
Insights into System–Wide Code Duplication

Matthias Rieger, Stéphane Ducasse, and Michele Lanza
Software Composition Group

University of Bern, Switzerland
{rieger,ducasse,lanza}@iam.unibe.ch

Abstract

Duplication of code is a common phenomenon in the de-
velopment and maintenance of large software systems. The
detection and removal of duplicated code has become a
standard activity during the refactoring phases of a soft-
ware life-cycle. However, code duplication identification
tends to produce large amounts of data making the under-
standing of the duplication situation as a whole difficult.
Reengineers can easily lose sight of the forest for the trees.
There is a need to support a qualitative analysis of the du-
plicated code. In this paper we propose a number of visual-
izations of duplicated source elements that support reengi-
neers in answering questions, e.g., which parts of the sys-
tem are connected by copied code or which parts of the sys-
tem are copied the most.

Keywords: Code duplication detection, code visualiza-
tion, polymetric views.

1. Introduction

Code duplication detection has received increased atten-
tion from the reverse engineering research community in
the last decade. Many detection methods are being investi-
gated, from lightweight to sophisticated ones [1], [7], [12],
[15], [3] and compared against each other [4]. A main goal
is to automate as much as possible not only the detection
but also the removal of the duplication [2]. This is not al-
ways possible, either because the copied code has diverged
too much or that applicable refactorings are not straight for-
ward. In either case, manual investigation is required.

The problem is that duplication detection approaches re-
port large amounts of data that must be treated with lit-
tle tool support. For industrial systems a duplication rate
of 5-10% is considered a low but common estimate. This
means that in a system of 1 million lines of code, 50’000 to
100’000 lines of code are involved in duplication. If we as-
sume an average length of about 25 lines for a copied frag-

ment, we get a minimum of 1000 to 2000 clone pairs that
have to be investigated1.

The engineers charged with duplication investigation and
removal are subject to the usual time and cost constraints of
an industrial setting. They most likely do not have the re-
sources to remove every last instance of duplication from
the system but have to prioritize and decide which clones to
remove. To do so, they have to

• assess the system regarding the occurrence of duplica-
tion, i.e., get a “mental picture” of the redundancy sit-
uation.

• identify and select duplication that is “problematic” or
“worthwhile to refactor”. This includes, for example,
large fragments that have been copied multiple times
but eventually also duplication that is easy to refactor.

Moreover, the engineers need to process the duplication
data in an organized way by prioritizing the investigations
they must perform. For example one way is to start with the
largest clones or the ones involving the most source files,
or the ones where a refactoring would have the most im-
pact. Since the ultimate decision on whether to refactor or
not usually involves a manual investigation of the source
code, the information presentation must be interactive and
connected to the underlying code, to allow for short exami-
nation cycles.

In this paper we propose to apply polymetric views [14]
to the context of duplicated code, i.e., we visualize dupli-
cated elements of different levels of abstraction and enrich
the views with metrics that present qualitative information
of these abstractions.

2. Visualizing Duplication Data

Our approach to support the understanding of duplicated
code is based on data visualization. According to Ware [16],
visualization is the preferred way of getting acquainted with

1 Note that in this paper we are not interested in the method of clone de-
tection and assume that the problem of false positives has been solved.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

and navigating large data pools. Duplication data is rela-
tional data: two source code entities are related by shared
pieces of code. A natural way of expressing these relations
is a graph: the nodes of the graph represent the source en-
tities whereas the edges of the graph represent the duplica-
tion relations.

2.1. Entities and Relationships

Our hypothesis is that when investigating a system af-
fected by duplication, our mental model basically consists
of the following elements:

The source entities represent (fragments of) the source
code. In the context of this paper we use files as source
entities. Other entities such as subsystems, modules,
classes, and methods can be used as well.

The duplication relationships connect the source entities.

The duplicated fragments are the source code that two (or
more) source entities have in common.

Since the investigated systems are of huge proportions
(millions of LOC), data growth reaches unwieldly amounts
(thousands of clones). Would we visualize all individual
clones, we would get views where overplotting of nodes and
especially of edges are hindering interpretation. To achieve
scalability we therefore aggregate related clones into higher
level entities. We define three duplication entities which
form a containment hierarchy. Each higher order entity ag-
gregates lower level entities.

We identify the following duplication entities as illus-
trated by Figure 1:

1. Clone Pairs: The lowest level of detail on which to de-
scribe duplication is the clone pair <a,b>. The pair
comprises two source code fragments a and b which
are copies of each other.

2. Clone Classes: A clone class is the union of all
clone pairs which have source fragments in com-
mon2. For example, if we have the clone pairs <a,b>
and <b,c>, it is likely3 that there is a clone pair
<a,c>. The clone class then encompasses the frag-
ments a,b,c. The domain of a clone class is the
set of source entities from which its source frag-
ments stem. The domain of the clone class in the mid-
dle of Figure 1, for example, are the files F11, F12,
and F13.

3. Clone Class Families: We group all clone classes that
have the same domain to form a clone class family.

2 In [15] clone classes are called clone communities.
3 Note that for some clone relation definitions transitivity does not hold

in general.

A Clone Pair

A Clone Class

A Clone Class Family

F01 F02

F11 F12 F13

F21 F22

Figure 1. Containment hierarchy: Clone Pairs,
Clone Classes, and Clone Class Families and
the source files they are found in.

Note that the clone class family is not only a conve-
nient way of reducing the entities and relations in the graph,
it also holds direct interest for the reengineer: First, since
clone class families contain only entire clone classes, they
assemble all instances of a source fragment found in the
system. Second, a clone class family reveals duplication ac-
tivity that goes beyond the duplication of a single continu-
ous source fragment. If two fragments, which were initially
copies of each other, evolve differently over time, they may
not be recognized as one clone pair any more (the “split du-
plicates” problem mentioned in [13]). The clone detector
may identify smaller parts which are still similar individu-
ally. A clone class family will reunite those clone fragments.
In summary, a clone class family aggregates all elements
that are necessary to make informed decisions about refac-
toring measures for a particular fragment of copied code.

The visualizations we propose use the source files and
the clone class families as entities. The decision not to dis-
play clone classes or clone pairs is due to scalability con-
straints. The lower level clone entities, e.g., the clone classes
and clone pairs which are the real targets of eventual refac-
toring operations, must however be reachable from their
containers.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

Color Metric

Position Metrics (X, Y)

Width Metric

Height
Metric

Edge Width Metric
and Color Metric

Entities

Relationship

Figure 2. The principle of a polymetric view.

2.2. Polymetric Views

Polymetric views [14] are a visualization method
for nodes–and–edges graphs enriched with semantic in-
formation such as metrics. Figure 2 illustrates how
two-dimensional nodes representing entities, e.g., soft-
ware artifacts, and edges representing relationships can be
enriched by software metrics: A node figure is able to ren-
der up to five metric values: in its width, height, x– and
y–position, and in its color. An edge figure is able to visu-
alize two metric values: width and color.

By applying metrics to the x– and y–position of the
nodes, for example, similar entities are clustered close to-
gether in an easily identifiable region of the graph exhibit-
ing some of their defining characteristics. Entities with dif-
fering characteristics are then placed in a distinct region of
the graph. In this way, the shape of the visualized graph is
able to communicate useful facts about the set of all visual-
ized items.

2.3. Duplication Metrics

To discern between instances of code duplication we se-
lect a number of metrics that characterize the source files
and clone class families (see Table 1). The choice of met-
rics is guided by the goal to create views that visually dis-
tinguish the entities in the view most effectively and intel-
ligibly. The metrics are simple and can be computed from
the results of any duplication detection tool without the aid
of a parser.

The distinction between LIC and LEC is motivated by
the possibly more complex situation that has to be under-
stood when clone instances are located in different source
entities. The smaller the amount of code that is involved in
the duplication (the copied code and the surrounding con-
text), the lighter is the cognitive load. Kapser and Godfrey
[10] have proposed a clone taxonomy which is built on this
distinction.

Source File Metrics
Name Description
LOC Lines of Code.

The size of a file is a common metric, despite its obvious
drawbacks. It is immediately understood by every program-
mer and thus well suited to identify important files.

LCC Amount of copied code in the source file.
This is the central aspect we are interested in. This records
every piece of code in the file that has been copied some-
where else in the system, including in the file itself.

LIC Lines of Code copied file–internally.
A subset of LCC, this metric records code that has been
copied within a source file.

LEC Lines of Code copied file–externally.
Another subset of LCC. This metric records code that is
shared with other files. Note that LIC and LEC are not nec-
essarily disjunct.

Clone Class Family Metrics
Name Description
NSF Number of Source Files.

In how many source files are the copied fragments found?
This is the set that defines the clone class family.

NCC Number of Clone Classes.
How many clone classes have been grouped together in a
family? This says how many different source fragments are
shared by all the files in the group.

LCC Lines of Copied Code.
How many lines of code does the clone class family encom-
pass? For each clone instance that is part of the clone class
family, the number of copied lines is summed up.

Table 1. Duplication Metrics for source files
and clone class families.

2.4. Display Scalability

A well known problem in graph layouting is overplot-
ting, i.e., when too many nodes and edges are crammed
on too little screen space, making a diagram unintelligible.
Since we want to be able to display large datasets, we are
forced to take precautions against overplotting. We employ
the following techniques:

Reduction and filtering: By pooling related clones into
clone classes and clone class families we reduce the size of
the clone sets significantly. In the same manner source files
can be combined into directories and subsystems.

Adaptive Graphical Representation: Since our views are
intrinsically interactive, visual enhancements like highlight-
ing can be triggered by roll–over mouse events. Multiple se-
lections of nodes, e.g., via their names or their connections
are necessary as well to take advantage of the views.

3. Polymetric Views of Duplication

This section proposes a set of polymetric views that sup-
port the understanding of the duplication situation in a sys-
tem and can guide refactoring measures. We order the de-

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

Figure 3. The Duplication Web of the MAIL-
SORTING system with LIC (Lines of file–internally
Copied Code) as node width.

scription of the views in a sequence that suggests a way
for the engineer to walk through the task of understand-
ing a system’s duplication (a reengineering roadmap). Af-
ter the discussion of each view we present a short overview
of questions answered and potential further questions that
are of interest at this stage. Each view is presented using the
following schema:
Details. Gives a tabular technical description of the view,
its entities, relations, and its layout.
Intention. Explains how the view can support the engineer
in his tasks.
Symptoms. Details what kind of duplication problems the
view reveals.
Examples. Shows sample views and explains their features.
Scaling. Investigates how the size of a system affects the
view negatively and what can be done about it.
Overplotting. Investigates if the amount of data can cause
overplotting problems and how they can be avoided.

3.1. The Duplication Web

The Duplication Web is the first view that an engineer
can use as it introduces the user to the duplication situation.
It shows all files in the system and all existing clone con-
nections between them.

Nodes Source Files
Edges Clone Connections
Metrics

Node Size Height = –
Width = LIC (Internally Copied Code)

Edge Width LCC (Lines of Copied Code)
Layout Nodes placed on a circle; Nodes with many connec-

tions are placed apart on the diameter.
Examples Figure 3,Figure 4

Intention: This view gives an impression of the number of
files in the system and the amount of duplication that con-
nects them. It shows the entire system at once in a well de-
fined shape that is independent of the physical organization.

Figure 4. The Duplication Web view of MFC.
Setting heavily–connected nodes apart on
the diameter emphasizes the overall amount
of duplication connections.

It improves on a textual report detailing all clones detected
in a system.
Symptoms: The view reveals the following duplication
problems in a software system:

• Wide nodes represent files that contain a lot of internal
duplication.

• Thick edges connect files that share a lot of duplica-
tion.

• Nodes with many connected edges represent files shar-
ing duplicated code fragments with many other files.

Example 1. Figure 3 of the MAILSORTING system shows
101 nodes, 57 of which share code with one or more other
files. Most of the files are “copy–connected” to only one or
two other files. The two files with the largest amounts of in-
ternal duplication also exchange the most external duplica-
tion.
Example 2. Figure 4 shows the application of the Duplica-
tion Web view to the Microsoft Foundation Classes (MFC).
It is formed by 240 source files, 50 of which are connected
by duplication links. In this variant, node size corresponds
to number of connections. Following the edges one is able
to divide the duplication activity of MFC into two larger
groups of multiple interconnected files, and a few file pairs.
Scaling: The dimensions of the view can be controlled be-
cause of the fixed shape of the circle. For large numbers of

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

files the radius of the circle must be reduced, but its gestalt
can still be recognized. If there are too many files, group-
ing them into directories, modules, or subsystems is help-
ful.
Overplotting: Since the intention of the view is to give an
overview rather than to guide actual refactoring actions, the
overplotting is not too problematic. Thanks to the fixed po-
sition for each node, overplotting can only become a prob-
lem if many nodes have a very high LIC value. If too many
clone connections exist between the files, the edges in the
center of the view will become impossible to distinguish.
The view then only conveys the information that a lot of
copy&paste programming has been going on.

Reengineering Roadmap Having gotten an impression of
the duplication activity in general, we want to focus a bit
more on the individual files. Which are the files that are
heavily duplicated, which are the ones where only a small
part has been copied?

3.2. The Clone Scatterplot

The Clone Scatterplot displays the same nodes and edges
as the Duplication Web but the layout takes into account
the size and duplication metrics for each file. It has still
overview character but enables informed selections since
more information is included in the presentation.

Nodes Source Files
Edges Clone Connections
Metrics

Node Position X–Pos = LOC (Lines of Code)
Y–Pos = LCC (Lines of Copied Code)

Edge Width LCC (Lines of Copied Code)
Layout Scatterplot
Examples Figure 5

Intention: The Clone Scatterplot confronts the size of the
files with the amount of duplication they contain. Files of
different duplication levels can be identified by the region
they are positioned in. The edges tell us if code is shared
between large and small files, or between files of similar
size. Heavily copied files can be selected for closer inspec-
tion.
Symptoms:

• Nodes on the left represent small files, while the ones
on the right represent large files.

• Nodes at the top of the view represents files having lit-
tle or no duplication.

• Nodes that are not at the top of the view but are un-
connected represent files having only internal duplica-
tion.

• Nodes close to the 45◦ diagonal represent files contain-
ing a lot of duplication with respect to their size.

Examples: The gestalt impression that this view gives can
be best observed with the scatterplot of the AGREP system

45
o

22.5
o

45
o

22.5
o

Figure 5. Two examples of the Clone Scat-
terplot: On top is an extract of the ACCOUNT-
ING system. Below, the entire AGREP system.
Both views are overlaid with lines indicat-
ing duplication rates of 100% (45◦) and 50%
(22.5◦).

in the lower half of Figure 5. Here the system has very lit-
tle variation around the main diagonal. This indicates that
the level of duplication is equally high in all of the larger
files. The largest file has common code with all the other
files involved in external duplication.
Scaling: Since we use the LOC metric as X–Position, the
view can grow very large when files contain a lot of lines.
Logarithmic scales can then be applied to the X– and Y–
metrics.
Overplotting: Thanks to the use of the LOC metric as
X–Position, the source files are spread out over the view
area, ameliorating the overplotting situation for the nodes.
Smaller files without duplication are clustered in the upper
left corner of the view, frequently overplotting each other.
Since these files are not interesting for the user the prob-
lem does not have any impact. Clone edges tend to over-
plot quickly around the 45◦ diagonal, where the files with
high duplication rates are located.

Reengineering Roadmap Until now the views only con-
tained nodes representing individual files. Files are how-

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

Tall Nodes

Wide Nodes

Square Nodes

A
g

g
re

g
a

te
d

 L
E

C
Aggregated LIC

L
E

C

LIC

File

File

File

File Directory

Figure 6. Node placement in the Treemap.
Nodes are separated by their shapes and ar-
ranged so that the values of LIC and LEC
are aggregated horizontally and vertically, re-
spectively.

ever part of organizational system structures. We want to
know how these larger entities are affected by duplication.
This raises the abstraction level and we get the useful side
effect that we can connect gained duplication knowledge
more easily with the fewer elements of the coarse system
structure.

3.3. The Duplication Aggregation Tree Map

This view aggregates the duplication that until now we
have only seen attached to individual files. It shows the en-
tire system top–down along the directory structure, anno-
tating each directory node with the recursively aggregated
amounts of internal and external duplication of its files and
subdirectories. The view emphasizes system parts accord-
ing to their involvement in duplication.

Nodes Source Files, Directories
Edges –
Metrics

Node Size Height = LEC (Externally Copied Code)
Width = LIC (Internally Copied Code)

Node Color LCC (Lines of Copied Code)
Layout Modified Tree Map. Nodes are arranged according to

the principle illustrated in Figure 6. The main differ-
ence to traditional tree maps is that empty space is al-
lowed.

Examples Figure 7

Intention: The tree map aims to give an overview of the ra-
tio of internal to external duplication, aggregated from the
individual source files up to the root directory of the sys-
tem. The parts of the system which exhibit high amounts of
duplication can be identified at a glance from the top level.
Relative comparison of structures in the hierarchy is made

A

B

C

D

E

Figure 7. The tree map of the APACHE system.
The rectangle on the right marked C is an en-
largement of the second top–level node from
left.

possible. The view has a gestalt property, i.e., it can give
useful information immediately.
Symptoms:

• Nodes towards the lower left have increasing amounts
of external duplication.

• Nodes towards the upper right have increasing
amounts of internal duplication.

• Nodes in middle have no duplication or equal amounts
of both kinds.

• Wide nodes have more internal than external duplica-
tion and vice versa.

Note that node height shows the sum of externally copied
code only with regard to files. If two files within a direc-
tory D share some code, this amount will be aggregated as
LEC for the node representing D, even though the code is
not copied to files external of D.
Examples: From the shape of the overall diagram in Fig-
ure 7 we can determine that there is a bit more inter-
nal duplication than external duplication in APACHE. The
rightmost node A representing the directory lib contains
the most internal duplication, whereas leftmost node B
representing the directory modules and its subdirectory
standard contain most of the external duplication. The
directory os (represented by node C) contains two subdi-
rectories win32 (node D) and netware (node E) which
have a similar amount of external duplication (possibly
shared between them).
Scaling: Thanks to the fractal property of treemaps we can
display systems of any size on every screen. Zooming pro-
vides an adequate instrument to navigate even very large

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

systems. Aggregation of data will provide useful informa-
tion even at the highest level where the smaller details are
not discernible any more. Contrary to traditional treemaps
this variant visualizes two values in every node, resulting in
some waste of screen space. The advantage over the tradi-
tional treemaps is that the display is less crowded while still
showing every element of the tree.
Overplotting: The layout precludes all overplotting prob-
lems.

Reengineering Roadmap Having gained an overview of
the parts of the system involved in duplication, we want to
know details about the copying. Is code shared within di-
rectories only, or also across directory borders, even subsys-
tem borders? These informations are interesting since they
uncover functional relationships between system parts that
may not be documented. Such knowledge can also further
the understanding of the design of the system.

3.4. The System Model View

This view shows the directory structure of the applica-
tion, or alternatively the inheritance tree, using the familiar
tree layout.

Nodes Source Files, Directories
Edges Clone Connections, Directory Containment
Metrics

Node Size Height = LEC (Externally Copied Code)
Width = LIC (Internally Copied Code)

Edge Width Clone connections = LCC (Copied Code)
Directory Containment = –

Layout Spaced Tree
Examples Figure 8

Intention: The System Model view shows the duplication
within the physical location of files, i.e., their directory
structures or the classes and their inheritance relationships.
It helps identifying problematic subsystems and functional
connections between subsystems.
Symptoms:

• Small squared boxes represent files without internal or
external duplication.

• Flat wide boxes represent files that contain a lot of in-
ternally duplicated code.

• Tall narrow boxes represent files sharing a lot of dupli-
cated code with other files.

• Thick edges among tall boxes represent the amount of
duplicated code exchanged between them.

Examples. In the upper half of Figure 8 the directory struc-
ture of the JBOSS system is the basis for the arrangement
of the source files in the view. Internal and external duplica-
tion are the metrics that are shown. Files A and B, as well as
C and D share code as indicated by the duplication link be-
tween the files, as well as by the similar shapes of the nodes.
What can additionally be seen in Figure 8 is that A and B are

C

D

A B

E

Class 'Object'

Figure 8. Two variant System Model views of
JBOSS. The upper half shows part of the di-
rectory structure. The thicker edges repre-
sent clone relationships between files. The
lower half shows extracts from the class hier-
archy. Small squares represent superclasses
defined outside of JBOSS.

located in sibling directories, whereas the duplication be-
tween C and D crosses 4 directories, i.e., probably into an-
other subsystem. This information is useful when deciding
about refactoring measures. In the lower half of Figure 8 ex-
tracts from the class hierarchy of JBOSS are shown. On the
left side, sibling classes copy heavily from each other. E
marks a clone relation between a class and its superclass.
Scaling: The view becomes very large in a system with
thousands of source files. Clone edges will likely go over
the screen boundaries when connecting files in directories
that are far apart, making good navigational features a ne-
cessity.
Overplotting: Trees are simple to layout without node
overplotting. Displaying the clone edges can lead to seri-
ous overplotting problems, especially if the system model
is a shallow tree.

Reengineering Roadmap Until now, our focus has been
entirely on the files. We know their sizes, their locations
and their connections. We now turn to an investigation of
the connections, the code that is shared. How large is it?
How many files has it been spread to? Are other common
fragments copied along with it?

3.5. The Clone Class Family Enumeration

This view reduces the redundancy of the duplication con-
nections that has been present in all the previous views. The

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

LOC

LCC

N
S

F
#

 C
lo

n
e

c
la

s
s
 F

a
m

il
ie

s

C
lo

n
e

c
la

s
s
 F

a
m

il
ie

s
S

o
u

rc
e

 F
il
e

s

A

Figure 9. The clone class families of the MUL-
TIMARKE system.

clones are shown in a concise nodes–and–edges view.
The layout uses the LCC and the LOC metrics to place

clone class families and source files, respectively, on the
horizontal axis. The intuition “the farther to the right the
bigger” thus can be used to mentally classify both entity
types presented in the view. The edges connect the upper
half of the view - the cloneclass families - with the source
files on the lower half.

Nodes Cloneclass Families (CCF), Source Files
Edges Participation in a Cloneclass Family
Metrics

CCF Level NSF (Number of Source Files)
CCF Position X–Pos = LCC (Lines of Copied Code)
File Level Number of clone class groups
File Position X–Pos = LOC (Lines of Code)

Layout
Upper half Multiple levels of cloneclass families
Lower half Multiple levels of source files

Examples Figure 9

Intention: This view presents the clone class families to the
user in a way that eases investigation of individual instances
of duplication. It characterizes the families by the criterion
of how many source files they comprise and how much code
they contain. The user can start on a clone class family node
and see which source files are participating. Or he can start
with a source file node and see in how many clone class
families the file participates. To make the view fully use-
ful, lower level duplication entities, i.e., clone classes and
finally clones must be made available to the user via the
nodes in this view.
Symptoms: Clone class families in the top rows are less im-
portant since they connect only a few source files. The fami-
lies located on the rows towards the middle of the view have

an increasing number of participating source files, which
makes them interesting targets for investigation. Symmet-
rically, source files at the bottom of the view are only in-
volved in a single clone class family, whereas files in the
middle of the view are more interesting. Small files are to
the left of the view and large files are to the right of the view.
Examples: Figure 9 presents 18 files and 13 clone class
families which stand for 55 clone pairs (a 76% reduction of
duplication entities). The largest clone class family A en-
compasses duplication in the 5 largest files, as can be seen
from the figure. Clone class family A represents two clone
classes—this means two different source fragments that are
present in all 5 files—or 24 clone pairs.
Scaling: Clone class families or source files containing a
lot of code are positioned at the far right, likely offscreen,
which will require navigation.
Overplotting: The nodes must not overplot since the user
has to be able to select from them. The layout mechanism
thus arranges them side by side. Edge overplotting is of mi-
nor concern since the focus of the user lies on the nodes.
Eventually, clone class families which represent only inter-
nal duplication in a single file could be removed from the
view.

4. Discussion

The views achieve the goal of data reduction on different
levels. We are able to display even very large systems on re-
stricted screen space. Many of the views have a gestalt prop-
erty, i.e., they provide overview information at a glance.

The reduction of the cardinality of the clone sets, how-
ever, is sometimes not enough, resulting in cluttered dis-
plays which are hard to read. We must further support read-
ability with interactive enhancements of the views, e.g.,
with the highlighting of connected elements on mouse–
over.

By using simple and heuristic layout mechanisms we
provide a fixed arrangement of the nodes for all views ex-
cept the System Model view. This is an advantage since
there is no need for the user to rearrange the nodes to get a
better view. This enables him to start interpreting the view
immediately.

What is missing from the description in this paper is the
necessary ingredient if the duplication is to be reengineered:
making the source code of the clone instances reachable
directly via the nodes and edges of the views by code
browsers. This must be addressed by tool–builders.

That tool support is only one piece of the duplication
refactoring puzzle in an industrial context is a fact which
we have not included into our considerations. How busi-
ness decisions and process questions affect the engineers in
this matter will have to be addressed still.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

5. Related Work

Visualizing Duplication with Graphs. Johnson [7] has
used Hasse diagrams to visualize textual similarity between
files. For each duplication–related cluster of files (a clone
class family in our terminology) - the diagram shows the
copied source text and the source files as nodes, and the in-
clusion relationships between the different code pieces as
edges. The height of a node in the graph is determined by
its size: large files or code fragments are towards the bot-
tom, smaller pieces of code towards the top. His graph is
similar to the clone class family enumeration proposed in
Section 3.5.

In [8] Johnson proposes to navigate the web of files and
clone classes via hyper-linked web pages. Although the en-
tities and relationships that he defines are the same as we
have used in this paper, his system lacks the overview and
selection features that we think are necessary to find one’s
way in the mass of duplication data. His browsing system
could however act as a backend for the views proposed in
this paper.
Visualizing Duplication with Dotplots. A common
method for visualizing duplication is the dotplot [6, 5, 9],
where the lines of two source files are put on the two axes
of a matrix and a dot is placed at each coordinate which rep-
resents two matching lines. Dotplots, however, have some
drawbacks:

• Dotplots produce spacious images. The size of the im-
age depends on the size of the input, not on the size of
the duplication found.

• In a dotplot visualizing the comparison of multiple
source entities there is no predetermined organization
of the image. Some features may only be detected af-
ter rearrangement of the display.

• Dotplots contain a lot of redundancy. This can be over-
whelming in the case of frequently repeated pieces of
code.

• Dotplots give a detailed account of the duplication sit-
uation. As a consequence they convey overviews rather
poorly.

Dotplots and polymetric views can be used as comple-
mentary duplication visualizations. The polymetric views
are good as a starting point for the assessment phase. They
give the user a ToDo list that has to be cleared point for
point. Having selected a source file or a clone class, a tar-
geted dotplot displaying only the clones belonging to the
selected clone classes can be presented to the user for close
inspection of the situation.
Visualizing Duplication in OO Class Hierarchies.
Golomingi [11] has investigated how the information about
the location of clones within an object–oriented class hi-
erarchy can be utilized to decide upon refactoring mea-

sures. The focus of his work however was automation rather
than visualization, i.e., seeing the classes and their relation-
ships was not the primary goal.

6. Conclusion

If a reengineer has to investigate and refactor duplica-
tion in a large system, he is in dire need of support for un-
derstanding and dealing with the potentially huge amount of
copied code. To manage the overwhelming lists of detailed
duplication information produced by duplication detection
mechanisms, we reckon that he needs to (1) overview of the
duplication situation and (2) navigate through the sea of in-
formation.

The approach discussed here is putting emphasis on the
‘human in the loop’, giving human expertise the helm, in-
stead of pushing automatization. In this paper we have pro-
posed first a way of grouping the duplication information
into useful abstractions, i.e., the clone class family which
aggregates all duplication that is exchanged between a spe-
cific set of files. Second, we have proposed a number of
polymetric views which structure the data and combine it
with the knowledge about the system that the engineer al-
ready possesses.

We have only used a small and very simple set of met-
rics which can be computed without much investment in
parsing infrastructure. Future work should include investi-
gations of metrics or attributes oriented towards qualitative
aspects of duplication. This will increase the selective capa-
bilities of the views.

A pertinent problem is the overplotting of edges and
nodes when systems and the amount of data get too large.
We have proposed some aggregation abstractions to reduce
the amount of data that must be presented on screen. So-
phisticated filtering techniques should be the focus of tool
development efforts if a visualization tool wants to be ap-
plicable to very large systems. Since the views greatly rely
on their interactivity, this also means that they have a lim-
ited usefulness when committed to paper.

A. Example Systems

The sample systems we have used to produce the views
in this paper are listed in the following table.

Name Size Language Origin
Files LOC

MAILSORTING 101 39’000 C++ Industry
MFC 4.2 245 107’000 C++ Industry
ACCOUNTING 336 22’000 COBOL Industry
APACHE 1.3.20 141 65’000 C Open Src.
JBOSS 2.3 BETA 403 35’000 JAVA Open Src.
AGREP 2.04 22 12’000 C Academia
MULTIMARKE 70 7’000 JAVA Stud.Proj.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

References

[1] B. S. Baker. A Program for Identifying Duplicated Code.
Computing Science and Statistics, 24:49–57, 1992.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, and
K. Kontogiannis. Advanced clone-analysis to support object-
oriented system refactoring. In Proceedings WCRE’00,
pages 98–107. IEEE, Oct. 2000.

[3] I. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier. Clone
Detection Using Abstract Syntax Trees. In Proceedings of
ICSM. IEEE, 1998.

[4] S. Bellon. Vergleich von Techniken zur Erkennung du-
plizierten Quellcodes. Master’s thesis, Universität Stuttgart,
Sept. 2002.

[5] S. Ducasse, M. Rieger, and G. Golomingi. Tool support
for refactoring duplicated OO code. In Proceedings of the
ECOOP ’99 Workshop on Experiences in Object-Oriented
Re-Engineering, June 1999. FZI-Report 2-6-6/99.

[6] J. Helfman. Dotplot Patterns: a Literal Look at Pattern Lan-
guages. TAPOS, 2(1):31–41, 1995.

[7] J. H. Johnson. Visualizing textual redundancy in legacy
source. In Proceedings of CASCON ’94, pages 9–18, 1994.

[8] J. H. Johnson. Navigating the textual redundancy web in
legacy source. In Proceedings of the 1996 conference of the
Centre for Advanced Studies on Collaborative research. IBM
Press, 1996.

[9] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE TSE, 28(6):654–670, 2002.

[10] C. Kapser and M. W. Godfrey. Toward a taxonomy of clones
in source code: A case study. In Proceedings of the First In-
ternational Workshop on Evolution of Large-scale Industrial
Software Applications (ELISA). IEEE, Sept. 2003.

[11] G. G. Koni-N’sapu. A scenario based approach for refactor-
ing duplicated code in object oriented systems. Diploma the-
sis, University of Bern, June 2001.

[12] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M. Bernstein. Pattern Matching for Clone and Concept De-
tection. Journal of Automated Software Engineering, 3:77–
108, 1996.

[13] J. Krinke. Identifying similar code with program dependence
graphs. In Proceedings WCRE’01. IEEE Computer Society,
Oct. 2001.

[14] M. Lanza and S. Ducasse. Polymetric views — a
lightweight visual approach to reverse engineering. IEEE
TSE, 29(9):782–795, Sept. 2003.

[15] J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of ICSM’96, 1996.

[16] C. Ware. Information Visualization. Morgan Kaufmann,
2000.

Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04)

1095-1350/04 $20.00 © 2004 IEEE

