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SUMMARY

Reuse in object-oriented languages typically focuses on inheritance. Numerous techniques have been
developed to provide finer-grained reuse of methods, such as flavors, mixins and traits. These techniques,
however, only deal with reuse at the level of classes.
Class-based reuse is inherently static. Increasing use of reflection and meta-programming techniques in
real world applications underlines the need for more dynamic approaches. New approaches have shifted
to object-specific reuse. However, these techniques fail to provide a complete solution to the composition
issues arising during reuse.
We propose a new approach that deals with reuse at the object level and that supports behavioral and state
composition. We introduce a new abstraction called a talent which models features that are shared between
objects of different class hierarchies. Talents provide a composition mechanism that is as flexible as that of
traits but which is dynamic.
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1 Introduction
Classes in object-oriented languages define the behavior of their instances. Inheritance is the
principle mechanism for sharing common features between classes. Single inheritance is not
expressive enough to model common features shared by classes in a complex hierarchy. Several
forms of multiple inheritance have consequently been proposed [1, 2, 3, 4, 5]. However, multiple
inheritance introduces problems that are difficult to resolve [6, 7]. One can argue that these problems
arise due to the conflict between the two separate roles of a class, namely that of serving as a
factory for instances, as well as serving as a repository for shared behaviour for all instances. As a
consequence, finer-grained reuse mechanisms, such as flavors [8] and mixins [9], were introduced
to compose classes from various features.

Although mixins succeed in offering a separate mechanism for reuse they must be composed
linearly, thus introducing new difficulties in resolving conflicts at composition time. Traits [10, 11]
overcome some of these limitations by eliminating the need for linear ordering. Instead dedicated
operators are used to resolve conflicts. Nevertheless, both mixins and traits are inherently static,
since they can only be used to define new classes, not to adapt existing objects.

Ruby [12] relaxes this limitation by allowing mixins to be applied to individual objects. Object-
specific mixins however still suffer from the same compositional limitations of class-based mixins,
since they must still be applied linearly to resolve conflicts.

In this paper we introduce talents, object-specific units of reuse that model features an object
can acquire at run-time. Like a trait, a talent represents a set of methods that constitute part of the
behavior of an object. Unlike traits, talents can be acquired (or lost) dynamically. When a talent is
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applied to an object, no other instance of the object’s class are affected. Talents may be composed of
other talents, however, as with traits, the composition order is irrelevant. Conflicts must be explicitly
resolved.

Like traits, talents can be flattened, either by incorporating the talent into an existing class, or by
introducing a new class with the new methods. However, flattening is purely static and results in
the loss of the dynamic description of the talent on the object. Flattening is not mandatory, on the
contrary, it is just a convenience feature which shows how traits are a subset of talents.

The contributions of this paper are:

• We identify static problems associated with multiple inheritance, mixins and traits.

• We introduce talents, an object-specific behavior composition model that removes the
limitations of static approaches.

• We describe stateful talents, an object-specific state composition mechanism.

• We describe a Smalltalk implementation of our approach.

Outline. In Section 2 we motivate the problem. Section 3 explains the talent approach, its
composition operations and a solution to the motivating problem. In Section 4 we present the internal
implementation of our solution in the context of Smalltalk. In Section 5 we discuss related work.
Section 6 discusses about features of talents such as scoping and flattening. In Section 7 we present
examples to illustrate the various uses of talents. Section 8 presents a dedicated user interface for
managing and defining talents. Section 9 summarizes the paper and discusses future work.

2 Motivating Examples

In this section we analyze two examples that demonstrate the need for a dynamic reuse mechanism.
Moose is a platform for software and data analysis that provides facilities to model, query,

visualize and interact with data [13, 14]. Moose represents source code in a model described by
FAMIX, a language-independent meta-model [15]. The model of a given software system consists
of entities representing various software artifacts such as methods (through instances of FAMIXMethod)
or classes (through instances of FAMIXClass). Each type of entity offers a set of dedicated analysis
actions. For example, a FAMIXClass offers the possibility of visualizing its internal structure, and a
FAMIXMethod offers the ability to browse its source code. Selecting the needed features for an entity
is awkward within the constraints of a fixed class hierarchy.

In a second example, we consider various kinds of streams, whose features can be combined at
run time, rather than requiring that a class be created for every conceivable combination of features.

2.1 Moose Meta-model

Moose can model applications written in different programming languages, including Smalltalk,
Java, and C++. These models are built with the language independent FAMIX meta-model.
However, each language has its own particularities which are introduced as methods in the different
entities of the meta-model. There are different extensions which model these particularities for
each language. For example, the Java extension adds the method isSessionBean to the FAMIXClass,
while the Smalltalk extension adds the method isExtended. Smalltalk however does not support
namespaces, and Java does not support class extensions. Additionally, to identify test classes Java
and Smalltalk require different implementations of the method isTestClass in FAMIXClass.

Another problem with the extensions for particular languages is that the user has to deal with
classes that have far more methods than the model instances actually support. Dealing with unused
code reduces developer productivity and it is error prone.

A possible solution is to create subclasses for each supported language. However, there are some
situations in which the model requires a combination of extensions: Moose JEE [16, 17] — a Moose
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extension to analyze Java Enterprise Applications (JEAs) — requires a combination of Java and
Enterprise Application specific extensions. This leads to an impractical explosion of the number of
subclasses. Moreover, possible combinations are hard to predict in advance.

Multiple inheritance can be used to compose the different behaviors a particular Moose entity
requires. However, this approach has been demonstrated to suffer from the “diamond problem” [18,
9] (also known as “fork-join inheritance” [19]), which occurs when a class inherits from the same
base class via multiple paths. When common features are defined in different paths then conflicts
arise. This problem makes it difficult to handle the situation where two languages to be analyzed
require the addition of a method of the same name.

Mixins address the composition problem by applying a composition order, this however might
lead to fragile code and subtle bugs. Traits offer a solution that is neutral to composition order,
but traits neither solve the problem of the explosion in the number of classes to be defined, nor do
they address the problem of dynamically selecting the behavior. Traits are composed statically into
classes before instances can benefit from them.

We need a mechanism capable of dynamically composing various behaviors for different Moose
entities. We should be able to add, remove, and change methods. This new Moose entity definition
should not interfere with the behavior of other entities in other models used concurrently. We would
like to be able to have coexisting models of different languages, formed by Moose entities with
specialized behavior.

2.2 Streams

Streams are used to iterate over sequences of elements such as sequenced collections, files, and
network streams. Streams offer a better way than collections to incrementally read and write a
sequence of elements.

Streams may be either readable, writeable or both readable and writeable. They can also be binary
or character-based. Furthermore, streams can have different backends, such as memory streams,
socket streams, database streams, or file streams.

The potential combination of all these various types of streams leads to an explosion in the number
of classes.

Similar solutions to the Moose meta-model problem can be provided, however they present
the same shortcomings. Multiple inheritance can be used to compose the different behaviors of
a particular stream. However, the diamond problem again makes it difficult to handle the situation
where two streams want to add a method of the same name. Mixins address the composition problem
by applying a composition order, this however might lead to fragile code and subtle bugs. Traits offer
a solution that is neutral to composition order, but traits neither solve the problem of the explosion
in the number of classes to be defined, nor do they address the problem of dynamically selecting the
behavior. Traits are composed statically into classes before instances can benefit from them.

We need a mechanism capable of dynamically composing the right combination of streams
required for each particular occasion. The key objective is to avoid an exponential increase in the
number of classes which need to provide all the different combinations.

3 Talents in a Nutshell

In this section we present our approach. We propose composable units of behavior for objects, called
talents. These abstractions solve the issues present in other approaches.

The Talents∗ system and the examples presented in this paper are implemented in Pharo
Smalltalk†, an open-source Smalltalk [20] implementation. Readers unfamiliar with the syntax of
Smalltalk might want to read the code examples aloud and interpret them as normal sentences: An

∗http://scg.unibe.ch/research/bifrost/talents
†http://www.pharo-project.org/
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invocation of a method named method:with:, using two arguments looks like: receiver method: arg1
with: arg2. Other syntactic elements of Smalltalk are: the dot to separate statements: statement1.
statement2; square brackets to denote code blocks or anonymous functions: [ statements ]; and
single quotes to delimit strings: 'a string'. The caret ˆ returns the result of the following expression.

3.1 Defining Talents

A talent specifies a set of methods which may be added to, or removed from, the behavior of an
object. Although the methods of a talent may directly access the state of an object, it is recommended
to use accessor methods instead.

We will illustrate the use of talents with the Moose extension example introduced in the previous
section.

A talent is an object that specifies methods that can be added to an existing object. A talent can
be assigned to any object in the system to add or remove behavior.

1 aTalent := Talent new.
2 aTalent
3 defineMethod: #isTestClass
4 do: 'ˆ self inheritsFromClassNamed: #TestCase'.
5 aClass := FAMIXClass new.
6 aClass acquire: aTalent.

We can observe that first a generic talent is instantiated and then a method is defined. The method
isTestClass is used to test if a class inherits from TestCase. In lines 5–6 we can see that a FAMIX
class is instantiated acquiring the previous talent. When the method acquire: is called, the object
— in this case the FAMIX class — is adapted. Only this FAMIXClass instance is affected, no other
instance is modified by the talent. No adaptation will be triggered if an object tries to acquire the
same talent several times.

Talents can also remove methods from the object that acquires them.

1 aTalent := Talent new.
2 aTalent excludeMethod: #duplicatingClasses.
3 aClass := FAMIXClass new.
4 aClass acquire: aTalent.

In this case the existing method duplicatingClasses is removed from this particular class instance.
Sending this message will now trigger the standard doesNotUnderstand: error of Smalltalk.

3.2 Composing Objects from Talents

Talent composition order is irrelevant, so conflicting talent methods must be explicitly
disambiguated. Contrary to traits, the talent definition of a method takes precedence if the object
acquiring the talent already has the same method. This is because we want behavior that is specific
to objects, and as such the object-specific behavior must take precedence over the statically defined
one. Once an object is bound to a talent then it is clear that this object needs to specialize its behavior.
This precedence can be overridden if it is explicitly stated during the composition by removing the
definition of the methods from the talent.

In the next example we will compose a group with two talents. One expresses the fact that a Java
class is in a namespace, the other that a JEE class is a test class.

1 javaClassTalent := Talent new.
2 javaClassTalent
3 defineMethod: #namespace
4 do: 'ˆ self container'.
5 jeeClassTalent := Talent new.
6 jeeClassTalent
7 defineMethod: #isTestClass
8 do: 'ˆ self methods anySatisfy: [ :each | each isTestMethod ]'.
9 aClass := FAMIXClass new.

10 aClass acquire: javaClassTalent , jeeClassTalent.
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In line 10 we can observe that the composition of talents is achieved by sending the comma
message (,). The composed talents will allow the FAMIX class instance to dynamically reuse the
behavior expressed in both talents.

3.3 Conflict Resolution

A conflict arises if and only if two talents being composed provide different implementations for the
same method. Conflicting talents cannot be composed, so the conflict has to be resolved to enable
the composition.

To gain access to the different implementations of conflicting methods, talents support an alias
operation. An alias makes a conflicting talent method available by using another name. Traits
aliasing is different to renaming, both the alias and the original method are accessible. As stated by
Ducasse et al. [11]: “Aliases allow the programmer to make a trait method available under another
name, and are very useful if the original name is excluded by a conict.” Due to the dynamic nature
of talents aliasing is implmented as a renaming. An alias in talents is a composition of a rename
followed by an exclusion of the original method.

Formally, defining an alias y for a method x in the talent T establishes an alternative name y. In
particular, all references to the original name x in the used talent T are changed (i.e.,, they refer to
the new name y).

The main disadvantage of renaming is that it violates the traits flattening property. Since talents
are targeted towards dynamic state and behavior compositions and adaptation the flattening behavior
is of no advantage.

Talent composition also supports exclusion, which allows one to avoid a conflict before it occurs.
The composition clause allows the user to exclude methods from a talent when it is composed.
This suppresses these methods and allows the composite entity to acquire the otherwise conflicting
implementation provided by another talent.

We would like models originating from JEE applications to support both Java and JEE extensions.
Composing these two talents however generates a conflict for the methods isTestClass for a FAMIX
class entity. The next example produces a conflict on line 10 since both talents define a different
implementation of the isTestClass method.

1 javaClassTalent := Talent new.
2 javaClassTalent
3 defineMethod: #isTestClass
4 do: 'ˆ self methods anySatisfy: [ :m | m isAnnotatedWith: #Test ]'.
5 jeeClassTalent := Talent new.
6 jeeClassTalent
7 defineMethod: #isTestClass
8 do: 'ˆ self inheritsFromClassNamed: #TestCase'.
9 aClass := FAMIXClass new.

10 aClass acquire: javaClassTalent , jeeClassTalent.

There are different ways to resolve this situation. The first is to define aliases, like in traits, to
avoid the name collision. Aliases are used to avoid collisions, rather than to resolve collisions by,
say, using a priority mechanism:

10 aClass acquire: javaClassTalent , (jeeClassTalent @ {#isJeeTestClass -> #isTestClass}).

When the talent is acquired the method isJeeTestClass is installed instead of isTestClass, thus
avoiding the conflict. Any other method or another talent can then make use of this aliasing.

Another option is to remove those methods that do not make sense for the specific object being
adapted.

10 aClass acquire: javaClassTalent , (jeeClassTalent - #isTestClass).

By removing the definition of the JEE class talent the Java class talent method is correctly
composed.

Each FAMIX extension can be defined as a set of talents, each for a single entity, i.e., class,
method, annotation, etc. For example, we have the Java class talent which models the methods
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required by the Java extension to FAMIX class entity. We also have a Smalltalk class talent as well
as a JEE talent that model further extensions.

3.4 Stateful Talents

In the original traits model, state can only be accessed within stateless traits by accessors, which
become required methods of the trait. As demonstrated by Bergel et al. [21], traits are artificially
incomplete since classes that use such traits may contain significant amounts of boilerplate glue
code. Talents also provide a mechanism for dynamically defining state which is similar to its static
counterpart, stateful traits.

1 aTalent := Talent new.
2 aTalent defineState: #testClass.
3 aClass := FAMIXClass new.
4 aClass acquire: aTalent.

We can observe that first a generic talent is instantiated and then a state called testClass is defined.
This instance variable is a boolean attribute/field used to test if a class is a test case. In lines 3–4 we
can see that a FAMIX class is instantiated acquiring the previous talent. As with behavioral talents
when the method acquire: is called, the object — in this case the FAMIX class — is adapted. Only
this FAMIXClass instance is affected, no other instance is modified by the talent. No adaptation will
be triggered if an object tries to acquire the same talent several times.

Since this state is introduced on a live object, we also provide a mechanism for managing the
initialization. When no default value is provided then the new talent-defined state is set to nil, the
usual default value for uninitialized attributes in regular Smalltalk code. The developer can use the
state definition with default behavior to control state initialization values.

1 aTalent := Talent new.
2 aTalent
3 defineState: #testClass
4 defaultValue: true.
5 aClass := FAMIXClass new.
6 aClass acquire: aTalent.

The method defineState:defaultValue: adds a state definition to a talent which when acquired
by an object will have a default value. In the example the state testClass has the value true by
default. To avoid sharing the default values between objects the message defineState: aSymbol
providedBy: aBlock allows the user to provide a block which will dynamically defines the value of
the state.

1 aTalent := Talent new.
2 aTalent
3 defineState: #testClass
4 providedBy: [ :class | class name includesSubString: 'Test' ].
5 aClass := FAMIXClass new.
6 aClass acquire: aTalent.

In this case the newly defined state is initialized lazily based on the object. In the example the
state testClass is lazily initialized with true if the class-name includes the sub-string 'Test'.

Methods defined afterwards for the talent can refer to the newly created state without the need for
accessors.

1 aTalent := Talent new.
2 aTalent defineState: #testClass.
3 aTalent
4 defineMethod: #isTestClass
5 do: 'ˆ testClass'.
6 aClass := FAMIXClass new.
7 aClass acquire: aTalent.

In lines 3–5 we can see the definition of the method isTestClass which returns the boolean
value testClass state. No definition of accessors is required and talents can define methods directly
accessing the state.
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The user can define state accessors by various other helper methods:

1 aTalent := Talent new.
2 aTalent defineStateWithAccessors: #testClass.
3 aClass := FAMIXClass new.
4 aClass acquire: aTalent.

By using defineStateWithAccessors: the talent definition also adds the two accessors for reading
and writing on the testClass state. The user can also use defineStateWithReadAccessor: and
defineStateWithWriteAccessor: which are self-explanatory.

4 Implementation

In this section we describe how talents are implemented.

4.1 Bifröst

Talents are built on top of the Bifröst reflection framework [22]. Bifröst offers fine-grained
unanticipated dynamic structural and behavioral reflection through meta-objects. Instead of
providing reflective capabilities as an external mechanism we integrate them deeply into the
environment. Explicit meta-objects allow us to provide a range of reflective features and thereby
evolve both application models and the host language at run-time. Meta-objects provide a sound
basis for building different coexisting meta-level architectures by bringing traditional object-
oriented techniques to the meta-level. Each talent is modeled with a structural meta-object.

In recent years researchers have worked on applying traditional object-oriented techniques to
the meta-level while attempting to solve various practical problems motivated by applications [23].
These approaches, however, offer specialized solutions arising from the perspective of particular use
cases.

The Bifröst model solves the main problems of previous approaches while providing the main
reflection requirements.

Partial Reflection. Bifröst allows meta-objects to be bound to any object in the system thus
reflecting selected parts of an application.

Selective Reification. When and where a particular reification should be reified is managed by the
different meta-objects.

Unanticipated Changes. At any point in time a meta-object can be bound to any object thus
supporting unanticipated changes.

Meta-level Composition. Composable meta-objects provide the mean for bringing together
different adaptations.

Runtime Integration. Bifröst’s reflective model lives entirely in the language model, so there is no
VM modification or low level adaptation required.

In Talents, we particularly use partially reflection on specific objects, talents are applied without
anticipation, and they are composed dynamically.

Bifröst’s adaptation mechanism is built on top of lower-level meta-objects. In the Bifröst
Smalltalk implementation we bind meta-objects to abstract syntax tree (AST) nodes. A meta-object
can be associated to a single AST node or to multiple ones. The next time the method is compiled the
system automatically generates new bytecodes that take the meta-object into account. This behavior
allows Bifröst to adapt the predefined behavior of objects. AST meta-objects can reify AST-related
information depending on the AST node. For example, a message send node can reify the sender,
the receiver and the arguments at runtime. The meta-level behavior specified in the meta-object can
be executed before, after or instead of the AST node the meta-object is adapting.
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Bifröst exploits Pharo’s reflective method abstraction. A reflective method knows the AST of
the method it represents. In Pharo classes are first-class objects that are accessible and changeable
at run time. Classes have an internal collaborator which holds an instance of MethodDictionary, a
special subclass of Dictionary. All methods of a class are stored in its method dictionary. The VM
directly accesses class objects and method dictionaries when evaluating message sends. Normally,
only instances of CompiledMethod are stored in the method dictionary of a class but Pharo allows us
to replace it with any other object that obeys the right protocol. When such an object is used in place
of a regular compiled method, the VM sends it the message run:with:in:, encoding the message,
its arguments and the recipient. When a reflective method receives this message it processes the
adaptations specified by the meta-object on the AST and generates a new compiled method that is
eventually executed. If no adaptation is present the reflective method caches the compiled method
to improve performance. In the current Talents implementation the user does not manage the lower
level details of the adaptations. The talent interface allows the user to abstract from the complexities
of the lower level.

4.2 Talents

aFAMIXClass
    isTestClass 

Key
instance-of
message send
lookup

FAMIXEntity

FAMIXType

isTestClass
FAMIXClass

aFAMIXClass

1

2

3

self inheritsFrom: 'TestCase' 

MooseEntity

...

Figure 1: Default message send and method look up resolution.

Figure 1 shows the normal message send of isTestClass to an instance of FAMIXClass. The method
lookup starts on the class finding the definition of the method and then executing it for the message
receiver.

However, if we would like to factor the FAMIXClass JEE behavior out we can define a talent
that models this. Each talent is modeled with a structural meta-object. A structural meta-object
abstraction provides the means to define meta-objects like classes and prototypes. New structural
abstractions can be defined to fulfill some specific requirement. These meta-object responsibilities
are: adding and removing methods, and adding and removing state to an object. A composed meta-
object is used to model composed talents. The specific behavior for defining and removing methods
is delegated to the addition and removal of behavior in the structural meta-object.

In Figure 2 we can observe the object diagram for a FAMIX class which has acquired a talent
that models JEE behavior. The method lookup starts in the class of the receiver. Originally, the
FAMIXClass class did not define a method isTestClass, however, the application of the talent defined
this method. This method is responsible for delegating the execution of the message to the receiver’s
talent. If the object does not have a talent, the normal method lookup is executed, thus talents do not
affect other instances’ behavior of the class. In this case, aFAMIXClass has a talent that defines the
method isTestClass, which is executed for the message receiver.

Bifröst’s structural meta-objects provide features for adding state to a single object and removing
it. Talents can provide something that traits cannot, namely state. Moreover, talents can provide
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aJeeClassTalent

Key
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3
aJeeClassTalent 
     talent isTestClass
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FAMIXType
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Figure 2: Talent modeling the Moose FAMIX class behavior for the method isTestClass.

operators for composing state adaptations. This composition is not present in object-specific
techniques like mixins and Newspeak [24] modules.

5 Related Work

In this section we compare talents to other approaches to share behavior.

Mixins

Flavors [8] was the first attempt to address the problem of reuse across a class hierarchy. Flavors
are small, incomplete implementations of classes, that can be “mixed in” at arbitrary places in the
class hierarchy. More sophisticated notions of mixins were subsequently developed by Bracha and
Cook [9], Mens and van Limberghen [25], Flatt, Krishnamurthi and Felleisen [26], and Ancona,
Lagorio and Zucca [27].

Mixins present drawbacks when dealing with composition. Mixins use single inheritance for
composing features and extending classes. Inheritance requires that mixins be composed linearly;
this severely restricts one’s ability to specify the glue code that is necessary to adapt the mixins so
that they fit together [10]. However, although this inheritance operator is well-suited for deriving
new classes from existing ones, it is not appropriate for composing reusable building blocks.

Bracha developed Jigsaw [28], a modularity framework which defines module composition
operators merge, override, copy as and restrict. These operators inspired the sum, override, alias
and exclusion operators on traits. Jigsaw models a complete framework for module manipulation
providing namespaces, declared types and requirements, full renaming, and semantically
meaningful nesting.

Ruby [12] introduced mixins as a building block of reusability, called modules. Moreover,
modules can be applied to specific objects without modifying other instances of the class. However,
object-specific modules suffer from the same composition limitation as modules applied to classes:
they have to be applied linearly. Aliasing of methods is possible for avoiding name collisions, as well
as removing method in the target object. However, objects or classes methods cannot be removed
if they are not already implemented. This follows the concept of linearization of mixins. Talents
can be applied without an order. Moreover, a talent composition delivers a new talent that can be
reused and applied to other objects. Filters in Ruby provide a mechanism for composing behavior
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into preexisting methods. However, they do not provide support for defining how modules defined
methods should be composed for a single object.

CLOS

CLOS [29] is an object-oriented extension of Lisp. Multiple inheritance in CLOS [30, 31] imposes
a linear order on the superclasses. This linearization often leads to unexpected behavior because it
is not always clear how a complex multiple inheritance hierarchy should be linearized [32]. CLOS
also provides a mechanism for modifying the behavior of specific instances by changing the class of
an instance using the generic function change-class. However, these modifications do not provide
any composition mechanisms, rendering this technique dependent on custom code provided by the
user.

Traits

Traits [10, 11] overcome the limitations of previous approaches. A trait is a set of methods that
can be reused by different classes. The main advantage of traits is that their composition does not
depend on a linear ordering. Traits are composed using a set of operators — symmetric combination,
exclusion, and aliasing — allowing a fair amount of composition flexibility. Traits are purely static
since their semantics specify that traits can always be “flattened” to an equivalent class hierarchy
without traits, but possibly with duplicated code. As a consequence traits can neither be added nor
removed at run-time. Moreover, traits were not conceived to model object-specific behavior reuse.

Smith and Drossopoulou [33] proposed a mechanism for applying traits at runtime in the context
of Java. However, only pre-defined behavior defined in a trait can be added at runtime. It is not
possible to define and add new behavior at runtime.

Bettini et al. [34] proposed a mechanism for flexible dynamic trait replacement where traits can
be applied at runtime. However, this technique can only change existing behavior, not add new
behavior.

Object Extensions

Self [35] is a prototype-based language which follows the concepts introduced by Lieberman [36].
In Self there is no notion of class; each object conceptually defines its own format, methods, and
inheritance relations. Objects are derived from other objects by cloning and modification. Objects
can have one or more prototypes, and any object can be the prototype of any other object. If the
method for a message send is not found in the receiving object then it is delegated to the parent of
that object. In addition, Self also has the notion of trait objects that serve as repositories for sharing
behavior and state among multiple objects. One or more trait objects can be dynamically selected
as the parent(s) of any object. Selector lookups unresolved in the child are passed to the parents; it
is an error for a selector to be found in more than one parent. Self traits do not provide a mechanism
to fine tune the method composition. Let us assume that two objects are dynamically defined as
parents of an object. If the both parents object define the same method there is not a simple way of
managing the conflict.

Object extension [37, 38] provides a mechanism for self-inflicted object changes. Since there is
no template serving as the object’s class, only the object’s methods can access the newly introduced
method or data members. Ghelli et al. [37] suggested a calculus in which conflicting changes cannot
occur, by letting the same object assume different roles in different contexts.

Drossopoulou proposed Fickle [39], a language for dynamic object re-classification. Re-
classification changes at run-time the class membership of an object while retaining its identity.
This approach proposes language features for object re-classification to extend an imperative, typed,
class-based, object-oriented language. Even though objects may be re-classified across classes with
different members, they will never attempt to access non-existing members.

Cohen and Gil introduced the concept of object evolution [40]. This approach proposes
three variants of evolution, relying on inheritance, mixins and shakeins [41]. The authors
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introduce the notion of evolvers, a mechanism for maintaining class invariants in the course of
reclassification [39]. This approach is oriented towards dynamic reuse in languages with types.
Shakeins provide a type-free abstraction, however, there are no composition operators to aid the
developer in solving more complex scenarios.

Bracha et al. [24] proposed a new implementation of nested classes for managing modularity in
Newspeak. Newspeak is class-based language with virtual classes. Class references are dynamically
determined at runtime; all names in Newspeak are method invocations thus all classes are virtual.
Nested classes were first introduced in Beta [42]. In Newspeak Classes declarations can be nested
to an arbitrarily depth. Since all references to names are treated as method invocations any object
member declaration can be overridden. The references in an object to nested classes are going to
be solved when these classes are late bound to the classes definition in the active module the object
it is in. Talents model a similar abstraction to modules, for dynamically composing the behavior
of objects. However, Newspeak modules do not provide composition operators similar to talents.
Composed talents can remove, alias, or override method definitions. Removing method definitions
is not a feature provided by Newspeak modules. In Newspeak composition would be done in the
module or in the nested classes explicitly.

Context-oriented Programming

Context-oriented programming (COP) was introduced by Costanza et al. [43]. The behavior of an
object is split into layers that define the object’s subjective behavior. Layers can be activated and
deactivated to represent the actual contextual state. When a message is sent, the active context
determines the behavior of the object receiving the message.

Subjective Programming

Subjective behavior is essential for applications that must adapt their behavior to changing
circumstances. Many different solutions have been proposed in the past, based, for example, on
perspectives [44], roles [45], contextual layers [43], and force trees [46]. Depending on the active
context, an object might answer a message differently or provide a modified interface to its users.
These approaches mainly concentrate on dynamically modifying an object’s behavior, however,
there is no support for behavior reuse between object as it exists in traits or mixins.

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [47] modularizes cross cutting concerns. Join points define
all locations in a program that can possibly trigger the execution of additional cross-cutting code
(advice). Pointcuts define at run-time if an advice is executed. Both aspects and talents can add new
methods to existing classes. Most implementations of AOP such as AspectJ [48] support weaving
code at more fine-grained join points such as field accesses, which is not supported by talents.
Although AOP is used to introduce changes into software systems, the focus is on cross-cutting
concerns, rather than on reflecting on the system.

Aspects are concerns that cannot be cleanly encapsulated in a generalized abstraction (i.e., object,
method, mixin). This means that in contrast to talents, aspects are neither designed nor used to build
dynamic abstraction and components from scratch, but rather to alter the performance or semantics
of the components in systemic ways.

6 Discussion

In this section we discuss other benefits that talents bring to a programming language.
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6.1 Scoping

Scoping talents dynamically is of key importance because it allows us to reflect in which context
the added features should be active and also to control the extent of the system that is modified.
An object might require to have certain features in one context while having others features in a
different context. Let us analyze an example to understand the motivation for scoping talents.

A bank financial system is divided in two main layers: the domain and the persistency layer.
The domain layer models the financial system requirements and features. The persistency layer
deals with the requirements of persisting the domain abstraction in a relational database. When
testing the domain behavior of this application we do not want to trigger database-related behavior.
Normally, this is solved through mocking or dependency injection [49]. However, these solutions
are not simple to implement in large and legacy systems which are not fully understood, and where
any change can bring undesired side effects. Scoped talents can solve this situation by defining a
scope around the test cases. When the tests are executed the database access objects are modified by
a talent which mocks the execution of database related actions. In a highly-available system which
cannot be stopped, like a financial trading operation, scoped talents can help in actions like: auditing
for the central financial authority, introducing lazy persistency for updating the database, logging.
This is similar to the idea of modules in Newspeak.

COP solutions can provide an implementation solution to bringing talents to other languages.
Lincke et al. [50] presented a mechanism for composing layers in ContextJS, a JavaScript COP
implementation. Talents offer a form of COP based on object-specific meta-objects rather than
layers.

6.2 Flattening

Flattening is the technique that folds into a class all the behavior that has been added to an object.
There are two types of flattening in talents:

Flattening on the original class. Once an object has been composed with multiple talents it has
a particular behavior. The developer can analyze this added behavior and from a modeling point of
view realize that all instances of the object’s class should have these changes. This kind of flattening
applies the talent composition to the object’s class.

Flattening on a new class. On the other hand the developer might realize that the new
responsibilities of the object is relevant enough to be modeled with a separate abstraction. Thus
a new class has to be created cloning the composed object behavior. This new class will inherit from
the previous object class. Deleted methods will be added with a shouldNotCallMethod exception to
avoid inheriting the implementation.

6.3 Performance

Using meta-level programming techniques on a runtime system can have a significant performance
impact. Evidence from practical applications of Bifröst, like Subjectopia[51], a subjective system,
MetaSpy[52], a domain-specific profiler, and Object-centric debugging [53], showed that the
performance impact does not affect the usability of these tools.

We have performed a micro-benchmark to assess the maximal performance impact of our
Smalltalk prototype of object-centric debugging. We assume that the behavior required to fulfill
the profiling requirements is constant to any instrumentation strategy.

All benchmarks were performed on an Apple MacBook Pro, 2.8 GHz Intel Core i7 in Pharo 1.1.1
with the jitted Cog VM.

Consider a benchmark in which a test method is invoked one million times from within a loop.
We measure the execution time of the benchmark with Bifröst reifying all 106 method activations of
the test method. This shows that in the reflective case the code runs about 35 times slower than in the
non-reflective case. However, for a real-world application with only few reifications the performance
impact is significantly lower. Bifröst’s meta-objects provide a way of adapting selected objects thus
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allowing reflection to be applied within a fine-grained scope only. This provides a natural way of
controlling the performance impact of reflective changes.

Let us consider the Mondrian profiling problem presented by Bergel et al. in MetaSpy et al. [52].
The main source of performance degradation is from the execution of the method displayOn:, i.e.,
whenever a node is redisplayed. We developed a benchmark where the user interaction is simulated
to prevent human interaction from polluting the measurements. In this benchmark we redraw one
thousand times the nodes in the Mondrian visualization. This implies that the method displayOn:
is called extensively. The results showed that the profiler-oriented instrumentation produces on

average a 20% performance impact. The user of this Mondrian visualization can hardly detect the
delay in the drawing process. Note that our implementation has not been aggressively optimized.

Another important detail of our implementation is that instrumentations are removed once they
have interrupted the execution. The impact on performance is consequently temporal and local to
specific objects of the application.

We believe that the simplicity of Bifröst interfaces and its capacity to be loaded on a running
system justify this performance penalty. However, a specially modified VM can reduce this penalty
while impacting negatively on the tool portability.

6.4 Talents in a statically typed language

A highly dynamic construct such as talents is possible in a statically typed language, even if
the language implementation ensures that the type interface remains consistent. This can only be
achieved by disallowing changes to the signatures of existing methods. Talents can safely replace
existing methods as long as they do not alter their signatures.

In a statically typed language like Java we could declare talents with the help of a marker
interface Talent<T> [54], where T is generic type variable specifying the interface of the talent.
These interfaces can then be modeled with talents. Particular combinations of talents can deliver
different combinations of an object’s interfaces.

interface Talent<T> implements T {
// marker interface for a talent with the interface T

}

Classes that want to support a specific talent need to implement the marker interface Talent
that they parametrize with the interface of the talent T. This forces the class to provide a default
implementation of all the methods in the interface of the talent. The example with FAMIXClass in
Section 2.1 would look in Java as follows:

interface TestTalent {
boolean isTestClass();

}

class FAMIXClass implements Talent<TestTalent> {
boolean isTestTalent() {
return false;

}
...

}

Finally, a generic static helper method must be provided to let objects acquire talents:

<O extends Talent<T>, T> void acquire(O object, T talent)

The outlined approach would enable talents in Java without weakening the existing type system.
We imagine that the talents themselves could be implemented using bytecode rewriting of the
methods in classes that implement the marker interface and the state pattern outlined in Section 7.3.

As we demonstrated in this section, talents are possible even in the context of a statically typed
language. The implementation however will be limited to the predeclared talent interfaces only.
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6.5 Traits on Talents

Conceptually, talents are a generalization of traits. Traits can only be applied to a specific set of
objects, classes. Talents can be applied to any object in the system, including classes.

Traits can be implemented on top of the talent infrastructure by having a talent TraitTalent with
a modified method basicNew. This talent is applied to the class in which we would like to have traits.
The modified basicNew method has the extra behavior of applying the set of composed traits for the
given class. This set of composed traits can be contained in an added state to the class defined by
the TraitTalent. Each trait is defined as a talent and added to the modified class. A trait can also be
defined as a wrapper on a talent which adds traits related method.

7 Examples

In this section we present a number of example applications of talents. These examples are selected
to exercise the various facets of the talents mechanism, and as such, act as validation of the
expressiveness of our approach.

7.1 Mocking

Let us assume that we need to test a class which models a solvency analysis of the assets of
a financial institution customer. The method we need to test is SolvencyAnalysis>>isSolvent:
aCustomer. This method delegates to SolvencyAnalysis>>assetsOf: aCustomer which executes a
complex calculation of the various assets and portfolios of the customer. We are only interested
in isolating the behavior of isSolvent:, not in the complexities of assetsOf:

When testing such a use case we need to modify the assets of a particular customer by increasing
or decreasing the financial instruments deposits. This implies that we need to interact and create
objects that are unessential in relation to the objective of the test case. Introducing more objects in
a test case increases the chances of making the test fail for other reasons than the test objective.
Talents provide a mechanism to modify the behavior of particular objects to modify this interaction,
providing an object-specific mocking mechanism.

Let us analyze a talent solution to this use case:

1 SolvencyAnalysisTest>>testIsSolvent
2 | aCustomer anAnalysis |
3 aCustomer := Customer named: 'test'.
4 anAnalysis := SolvencyAnalysis new.
5 anAnalysis method: #assetsOf: shouldReturn: 1.
6 self assert: (anAnalysis isSolvent: aCustomer).
7 anAnalysis method: #assetsOf: shouldReturn: -1.
8 self deny: (anAnalysis isSolvent: aCustomer).

We added the method method:shouldReturn: to the class Object which creates a talent with a
method named as the first argument and with the body provided by the second argument. In line 5
and 7 you can see the use of this behavior. If the method assetsOf: return a positive amount then
the customer is solvent otherwise not.

Talents can ease the testing of monolithic legacy applications built in a manner that does not
easily support mocking.

7.2 Compiler Internal Abstractions

In traditional compiler design, the compilation of source code is a multi-step process: lexical
analysis (scanning) is followed by syntactic analysis (parsing), which is followed by semantic
analysis. This is followed by code generation, which itself may be split into multiple optimization
and generation steps. Traditionally each of these steps has its own model to work on model of the
code, i.e., the lexical analysis uses tokens, the syntactic analysis uses an abstract syntax tree, the
semantic analysis uses an intermediate representation, and so on.

14



The problem with this approach is that it brings a significant overhead of performance and
memory. At each step a plethora of new nodes need to be instantiated, as each step accumulates
new state and requires different behavior. However, old state of previous steps cannot be thrown
away. At any time in the compilation chain the compiler needs to be able to navigate back to the
state of the previous steps, for example to pinpoint errors in the source file or to query the lexical
structure. Compiler designers can address this requirement in two possible ways, but neither of them
is very attractive: Either they copy and accumulate state along the compilation chain, which is error
prone and slow; or they keep references to the nodes of the previous step, which can be expensive
if the paths have to be navigated often.

With talents we have an elegant solution to this problem. Imagine the scanner reads a variable
assignment such as a := 12. This results in 3 tokens to be created: a, :=, and 12. These tokens not
only contain the value they represent, but also know the source file and location in that file. In the
syntactic analysis a parser detects that these 3 tokens form an assignment, built from the variable
a, the assignment operator :=, and the value 12. With talents we let the assignment token acquire
an AssignmentNodeTalent that has — besides the node specific behaivor — also additional state: an
assignment always consists of a variable node and an expression node. In this particular case the
token a acquires the VariableNodeTalent and the value 12 acquires the ValueNodeTalent. In the next
step, the semantic analysis, the a is further refined with the type of variable it represents. In this
particular example the compiler could for example let it acquire the InstanceVariableTalent.

With each step in the compilation chain new talents are attached. The talents not only introduce
new node specific behavior, but also add new state. The added state allows the objects to reorganize
themselves in new ways. While the tokens are organized in a sequence of tokens, the syntactic nodes
form an abstract syntax tree, and the semantic analysis forms a graph of references.

The approach with talents avoids the drawbacks of existing solutions. The same objects are passed
through the complete compilation chain. Each step augments the objects with new state and behavior
relevant for this step. Unnecessary copying of state and navigation between long object chains is
avoided.

Moreover, the different talents can add their own visitor methods, e.g.,acceptTokenVisitor:,
acceptNodeVisitor, acceptTypeVisitor:, etc.. This does not result in conflicting methods and it
allows different visitors to have their own strategy to walk over the trees.

7.3 State Pattern

The state pattern [55] models the different states a domain object might have. When this object
needs to do something then it delegates the decision of what to do to its state. A class per object
state is created with the required behavior. Sometimes, multiple instances of each state are created
and sometimes a singleton pattern is used.

Instead of having a state abstract class and then concrete subclasses for each of the more specific
states we could use talents. We will have a single state class and then create as many instances as
different states are. We can model each specific state with a different talent that is applied to the
state’s instances, thus avoiding the creation of multiple state specific classes.

The talents based solution is simpler than a traditional state pattern, since it avoids the additional
redirection from the object to its state. The developer simply has an object whose behavior changes,
still having the state specific behavior but one indirection is eliminated.

7.4 Streams

Streams can be writable, readable, or both; depending on what talents are added. WriteStreamTalent
adds the methods for writing to a stream, i.e., nextPut: and nextPutAll:. ReadStreamTalent adds
the methods to read from a stream, i.e., next and next:. Streams can be binary or textual.
Talents add the necessary supported methods, i.e., BinaryReadStreamTalent adds nextInt32; and
TextualWriteStreamTalent adds the methods cr and space. Furthermore streams are typically
implemented on top of different backends, i.e., collections, sockets, or files. Again we use talents
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that provide the necessary primitives for the read and write talents to actually perform the desired
tasks.

All possible combinations of read, write, or read-write; binary or textual; memory, sockets, or files
are possible. No unnecessary methods outside the requested capabilities are present. Furthermore,
the talent composition avoids additional dispatching cost. The resulting streams are as efficient as if
all 18 combinations would have been implemented manually.

Traditional stream implementations check in every method if the underlying stream is still
opened. With talents we can avoid such cumbersome checks and dynamically acquire a
ClosedStreamTalent when a stream is closed. This talent either removes all modifying stream
methods, or alternatively replaces them with one that throws an exception. This approach not
only simplifies the implementation, but it is also more efficient as unnecessary tests are avoided
altogether.

7.5 Class Extensions

Class extensions are a means to add required behavior to classes that belong to other packages
outside our control. For example, when we load Moose there are several methods that are
added or modified, in core classes like Collection hierarchy, Object, etc. This mechanism allows
Moose developers to extend the system with Moose specific additions, e.g., utility methods like
asMooseGroup have been added to the core class Collection so to transform any collection in a
MooseGroup. The implementation of the extended method asMooseGorup is shown in the snippet
below:

1 Collection>>asMooseGroup
2 ˆ MooseGroup withAll: self

Class extensions are also largely used within Moose to add functionalities from newly added
packages to core packages. For example, when the Moose extension to analyze relational
databases [56] is loaded, new methods like maps are added to the element FAMIXNamedEntity in the
Moose core to keep track of the relations between relational elements and source code entities. The
implementation of the extended method maps is shown in the snippet below:

1 FAMIXNamedEntity>>maps
2 <MSEProperty: #maps type: #FAMIXMapping opposite: #mapSource> <multivalued> <derived>
3 <MSEComment: 'Map relationship.'>
4
5 ˆself privateState attributeAt: #maps ifAbsentPut: [FMMultivalueLink on: self opposite:

#mapSource:].

A key drawback of this approach is that extensions do not support the definition of state, but
only behavior. Moose developers need to implement more complex models since they cannot add
state to classes outside Moose packages. Talents can be used to address this issue. The extension
mechanism can be improved to provide state facilities by applying talents to all live instances of a
particular class when an extension is loaded. When a state extension is defined for a particular class
a talent with state definition is used. When the packages with extensions are loaded all instances of
the extended classes are gathered and the predefined stateful talents are applied to them. Moreover,
some class instances can be left out of the talent adaptation by providing conditions on various
criteria. For example, only instances not reachable from core classes should be adapted.

8 User Interface

The talents browser is responsible for organizing, managing and defining talents. This browser is
built using Glamour [13, 57], an engine for scripting browsers.

In Figure 1 we can observe an instance of the talents browser for the FAMIX class case study.
The browser is vertically divided into two panes, the upper navigation section and the lower source
code section.
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Figure 3: Talents Browser overview.

The navigation section is divided into three panes following traditional Smalltalk browsers. The
first pane shows a list of talents packages. Packages group related talents together. In this example
we can see two talents packages: BouncingAtoms and Moose. Once a package is selected the talents
pane is populated with the talents belonging to that package. In this example the Moose package
is composed of two talents: JavaClassTalent and J2EEClassTalent. When a talent is selected the
Methods pane is populated with the talent’s method definitions. The icons before the name of the
method represent the definition behavior. The — icon is used to signal that this method should
be excluded when the talent is applied to an object. The ↓ icon indicates that a method should be
replaced with the defined behavior. The + icon represents that the method should be added to the
adapted object.

These panes provide contextual menus for removing, renaming and adding packages, talents
and methods. The methods panel only provides a remove menu item. The talents panel provides
a remove and a rename menu items.

The source code pane displays the source code defined for the selected method in the Methods
pane. The three icons in the upper right corner represent the actions possible when saving a method
definition. The + icon accepts the source code and adds a method definition to the selected talent.
The — icon prompts the user to provide the name of the method which should be excluded by
the selected talent. The ↓ icon accepts the source code and a method replacement definition to the
selected talent.

Talents defined in the browser are registered to TalentsRegistry. When a developer needs to use
a particular talent he can access the registry by name.

aTalent := TalentsRegistry registry talentNamed: 'J2EEClassTalent'.

The talents browser is useful for managing the creation and structure of talents but it does not
provide a way to manage the association of talents to objects. To fulfill this we modified the default
object inspector, one of the main instruments used during development, to open the talent browser
directly on the inspected object. Figure 4 shows the work flow to attach a talent to an object. Once
we have opened the system inspector on the object we want to enrich with a talent, we can open
the talent browser directly from the contextual menu of the object. As a result the object we were
inspecting is passed along to the browser. The talents browser allows the developer to find the right
talents and if need be to modify it for fulfilling new requirements. The developer can then select a
talent and associate it to the inspected object using the option Apply Talent on the contextual menu
that open on the talent classes.
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Figure 4: Modified inspector and Talents Browser Insteraction.

9 Conclusion and Future Work

This paper presented talents, a dynamic compositional model for reusing behavior. Talents are
composed using a set of operations: composition, exclusion and aliasing. These operations provide
a flexible composition mechanism while avoiding the problems found in mixins and traits.

Talents are most useful in composing behavior for different extensions that have to be applied
to the same base classes, thus dynamically adapting the behavior of the instances of these classes
seems natural to obtaining a different protocol.

Managing talents can currently be complicated since the classic development tools are unaware
of them. Our talents user interface solves the problem of managing and defining talents. However, it
does not provide features for composing talents nor does it help in visualizing these compositions.
We plan on extending the talents user interface to deal with composition requirements.

We plan on providing a more mature implementation of the talents scoping facilities. This
technique shows great potential for the requirements of modern applications, such as dynamic
adaptation and dependency injection for testing, database accesses, profiling, and so on.
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