
Feature-centric Environment∗

David Röthlisberger, Orla Greevy and Adrian Lienhard

Software Composition Group
University of Berne, Switzerland

{roethlis, greevy, lienhard}@iam.unibe.ch

1. Introduction

The task of locating the parts of the code that are rele-
vant to a feature in object-oriented systems is widely recog-
nized as a non-trivial task and a body of reverse engineer-
ing research collectively referred to as feature identification
has emerged [1, 2]. A software engineer frequently needs
to understand which parts of a system implement a feature
to carry out maintenance activities, as change requests and
bug reports are usually expressed in terms of features [4].
The main focus of feature identification research to date is
in a reverse engineering context. Despite the fact that re-
search has highlighted the usefulness of feature identifica-
tion techniques for program comprehension, very little of
this effort has found its way into the software engineer’s de-
velopment environment.

In this paper, we demonstrate a tool providing a perspec-
tive of a system that reflects how features are implemented
to support maintenance activities. By integrating this tool in
a development environment we support feature understand-
ing while performing maintenance activities. This environ-
ment, called Feature-centric Environment, compares several
features visually, provides a detailed view for a single fea-
ture and integrates a code browser focusing on a single fea-
ture of a software system. All these different views are en-
riched with metrics, they are interconnected and the user is
able to interact with them.

In the following we introduce the Feature-centric Envi-
ronment and its different views.

2. The Feature-centric Environment

The Feature-centric Environment provides three differ-
ent views of features: The Feature Overview, the Feature
Tree and the Feature Artifact Browser. All these three views
are enriched with the Feature Affinity metric introduced in

∗ In International Workshop on Visualizing Software for Understanding
(Vissoft 2007) (tool demonstration), 2007.

a previous work [3]. Applying this metric guides and sup-
ports the software engineer during the navigation and un-
derstanding of one or many features. We assign a color that
represents its Feature Affinity value to the visual represen-
tation of a method used in a feature . Our choice of colors
correspond to a heat map, e.g., colors from cyan to red.

Compact Feature Overview
The feature overview visualizes more than one fea-

ture. The software engineer can decide how many fea-
tures she wants to visualize at the same time (see
Figure 1 (1)). For every chosen feature, a list of all
methods used in the current feature is provided. Ev-
ery method is displayed as a small colored box where
the color represents the feature affinity value, the list
is sorted according to this metric value. Clicking on a
method opens the feature tree where all occurrences of
the selected method are highlighted.

Feature Tree
In the feature tree view we present the method call

tree, captured as a result of exercising one feature (see
Figure 1 (2)). The first method executed for a feature
(e.g., the “main” method) forms the root of this tree.
Methods invoked in this root node form the first level
of the tree, hence the nodes represent methods and the
edges are message sends from a sender to a receiver.
As in the feature overview, the nodes are colored ac-
cording to their feature affinity value. The tree is col-
lapsed to the first two levels at the beginning, but every
node can be expanded and collapsed again afterwards.
Like this, the user can conveniently navigate even large
call trees of a feature. Every node of the tree provides
a button to look up the method of this node in the fea-
ture artifact browser.

Feature Artifact Browser
The source artifacts of an individual feature are pre-

sented as text in the feature artifact browser (see Fig-
ure 1 (3)). It displays only the classes and methods ac-
tually used in the feature. Classes and methods not par-



(1)

(2)

(3)

CopyCommand>>defaultName

Figure 1. The Visual Components of our Feature-centric Environment

ticipating in the runtime behavior of a feature are not
displayed. This makes it much easier for the user to fo-
cus on a single feature of the software. The feature ar-
tifact browser is an adapted version of a standard class
browser available in the Squeak environment contain-
ing packages, classes, method categories and methods
in four panes on the top, while the lower pane contains
the source code of the selected entity. This version of
the class browser not only presents static source arti-
facts, but also the feature affinity metric values by col-
oring the names of classes and methods accordingly.

3. Description of the Demonstration

The demonstration will show how a developer uses
the Feature-centric Environment to perform a mainte-
nance task, i.e., correcting a defect in a software system.
First, we will select some specific features of a soft-
ware system to visualize them in the Feature-centric En-
vironment. These features are normally unit test cases of
a system that will be exercised to gather execution in-
formation, e.g., methods being invoked. Second, we
will show how to use the visualizations of these fea-
tures to correct a defect. The goal is to quickly locate
the method which is actually responsible for the de-
fect. For that we will specifically use the Feature Overview
to pre-choose good candidate methods to contain the de-

fect, then we will navigate these candidate methods in
the Feature Tree View to get context about how the meth-
ods are used in a specific feature. Finally, we will analyze
the source code in the Feature Artifact Browser to evalu-
ate and possibly correct a faulty method.

We acknowledge the financial support of the Swiss National Science
Foundation for the project “Analyzing, capturing and taming software
change” (SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] G. Antoniol and Y.-G. Guéhéneuc. Feature identification: a
novel approach and a case study. In Proceedings IEEE Inter-
national Conference on Software Maintenance (ICSM 2005),
pages 357–366, Los Alamitos CA, Sept. 2005. IEEE Com-
puter Society Press.

[2] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Computer, 29(3):210–224, Mar. 2003.

[3] O. Greevy and S. Ducasse. Correlating features and code us-
ing a compact two-sided trace analysis approach. In Proceed-
ings of 9th European Conference on Software Maintenance
and Reengineering (CSMR’05), pages 314–323, Los Alami-
tos CA, 2005. IEEE Computer Society.

[4] A. Mehta and G. Heineman. Evolving legacy systems fea-
tures using regression test cases and components. In Proceed-
ings ACM International Workshop on Principles of Software
Evolution, pages 190–193, New York NY, 2002. ACM Press.


