Combining Development Environments with Reverse Engineering*

David Rothlisberger and Oscar Nierstrasz

Software Composition Group
University of Bern, Switzerland
{roethlis, oscar }@iam.unibe.ch

1. Shortcomings of current IDEs

Understanding and maintaining large software sys-
tems is a complex and time-consuming yet inevitable
challenge. Most systems frequently change and evolve
over time to meet new requirements. To perform these
changes a software engineer must have an in-depth un-
derstanding of the inner structure and implementation
of a system. However, the integrated development en-
vironment (IDE) usually provides little in the way of
support to ease the understanding and changing of soft-
ware systems.

A large body of research exists in the area of re-
verse engineering and many promising concepts to im-
prove program comprehension have emerged, such as
object or method histograms, polymetric views and
class blueprints [3]. But the visualizations of reverse-
engineered information about software systems are usu-
ally separated from the user’s working environment,
the IDE, and integrated into dedicated reverse en-
gineering tools such as Moose or CodeCrawler. This
means that a programmer working on maintenance
tasks does not have access to important information
about the structure or the dynamic behavior of a soft-
ware system, such as a view presenting how a class
communicates to other classes.

For instance, due to the lack of dynamic information
(e.g., collaborators of a class) the developer is forced
to frequently browse a large code space without the
benefit of goal-directed navigational support. Empiri-
cal studies report that an engineer performing main-
tenance tasks on a system spends at least 35% of the
time in navigating dependencies between source arti-
facts (e.g., which class uses which other classes) [2].
Because so much time is spent navigating source code,
current IDEs obviously do not provide adequate means

* In: FAMOOSr 2007 (Ist International Workshop on FAMIX
and Moose in Reengineering), 2007

to support the navigation and browsing of software ar-
tifacts.

2. Combining Forward and Reverse En-
gineering within the same IDE

Integrating reverse engineering tools and visualiza-
tions into the IDE is one possible way to mitigate
the navigational load weighing on a developer, because
such visualizations quickly reveal information about
the architecture and the structure of a system, hence
the user can more efficiently locate important artifacts
in a large code space.

However, just integrating reverse engineering tools
into one single environment is not enough, because
there is a mental gap between the goals of reverse
engineering and development environments. A devel-
oper normally thinks in terms of static entities, i.e.,
source artifacts such as classes and methods, and an-
alyzes them to get an understanding of the behavior
of a system. This metaphor of understanding and de-
veloping software is well established and cannot easily
be changed. But this metaphor needs to be enriched,
for instance we want to quickly get from an abstract
feature (e.g., a login feature in a Wiki application) to
the developer’s view, this is, the source artifacts real-
izing the feature. For instance, if a developer knows
exactly with which other classes a given class dynami-
cally collaborates to realize a specific feature, she can
much faster navigate all entities relevant to a certain
task, e.g., correcting a defect in that feature [6].

What is needed is not only an integration of ideas,
concepts, tools and visualizations gained by reverse en-
gineering into the IDE, but a combination of the con-
ventional, often purely structural view of today’s IDEs
with a dynamic view on a system and its features.
In particular when working with object-oriented lan-
guages where polymorphism and late binding is applied
(such as Java or Smalltalk) analyzing the dynamic be-

havior is an efficient and reliable way to get a complete
understanding of a program.

If we manage to tightly integrate dynamic informa-
tion into the IDE and especially into the user’s work-
flow to navigate and browse a software’s code space,
we may be able to greatly reduce the time required
to understand the implementation of a software sys-
tem, to maintain and evolve it. For short-term adapta-
tions an IDE with integrated reverse engineering is cer-
tainly beneficial, but also long-term evolution is prob-
ably easier to achieve within such an IDE, especially if
also historical information about a software system are
accessible in the IDE [1].

3. Steps to Integrate Reverse Engineer-
ing into an IDE

We aim to study the following concrete enhance-
ments and improvements of IDEs for program compre-
hension, navigation of source artifacts and maintenance
of software systems:

e Related Entities By dynamically analyzing an ap-
plication we can for instance reveal how a class
collaborates with which other classes. We simply
track all the receivers of messages sent from within
a class. Making this information accessible helps
the programmer to understand the dynamic be-
havior of a system, because she knows the dynamic
collaborators of a class which are difficult to find
out by only statically analyzing source artifacts.

e Object Tracking When just looking at the static
source code we do not know what kind of objects
a certain variable (instance or local) will contain
when the system is running. By analyzing the sys-
tem runtime we can memorize the objects that
have been stored in a variable and e.g., display
the classes of these objects in the IDE while study-
ing the static source code [4].

e Feature Identification By identifying source arti-
facts participating in a specific feature of an ap-
plication, the developer can more efficiently navi-
gate and also understand all source entities realiz-
ing that feature when she has to focus only on a
subset of all the source artifacts of the whole sys-
tem [6].

To actually realize these items we need to perform
dynamic analysis. In Smalltalk tools and framework
for dynamic analysis are already available, that’s why
we will develop a prototype of our IDE in Squeak
Smalltalk. Even though the low level tools for gath-
ering dynamic information already exist, the challenge

is still to integrate and present this information in a
useful manner.

This challenge consists of at least four technical is-
sues we need to address: First, to collect dynamic in-
formation we have to run the application under study.
This means that we have to continuously collect dy-
namic information on every run of the system to get
information as accurate as possible. The second issue
is the large amount of data which naturally emerges
when performing dynamic analysis. This forces us to fo-
cus on a small percentage of available information that
has proven to be useful and to filter out all other in-
formation. The third issue is to find good techniques
to visualize and present the dynamic information de-
pendent on the context the developer is in. A fourth is-
sue we need to address is how to store and update the
dynamic information accurately. In order to be use-
ful the information has to be displayed without letting
the user wait and it has to be accurate, so old informa-
tion from an previous run of the systems needs to be
invalidated.

A last but yet important step is the validation of the
resulting IDE. For a serious validation of our work the
developers need to be involved, this means that we will
perform several empirical studies to report on the use-
fulness and the added value of combining reverse engi-
neering with development environments.

References

[1] T. Girba, M. Lanza, and S. Ducasse. Characterizing the
evolution of class hierarchies. In Proceedings of 9th Eu-
ropean Conference on Software Maintenance and Reengi-
neering (CSMR’05), pages 2—11, Los Alamitos CA, 2005.
IEEE Computer Society.

[2] A.J. Ko, H. Aung, and B. A. Myers. Eliciting design
requirements for maintenance-oriented ides: a detailed
study of corrective and perfective maintenance tasks. In
ICSE ’05: Proceedings of the 27th international confer-
ence on Software engineering, pages 125-135, 2005.

[3] M. Lanza and S. Ducasse. Polymetric views—
a lightweight visual approach to reverse engineering.
Transactions on Software Engineering (TSE), 29(9):782—
795, Sept. 2003.

[4] A. Lienhard, S. Ducasse, T. Girba, and O. Nierstrasz.
Capturing how objects flow at runtime. In Proceed-
ings International Workshop on Program Comprehension
through Dynamic Analysis (PCODA 2006), pages 39-43,
2006.

[6] A.Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. Anin-
formation retrieval approach to concept location in source
code. In Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE 2004), pages 214—223, Nov.
2004.

[6] D. Rothlisberger, O. Greevy, and A. Lienhard. Support-
ing software maintenance with interactive feature driven
browsing. In Proceedings IEEE International Workshop
on Visualizing Software for Understanding (Vissoft 2007)
(tool demonstration), 2007.

