
avoiding the problems found in mixins and traits.

Talents are most useful in composing behavior for dif-
ferent extensions that have to be applied to the same base
classes, thus dynamically adapting the behavior of the in-
stances of these classes seems natural to obtaining a different
protocol.

Managing talents can currently be complicated since the
development tools are unaware of them. We plan on devel-
oping a user interface which takes talents into account both
helping in their definition and composition.
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We plan on providing a more mature implementation of
the talents scoping facilities. This technique shows great
potential for the requirements of modern applications, such
as dynamic adaptation and dependency injection for testing,
database accesses, profiling, and so on.
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