
Unanticipated Partial Behavioral Reflection:

Adapting Applications at Runtime ?

David Röthlisberger a Marcus Denker a Éric Tanter b

aSoftware Composition Group
IAM — Universität Bern, Switzerland

bCenter for Web Research, DCC
University of Chile, Santiago, Chile

Abstract

Dynamic, unanticipated adaptation of running systems is of interest in a variety of
situations, ranging from functional upgrades to on-the-fly debugging or monitoring
of critical applications. In this paper we study a particular form of computational
reflection, called unanticipated partial behavioral reflection, which is particularly
well-suited for unanticipated adaptation of real-world systems. Our proposal com-
bines the dynamicity of unanticipated reflection, i.e., reflection that does not re-
quire preparation of the code of any sort, and the selectivity and efficiency of partial
behavioral reflection. First, we propose unanticipated partial behavioral reflection
which enables the developer to precisely select the required reifications, to flexibly
engineer the metalevel and to introduce the meta behavior dynamically. Second, we
present a system supporting unanticipated partial behavioral reflection in Squeak
Smalltalk, called Geppetto, and illustrate its use with a concrete example of a web
application. Benchmarks validate the applicability of our proposal as an extension
to the standard reflective abilities of Smalltalk.

? This is an extended version of a paper published in the Proceedings of the Inter-
national Smalltalk Conference (ISC) 2006 [1].
We acknowledge the financial support of the Swiss National Science Foundation
for the project “Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008). É. Tanter is partially financed by the
Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan, Chile.

Email addresses: roethlis@iam.unibe.ch (David Röthlisberger),
denker@iam.unibe.ch (Marcus Denker), etanter@dcc.uchile.cl (Éric Tanter).

Computer Languages, Systems & Structures vol. 34, Issues 2-3 (2008), pp. 46–65

1 Introduction

Dynamic adaptation of a running application makes it possible to apply changes
to either the structure or execution of the application, without having to shut
it down. This ability is interesting for several kinds of systems, e.g., context-
aware applications, long-running systems that cannot afford to be halted, or for
monitoring and debugging systems on-the-fly. Adaptation can be considered a
priori by adopting adequate design patterns such as the strategy pattern [2],
but such anticipation is not always possible nor is it desirable: potentially
many parts of an application may have to be updated at some point. This
is an area in which metaobject protocols, by providing implicit reification of
some parts of an application [3], are very useful [4–6].

Reflection in programming languages is a paradigm that supports compu-
tations about computations, so-called metacomputations. Metacomputations
and base computations are arranged in two different levels: the metalevel and
the base level [7,8]. Because these levels are causally connected any modifica-
tion to the metalevel representation affects any further computations on the
base level [9]. In object-oriented reflective systems, the metalevel is formed in
terms of metaobjects: a metaobject acts on reifications of program elements
(execution or structure). If reifications of the structure of the program are
accessed, then we talk about structural reflection; if on the other hand reifi-
cations deal with the execution of the program, then we refer to behavioral
reflection.

This paper is concerned with a particular form of behavioral reflection, since
Smalltalk already supports powerful structural reflective mechanisms. Follow-
ing the work of McAffer on metalevel engineering [10], we adopt an operational
decomposition of the metalevel: reifications represent occurrences of operations
denoting the activity of the base program execution. Examples of operations
are message sending, method execution, and variable accesses. An occurrence
of an operation is a particular event (e.g., a particular sending of a message).

We focus on two enhancements of behavioral reflection that make it more
appropriate in real-world systems. First, unanticipated behavioral reflection
(UBR) enables the deployment of metaobjects affecting the behavior of a
program while it is already running. This makes it possible to fully support
unanticipated software adaptation [5]. Second, a recognized issue of behavioral
reflection is its overhead in terms of efficiency: jumping to the metalevel at
runtime — reifying current computation and letting a metaobject perform
some metalevel behavior — is powerful but costly. Partial behavioral reflection
(PBR) has been proposed to overcome this issue, by letting users precisely
select what needs to be reified, and when [11]. Furthermore, PBR allows for
flexible engineering of the metalevel, making it possible to design a concern-

2

based metalevel decomposition (i.e., where one metaobject is in charge of one
concern in the base application) rather than the typical entity-based metalevel
decomposition (e.g., one metaobject per object, or one metaobject per class).
Hence it is possible to reuse or compose metaobjects of different concerns
which greatly eases the engineering of the metalevel [10,11].

In this paper we propose unanticipated partial behavioral reflection (UPBR)
which allows us to insert reflective behavior at runtime into a system (the
“unanticipated” in this definition). The reifications are precisely selectable in
spatial, i.e., which occurrences of which operations, and temporal, i.e., when
those occurrences are reified, dimensions (the “partial” in UPBR). The meta-
level behavior is flexibly engineered by means of fine-grained protocols and se-
lection possibilities that supports gathering of heterogeneous execution points,
i.e., occurrences of different operations in different classes and methods.

The contributions of this paper are (a) a motivation for the need of UPBR,
(b) an implementation of UPBR in Squeak Smalltalk, called Geppetto, (c)
an illustration of the use of UPBR in the detection and resolution of a per-
formance bottleneck in an application, without the need to actually stop the
application. This is unique because the existing proposals of UBR do not fully
support PBR, and reciprocally, the existing systems that truly support PBR
are not able to provide full UBR.

The paper is organized as follows: in the next section we describe a running
example that serves as the baseline for our motivation and illustration of our
proposal. Section 3 then discusses existing reflective support in Smalltalk, as
well as the MetaclassTalk extension, followed by an overview of proposals for
UBR (Iguana/J) and PBR (Reflex). In Section 4 we describe how we estab-
lish an efficient and expressive approach for UPBR in Smalltalk using run-
time bytecode manipulation [12]. Section 5 is then dedicated to a description
of how to use Geppetto, the framework providing UPBR in Smalltalk, by
solving our running example. We describe the design of Geppetto in more
detail in Section 6. Section 7 discusses some implementation issues and in Sec-
tion 8 we report on some benchmarks we used to validate the applicability of
Geppetto. After highlighting some directions of future work (Section 9) we
conclude with Section 10.

This work is based on a paper published in the Proceedings of the Interna-
tional Smalltalk Conference (ISC) 2006 [1]. We report more thoroughly about
the design of Geppetto in section 6 and have extended the implementation
section. An example has been added to section 5. The description of the other
examples has been extended. We strengthen the evaluation (Section 8) by pro-
viding more benchmarks and give a more thorough treatment of future work
in Section 9.

3

2 Running Example

Let us consider a collaborative website (a Wiki), implemented using the Sea-
side web framework [13, 14]. When under high load, the system suffers from
a performance problem. Suppose users are reporting unacceptable response
times. As providers of the system, our goal is to find the source of this perfor-
mance problem and then fix it. First, we want to get some knowledge about
possible bottlenecks by determining which methods consume the most execu-
tion time. A simple profiler shall be applied to our Wiki application, but it is
not possible to shutdown the server to install this profiler. During the profiling
our users should still be able to use the Wiki system as usual. Furthermore,
once all the necessary information is gathered, the profiler should be removed
entirely from the system, again without being forced to halt the Wiki. We
have also the strict requirement to profile the application in its natural envi-
ronment and context, because unfortunately the performance bottleneck does
not seem to occur in a test installation.

To profile method execution we use simple reflective functionalities. We just
need to know the name and arguments of the method being executed, the time
when this execution started and the time when it finished to gather statistical
data, showing which methods consume the most execution time. During the
analysis of the execution time of the different methods we see that some very
slow methods can be optimized by using a simple caching mechanism. We
then decide to dynamically introduce a cache for these expensive calculations
in order to solve our performance problem.

As we see in this simple but realistic example, the ability to use reflection is of
wide interest for systems that cannot be halted but nonetheless require reflec-
tive behavior temporarily or permanently. Furthermore, this example proves
that an approach to reflection has to fulfill two important requirements to be
applicable in such a situation: first, the reflective architecture has to allow un-
anticipated installation and removal of reflective behavior into an application
at runtime. A web application or any other server-based application can often
not be stopped and restarted to install new functionality. Moreover, the use
of reflection cannot be anticipated before the application is started, hence a
preparation of the application to support the reflective behavior that we may
want to use later is not a valid alternative here. So the reflective mechanisms
have to be inserted in an unanticipated manner. Second, in order to be able to
use reflection in a durable manner (e.g., for caching) in a real-world situation,
the reflective architecture has to be efficient. This motivates the need for par-
tial reflection allowing the programmer to precisely choose the places where
reflection is really required and hence minimizing the costs for reflection by
reducing the amount of costly reifications occurring at runtime. To sum up,
this example requires unanticipated partial behavioral reflection to be solved.

4

3 Related Work and Motivation

As discussed earlier, changing behavior reflectively at runtime is of great in-
terest for all applications and systems that need to run continuously without
interruption, such as servers which provide mission-critical applications. It
should be possible to analyze and change the behavior of such a system with-
out the need of stopping and restarting it.

We choose the Smalltalk [15] dialect Squeak [16] to implement a dynamic ap-
proach to reflection which supports unanticipated partial behavioral reflection
(UPBR), because Squeak represents a powerful and extensible environment,
well-suited to implement and explore the possibilities of UPBR. Before pre-
senting our proposal, we discuss the current situation of reflective support in
standard Smalltalk-80 as well as in the MetaclassTalk extension [17–19] . We
also discuss very related proposals formulated in the Java context, both for
unanticipated behavioral reflection and for partial behavioral reflection.

3.1 Reflection in Smalltalk-80

Smalltalk is one of the first object-oriented programming languages providing
advanced reflective support [20]. The Smalltalk approach to reflection is based
on the metaclass model and is thus inherently structural [8]. A metaclass is a
class whose instances are classes, hence a metaclass is the metaobject of a class
and describes its structure and behavior. In Smalltalk, message lookup and
execution are not defined as part of the metaclass however. Instead they are
hard-coded in the virtual machine. It is thus not possible to override in a sub-
metaclass the method which defines message execution semantics. While not
providing a direct model for behavioral reflection, we can nevertheless change
the behavior using the message-passing control techniques presented in [21],
or method wrappers [22]. Also, the Smalltalk metamodel does not support the
reification of variable accesses, so the expressiveness of behavioral reflection
in current Smalltalk is limited.

Although reflection in Smalltalk can inherently be used in an unanticipated
manner, the existing ad hoc support for behavioral reflection in Smalltalk is
not efficient and does not support fine-grained selection of reification as ad-
vocated by partial behavioral reflection (PBR) [11]. For both reasons (limited
expressiveness and lack of partiality), we have to extend the current reflective
facilities of Smalltalk: this is precisely the aim of this paper.

5

3.2 Extended Behavioral Reflection in Smalltalk: MetaclassTalk

MetaclassTalk [17–19] extends the Smalltalk model of metaclasses by actually
having metaclasses effectively define the semantics of message lookup and
instance variable access. Instead of being hard-coded in the virtual machine,
occurrences of these operations are interpreted by the metaclass of the class
of the currently-executing instance. A major drawback of this model is that
reflection is only controlled at class boundaries, not at the level of methods
or operation occurrences. This way MetaclassTalk confines the granularity of
selection of behavioral elements towards purely structural elements. As Ferber
says in [8]: “metaclasses are not meta in the computational sense, although
they are meta in the structural sense”.

Besides the lack of fine-grained selection, MetaclassTalk does not allow for
any control of the protocol between the base and the metalevel: it is fixed and
standardized. It is not possible to control precisely which pieces of information
are reified: MetaclassTalk always reifies everything (e.g., sender, receiver and
arguments in case of a message send). Recent implementations of the Meta-
classTalk model limit the number of effective reifications by only calling the
metaclass methods if the metaclass indeed provides changed behavior. But
even then, once a metaclass defines custom semantics for an operation, all
occurrences of that operation are reified in all instances of the class. Hence
MetaclassTalk provides a less ad-hoc means of doing behavioral reflection than
standard Smalltalk-80, but with a very limited support for partial behavioral
reflection.

3.3 Unanticipated Behavioral Reflection: Iguana/J

Iguana/J is a reflective architecture for Java [5] which supports unanticipated
behavioral reflection and a limited form of partial behavioral reflection.

With respect to unanticipated adaptation, with Iguana/J it is possible to
adapt Java applications at runtime without being forced to shut them down
and without having to prepare them before their startup for the use of re-
flection. However to bring unanticipated adaptation to Java, Iguana/J is im-
plemented via a native dynamic library integrated very closely with the Java
virtual machine via the Just-In-Time (JIT) compiler interface [5]. This means
that the Iguana architecture is not portable between different virtual machine
implementations: e.g., the JIT interface is not supported anymore on the mod-
ern HotSpot Java virtual machine. Conversely, we aim at providing UPBR for
Smalltalk in a portable manner, in order to widen the applicability of our
proposal.

6

With respect to partiality, Iguana/J supports fine-grained metaobject proto-
cols (MOPs), offering the possibility to specify which operations should be
reified. However, precise operation occurrences of interest cannot be discrimi-
nated, nor can the actual communication protocol between the base and meta-
level be specified. This can have unfortunate impact on performance, since a
completely reified occurrence is typically around 24 times slower than a non-
reified one [5].

3.4 Partial Behavioral Reflection: Reflex

A full-fledged model of partial behavioral reflection was presented in [11]. This
model is implemented in Reflex, for the Java environment.

Reflex fully supports partial behavioral reflection: it is possible to select ex-
actly which operation occurrences are of interest, as well as when they are of
interest. These spatial and temporal selection possibilities are of great advan-
tage to limit costly reification. Furthermore, the exact communication proto-
col between the base and metalevel is completely configurable: which method
to call on the metaobject, pieces of information to reify, etc. The model of
links adopted by Reflex, which consists of an explicit binding of a cut (set
of operation occurrences) and an action (metaobject), also gives total control
over the decomposition of the metalevel: a given metaobject can control a few
occurrences of an operation in some objects as well as some occurrences of
other operations in possibly different objects. Hence metalevel engineering is
highly flexible, which makes it possible to directly support a concern-based
metalevel decomposition, and this is precisely what is required to support
aspect-oriented programming [11,23].

The limitation of Reflex however lies in its implementation context: being
a portable Java extension, Reflex works by transforming bytecode. Hence,
although reflective behavior occurs at runtime, reflective needs have to be an-
ticipated at load time. This means that Reflex does not allow a programmer
to insert new reflective behavior affecting already-loaded classes into a run-
ning application. Instead, the programmer is forced to stop the application,
define the reflective functionality required and to reload the application to in-
sert this metabehavior. Links can be deactivated at runtime, but at a certain
residual cost, because the bottom line in Java is that class definitions cannot
be changed once loaded.

7

3.5 Motivation

As we have seen in this section, although unanticipated partial behavioral re-
flection is highly attractive, no current proposals provide it. Smalltalk-80 is
not well-suited for behavioral reflection, MetaclassTalk provides only a lim-
ited possibility of metalevel engineering, Iguana/J has limited partiality and
implementation limitations, and Reflex has limited dynamicity. Our proposal,
a reflective extension of Squeak supporting UPBR called Geppetto, imple-
ments the UBR features of Iguana/J and the PBR features of Reflex to form a
powerful, open framework for UPBR which extends, enhances and completes
the reflective model of Smalltalk in a useful and efficient way.

4 Unanticipated Partial Behavioral Reflection for Smalltalk

We first overview the model of partial behavioral reflection adopted by Gep-
petto and discuss second how we use bytecode manipulation to achieve unan-
ticipation.

4.1 Partial Behavioral Reflection in a Nutshell

Geppetto adopts the model of partial behavioral reflection (PBR) presented
in [11], which we hereby briefly summarize. This model consists of explicit
links binding hooksets to metaobjects (Figure 1).

activation
condition

hookset

metaobject

links

Fig. 1. Links are explicit entities bindings hooksets (at the base level) to metaobjects,
possibly subject to activation conditions.

A hookset identifies a set of related operation occurrences of interest, at the
base level. A metaobject is a standard object that is delegated control over a
partial reification of an operation occurrence at runtime. A link specifies the
causal connection between a hookset (base level) and a metaobject (metalevel).
When occurrences of operations are matched by its hookset, the link invokes a
method on the associated metaobject, passing it pieces of reified information.
Exactly which method is called, and which pieces of information are passed,

8

is specified in the link itself. So, the link specifies the expected metaobject
protocol, and the metaobject can be any object fulfilling this protocol.

Several other attributes further characterize a link, such as the control that is
given to the metaobject (i.e., that of acting before, after, or around the inter-
cepted operation occurrence). A dynamically-evaluated activation condition
can also be attached to the link, in order to determine if a link applies or not
depending on any dynamically-computable criteria (e.g., the amount of free
memory or the precise class of the currently-executing object).

As mentioned earlier, PBR achieves two main goals: (1) highly-selective reifi-
cation, both spatial (which occurrences of which operation) and temporal
(thanks to activation conditions), and (2) flexible metalevel engineering thanks
to fine-grained protocol specification and the fact that a hookset can gather
heterogeneous execution points (i.e., occurrences of different operations in
different entities).

The following short example illustrates the above definitions. Recall the slow
collaborative website mentioned in section 2. To profile this application we dy-
namically introduce a profiler with Geppetto, analyzing the method #tough-
Work which we suspect of being responsible for the performance issues.

First, we select this method by defining a hookset. This hookset also selects the
operation to be reified, in this case the evaluation of the method #toughWork:

toughWorks := Hookset inClass: ’WikiCore’ inMethod: #toughWork.
toughWorks operation: MethodEval.

Second, we specify the link which bridges the gap between the base level
(i.e., method #toughWork) and the metalevel (i.e., the metaobject, an in-
stance of class Profiler). The link also describes the call to the metaobject,
i.e., which method to invoke on the metaobject, specified by passing a meta-
level selector.

profiler := Link id: #profiler hookset: toughWorks metaobject: Profiler new.
profiler control: Control around.
profiler metalevelSelector: #profile:.

After having installed this link by executing profiler install the method #profile:
of the metaobject will be executed on every call to method #toughWork of class
WikiCore. The developer can provide an arbitrarily complex implementation
of the profiler metaobject. See section 5 for a more elaborated version of this
profiling example.

9

4.2 Bytecode Manipulation for Unanticipated Behavioral Reflection in Smalltalk

To enable unanticipated partial behavioral reflection in Squeak, the first step
is to realize the model for partial reflection as described above. As we have
seen in Section 3.1, Smalltalk (and thus Squeak) does not support behavioral
reflection properly. To introduce behavioral reflection in a system that does
not support it, we can either modify the interpreter (or virtual machine) or
transform the code of programs. Modifying the interpreter necessarily sac-
rifices portability, unless the standard interpreter is actually provided as a
sufficiently-open implementation.

As Squeak is not implemented using an open interpreter, we use the program
transformation approach. We can operate either on source code or on bytecode,
but the important point is that transformation should possibly be done while
the program is running. The most appropriate way is arguably to work on
bytecode, because it does not require the source code to be present. Squeak by
itself however does not support runtime bytecode manipulation appropriately.
Fortunately, all of the authors have been involved in ByteSurgeon, a system
for runtime bytecode manipulation in Squeak [12].

Following the principles of the implementation of Reflex for Java, we can there-
fore introduce reflective abilities via insertion of hooks into bytecode. But as
opposed to Reflex, in Squeak this can be done at runtime. Since Smalltalk
fully supports structural reflection at runtime, and ByteSurgeon extends
these structural abilities with method body transformation, we can dynami-
cally introduce selective reflective abilities in running programs.

5 Solving the Running Example with Geppetto

To illustrate the use of Geppetto, we now explain how to solve the problem
introduced in Section 2. In order to find out where the performance issue
comes from, we start by elaborating a metaobject protocol to profile the Wiki
application. Once we identified the costly methods that can be cached, we
introduce a caching mechanism with Geppetto.

5.1 Profiling MOP

Defining and introducing dynamically reflective behavior into an application
consists of three steps: The first step is the specification of the places where
metabehavior is required (e.g., in which classes and methods, for which ob-

10

jects) by configuring a hookset. In the second step the definition of the metaob-
ject protocol (e.g., which data is passed to which metaobject) is specified by
setting up one or more links. Third and finally, we perform the installation of
the defined reflective functionality.

For profiling method execution of our Wiki application, we need to define a
link, binding the appropriate hookset to a Profiler metaobject. The hookset
consists of all method evalution occurrences in all classes of the Wiki applica-
tion. Hence the hookset is defined as follows:

allExecs := Hookset new.
allExecs inPackage: ’Wiki’; operation: MethodEval.

All classes of the Wiki package are of interest, and any occurrences of a method
evaluation as well.

Now we have to specify which method of the metaobject has to be called, and
when. In order to be able to determine the execution time of a method, the
profiler acts around method evaluations, recording the time at which execution
starts and ends, and computing the execution time. The link, called profiler,
knows the metaobject to invoke, an instance of class Profiler:

profile := Link id: #profiler hookset: allExecs metaobject: Profiler new.
profile control: Control around.

x
x

x

xx

x

x

x
x

x

x
x

x
x

x x

x
x x x

xx

x
x

x x

x

x
x

Profiler metaobject

#profiler link

Wiki package

hookset

Fig. 2. The profiler hookset affects the whole Wiki application.

The profiler therefore needs to receive as parameters the selector being sent,
the class to which the method being evaluated belongs and the arguments. The
method to call on the profiler object is thus profileMethod:inClass:withArguments:.
This protocol is described by sending the following message to the profile link:

profile metalevelSelector: #profileMethod:inClass:withArguments:
parameters: {Parameter selector. Parameter methodClass. Parameter arguments}
passingMode: PassingMode plain.

The class Parameter is used to describe exactly which information should be

11

reified and how to pass it to the metalevel. See Section 6 for more information.

Profiler is a conventional Smalltalk class, whose instances are in charge of
handling the task of profiling. For the sake of conciseness, we do not explain
the implementation of such a profiler. Finally, to effectively install the link,
we just need to execute:

profile install.

and Geppetto inserts all required hooks. From now on, all method executions
in the Wiki application get reified and the Profiler metaobject starts gathering
data.

To better understand how the installed meta behavior changes the execution of
the Wiki application we present a sequence diagram depicting the execution
flow on the basis of a small example. This diagram shows how the control
flows from the main method (this code example) over the base level (the Wiki
application code) to the metalevel (the profiler object).

”editing a page”
page := WikiModel at: pageName.
page title: newTitle.
doc := DocumentParser parse: wikiText.
page document: doc.

main base level metalevel

WikiModel>>at:

WikiPage>>title:

DocumentParser>>parse:

WikiPage>>document:

page := WikiModel at: pageName

page title: newTitle

doc := DocumentParser parse: wikiText

page document: doc

Fig. 3. Execution flow in the Wiki during the editing of a page when the profiler is
installed

12

Now suppose that based on the gathered data, we determine that a particular
method is indeed taking much time: #visitPage: of our Wiki Visitor objects.
This method is responsible for building up recursively all the HTML code of
a wiki page. It fortunately happens that this method can seemingly benefit
from a simple caching mechanism. We can now completely remove the profil-
ing functionality from the Wiki, reverting to normal execution, without any
reification occurring anymore. This is achieved simply by executing:

profile uninstall.

Geppetto then dynamically removes all hooks from the application code,
hence further execution is not subject to any performance overhead.

5.2 Caching MOP

We now explain how the caching functionality is dynamically added with
Geppetto. First, we define the hookset and then the link:

toughWorks := Hookset new.
toughWorks inClass: Structure inMethod: #visitPage: operation: MethodEval.

cache := Link id: #cache hookset: toughWorks metaobject: Cache new.
cache control: Control around.
cache metalevelSelector: #cacheFor:

parameters: {Parameter arg1}
passingMode: PassingMode plain.

The only piece of information that is reified is the first argument passed to the
#visitPage: method, which is the page being visited, denoted with Parameter
arg1.

x

Cache metaobject

#cache link

Wiki package

hookset

method #visitPage:

Fig. 4. The cache hookset only affects method #visitPage:.

Cache is a Smalltalk class whose instances manage caching (based on the
single parameter value). In the #cacheFor: method, we first check if the cache
contains a value for the passed argument. If so, this value is returned by
the metaobject. Else, the metaobject proceeds with the replaced operation of

13

Page w/ cache (ms) w/o cache (ms) Optimization

Page 1 29 2758 95x

Page 2 35 8529 244x

Page 3 32 2461 77x

Table 1
Effect of the caching meta behavior for rendering one thousand times the HTML
code of three wiki pages.

the base level, takes the result answered by this operation via #proceed and
returns this value after having stored it into the cache:

cacheFor: aPage
| result |
(self cacheContains: aPage) ifTrue: [ˆself cacheAt: aPage].
result := self proceed.
self cacheAt: aPage put: result.
ˆresult

In order to be able the to proceed with the original operation the class of the
metaobject has to inherit from the generic class ProceedMO. All instances of
subclasses of ProceedMO are allowed to proceed with replaced operations.

Installing the cache is simply done by executing cache install. Geppetto in-
serts the necessary hooks in the code, and from then on, all evaluations of the
#visitPage: method are optimized by caching.

The effect of this cache is tremendous. We compare the situation with and
without this cache installed by generating one thousand times the HTML code
of three exemplary wiki pages with complex content such as links and tables. 1

Without the active caching mechanism the HTML code is completely built up
on every single visit to a wiki page, whereas otherwise the HTML code is
taken from the cache. As Table 1 shows we achieve an average optimization of
almost factor 140 with an installed cache for the result of method #visitPage:.

Although this example is pretty straightforward, it illustrates well the point of
UPBR: one can easily add reflective features at runtime, with the possibility to
completely remove them at any time. This fosters incremental and prototypical
resolution of problems such as the one we have illustrated. For instance, if
it turns out that the introduced caching is not effective enough, it can be
uninstalled, and a more elaborate caching can be devised.

1 These benchmarks were executed on a MacOS X server with an Intel Core 2 Duo
2.16 GHz processor and 1 GB of RAM.

14

5.3 Persistence MOP

An another issue of our Wiki application is the persistent storage of its data.
Currently, all the data is only stored in the Smalltalk image which is not really
fail-safe, we might loose data when the image crashes. Hence we want to store
the Wiki data persistently in a relational database. To quickly evaluate if it
is possible to use a relational database without having to change the code,
we implement an experimental storage mechanism using Geppetto. This
persistence mechanism works simply by transforming every store access to
an instance variable such as title or text in class Page to write-through the
variable’s value into a database. On every read access to such an instance
variable we access transparently the same database to get the value for the
variable from there.

We can easily select every store access to an instance variable in class Page
with the following hookset:

storeHookset := Hookset new.
storeHookset inClass: Page; operation: InstVarAccess.
storeHookset operationSelector: [:varAccess | varAccess isInstVarStore].

We simply specify a hookset affecting the whole Page (e.g., every method of
it) and selecting every instance variable access which is a store (as defined
with the operation selector).

Next we define a link taking the above hookset and specifying the metaobject
and the invocation of it:

storeLink := Link id: #storePersistence hookset: storeHookset
metaobject: DBPersistenceMO new.

storeLink control: Control after.
storeLink metalevelSelector: #storeInstVar:withValue:of:

parameters: {Parameter varName. Parameter varNewValue. Parameter self}
passingMode: PassingMode plain.

We provide a class DBPersistenceMO holding the required behavior to actu-
ally store the content of an instance variable into the database. The method
#storeInstVar:withValue:of: needs to know the name of the instance variable,
the value which is stored into, and the instance of Page in which the store
occurs (i.e., self). With this data, the metaobject is able to store the whole
content of a Wiki page transparently into a database. The code to actually
store the content of an instance variable into a database can be arbitrarily
complex. The metaobject is invoked after the original instance variable store
takes place which means that the Page object has already the correct value
stored in its instance variable when the value is written to the database.

15

x

x x

x

x

x x

x
x x

xx x

x

DBPersistence metaobject
#storePersistence link

Wiki package

hookset

#readPersistence link

Fig. 5. The persistence hookset encloses the whole Wiki application, but only affects
methods containing instance variable accesses (read or write).

To complete this example we also present the inverse of storing instance vari-
ables into the database, namely fetching the content of an instance variable
directly from the database on every read access.

First, we give the hookset definition:

readHookset := Hookset new.
readHookset inClass: Page; operation: InstVarAccess.
readHookset operationSelector: [:varAccess | varAccess isInstVarRead].

The only difference to the store version of this hookset is that we now check
for an instance variable read in the operation selector.

Second, we give the definition of the link between the readHookset and the
metaobject fetching the value of an instance variable out of a database:

readLink := Link id: #readPersistence hookset: readHookset
metaobject: DBPersistenceMO new.

readLink control: Control around.
readLink metalevelSelector: #readInstVar:of:

parameters: {Parameter varName. Parameter self}
passingMode: PassingMode plain.

As the inverse of the store link, this read link acts around the original instance
variable read access, it replaces the read access entirely and lets the metaobject
insert the value of the instance variable. The metaobject is still an instance of
class DBPersistenceMO, but this time the method #readInstVar:of: is invoked,
expecting the name of the instance variable and the Page object as parameters.
This method will query the database for the correct value of the given instance
variable.

16

This very simple persistence mechanism can already provide us with valuable
information about the efficiency and accuracy of using a relational database as
a backend for our Wiki application. Geppetto also allows the programmer to
easily experiment with other persistence mechanisms, e.g., techniques based
on XML.

6 Geppetto Design

Hookset1

Control Scope Activation
Condition

Before

BeforeAfter

After

Around

1 1 1

1

Operation

MethodEval

MsgSend

InstVarAcces

TempAcces

CallDescriptor
selector
parameters
passingMode

1
*

Link
metaobject

Fig. 6. Class diagram of Geppetto design

Geppetto instantiates the model of partial behavioral reflection previously
presented, as summarized on Figure 6. A link binds a hookset to a metaobject,
and is characterized by several attributes. A hookset specifies the operation
it matches occurrences of, which can be either MethodEval, MsgSend, Inst-
VarAccess or TempAccess. Hooksets can also be composed as will be explained
later.

Spatial selection of operation occurrences in Geppetto can be done in a num-
ber of ways, as shown in Table 2. Eventually, occurrences are selected within
method bodies (or boundaries), by applying an operation selector, i.e., a pred-
icate that can programmatically determine whether a particular occurrence is
of interest or not. Coarser levels of selection are provided to speedup the se-
lection process. First of all, one can eagerly specify the operation of which
occurrences may be of interest. Furthermore, one can restrict a hookset to a
given package, to a set of classes (using a class selector), or to a set of meth-
ods (using a method selector). Convenience methods are provided when an
enumerative style of specification is preferred.

To select for instance every class in the system whose name contains the string
’Wiki’ we use this expression:

hookset classSelector: [:class | class name includesSubString: ’Wiki’].

17

Selection Level Example

Package hookset inPackage: ’Wiki’

Class hookset classSelector: [:class |class superclass = MyClass]

hookset inClasses: { MyClass. YourClass}

Method hookset methodSelector: [:meth |meth selector = #hello]

hookset inMethods: { #hello. #bye}

Operation hookset operation: MsgSend

Operation Occurrence hookset operationSelector: [:send | send selector = #size]

Table 2
Spatial Selection in Geppetto

A class selector is evaluated for every class existing in the system, a method
selector is evaluated for all methods every selected class provides. If the above
class selector selects the classes WikiPage and WikiFolder then the following
method selector is evaluated for all methods in WikiPage as well as for all
methods in WikiFolder:

hookset methodSelector: [:meth | meth selector = #content].

To enumerate the desired classes and methods directly instead of defining a
to be evaluated predicate, one can simply pass an array of classes or methods:

hookset classes: {WikiPage. WikiFolder}.
hookset methods: {#content}.

Often it is much easier to enumerate the desired entities directly than coming
up with selectors.

Thus far, hooksets are operation-specific. Like in Reflex, Geppetto supports
hookset composition, so a hookset can match occurrences of different opera-
tions. Hooksets can be composed using union, intersection, and difference.

To get a hookset which is the union of two single hooksets, we write:

unionHookset := CombinedHookset union: hookset1 with: hookset2.

This unionHookset selects all operation occurrences that hookset1 and hookset2
together select. The other set operations are implemented in methods called
#intersection:with: and #differenceBetween:and: on the class side of Combined-
Hookset.

If some hooks of different hooksets conflict with each other, e.g., more than one

18

hookset affects a particular occurrence of a message send in a given method,
then these hooks are automatically composed by Geppetto. In a composed
hook every single hook is executed in sequence in the order of their installation
time. See section 7.3 for details about hook composition.

A Link object is created by giving an identifier, the hookset, and by specifying
how the metaobject instance(s) are to be obtained.

link := Link id: #profiler hookset: hs metaobjectCreator: [Profiler new]

The block given for the metaobject creator is evaluated to bootstrap metaob-
ject references. As a shortcut, one can directly give a metaobject instance,
instead of a block; the given instance will then be shared among entities af-
fected by the link.

A link is further characterized by several attributes:

• Control defines when the metaobject associated to the link is given control
over an operation occurrence: it can be either Before, After, BeforeAfter or
Around. BeforeAfter means that the metaobject is called before and after
the original operation, whereas Around replaces the operation. The replaced
operation then can be executed by calling proceed in the metaobject, if this
metaobject is an instance of a subclass of ProceedMO.

• Scope determines the association scheme of a metaobject with respect to
base entities. For instance, if the link has object scope, then each instance
affected by the link has a dedicated metaobject for that link. The scope can
also be class (one metaobject per class), or global (a unique metaobject for
the link).

• an ActivationCondition is a dynamically-evaluated predicate that determines
if a link is active (that is, whether reification and delegation to the metaob-
ject effectively occurs). A typical usage of an activation condition is to
obtain object-level reifications: the condition can be used as a discriminator
of instances that are affected or not by the considered link. The predicate
defining the activation condition receives the current object (i.e., the object
in which the hook is executed) as its sole parameter.

• a CallDescriptor defines the communication protocol with the metaobject. A
call descriptor embeds the selector of the message to be sent, the parameters
to pass as well as how they are passed (i.e., as plain method arguments,
packed into an array, or embedded in a wrapper object). Table 3 lists all
possible parameters depending on the reified operation.

Metaobjects have to be set differently depending on the scope attribute of the
link. The convenient methods mentioned above, #metaobject: and #metaob-
jectCreator:, are valid for global scope where the whole link has either one
metaobject, or every reflective object has its own metaobject instance. But
one can also precisely define which reflective object should have which metaob-

19

Operation Reified Data Description

All Operations context execution context

self the object

control before, after or replace

Message Send/ arguments arguments as an array

Method Evaluation argX Xthargument

sender sender object

senderSelector sender selector

receiver receiver object

selector selector of method

result returned result (after only)

Temp/InstVar Access name name of variable

offset offset of variable

value value of variable

newvalue new value (write only)

Table 3
Supported reified information

ject when using object scope. The method #setMetaobject:forObject: lets us
specify which metaobject is valid for which reflective object. Similarly one can
use method #setMetaobject:forClass: to associate dedicated metaobjects with
reflective classes when using class scope.

To specify a dynamically evaluated activation condition we can either pass
a block holding this condition or implement a subclass of Active. For com-
plex activation conditions it is recommendable to implement a dedicated class
which also enhances the possibilities to reuse the defined condition later on.
To implement such a class-based activation condition, we just need to override
#evaluate: of Active. This method expects as a parameter the current object
in which the hook is being executed. To execute a hook only if it occurs in a
certain object, (i.e., to obtain object-level reification) we provide a very simple
implementation of #evaluate::

ObjectLevelActive >> evaluate: anObject
ˆanObject = self predefinedObject.

With the following code we inform the link to use this activation condition:

link active: (ObjectLevelActive object: predefinedObject).

20

To get the same activation predicate using a block we simply write:

link activationCondition: [:object | object = predefinedObject].

The link gets asked by the hook if it is active or not. The link itself asks the
associated activation condition if it evaluates to true for the given object. If so,
the hook is further executed to reify the necessary data and to finally invoke
the metaobject. Otherwise, the hook immediately gives the execution to the
next operation.

To use the call descriptor one can create explicitly an instance of class CallDe-
scriptor:

callDesc := CallDescriptor selector: #msgSend:
parameters: {Parameter arguments. Parameter receiver}
passingMode: PassingMode array

The call descriptor defines that an array containing the arguments and the
receiver of a message send has to be passed to the method #msgSend: of
the metaobject. We install this call descriptor by invoking the link method
#callDescriptor: and passing the call descriptor object to it.

The link also provides convenience methods to implicitly create the call de-
scriptor. The following code is equivalent to the above:

link metalevelSelector: #msgSend:
parameters: {Parameter arguments. Parameter receiver}
passingMode: PassingMode array

Finally, for a link to be effective, it has to be dynamically installed by sending
the install message to it. At any time, a link can be uninstalled via uninstall.
Links have identifiers, which can be used to retrieve them from a global repos-
itory at any time (Link get: #linkID).

7 Implementation Issues

In this section we explain a crucial part of the implementation of Geppetto:
the installation of hooks in the bytecode. As explained earlier, we have to
dynamically install hooks at runtime to be able to apply reflection in an un-
anticipated manner to a running system. Therefore, we require a means to
manipulate bytecode at runtime. For that purpose we use ByteSurgeon,
a framework for runtime manipulation of bytecode in Squeak [12]. Using this
tool we do not have to work directly with bytecode. Instead we write our hooks
in normal Smalltalk code, which we then pass to ByteSurgeon. Internally,

21

ByteSurgeon will compile our code to bytecode and insert the resulting
bytecode into compiled methods.

7.1 Adapting Method Binaries

To adapt the binary code of methods, we first select the method in which we
want to change the bytecode (recall that a method is defined as the combina-
tion of a class and a selector, e.g., WikiPage>>#document). Second, we instru-
ment this method with one of the instrumentation methods added by Byte-
Surgeon to compiled methods, e.g., #instrumentSends: or #instrumentInst-
Vars:, to access all the specific operations in a method, i.e., message sends
or instance variables accesses, respectively. These instrumentation methods
expect a block as single argument. In this block we have access to a block ar-
gument which denotes the current operation occurrence object. For a message
send we get access to an instance of IRSend (this is part of the intermediate
representation on which ByteSurgeon is based [12]).

Below is a short example showing how ByteSurgeon can be used to insert a
simple piece of Smalltalk code into the method #document of class WikiPage:

(WikiPage>>#document) instrumentSends: [:send |
send selector = #size ifTrue: [send replace: ’7’]]

In this example we replace every send of the #size message occurring in the
method #document of class WikiPage to simply return the constant 7. This
example shows how to access different operations in a method (operation selec-
tion, i.e., message sending) and how to select different operation occurrences
(intra-operation selection; i.e., message sends invoking #size) in a method.

During the instrumentation of a method the defined block is evaluated for
every such operation in that method. To do intra-operation selection it is
enough to specify a condition in the block, such as asking if the selector of an
IRSend is of interest. Only if this condition is met the corresponding operation
occurrence is adapted, either by replacing it or by inserting code before or
after it. The code to be inserted is written as normal Smalltalk code directly
in a string. In this string we can refer to dynamic information by using meta
variables, such as <meta: #receiver> or <meta: #arguments> to reference
respectively the receiver or the arguments of a method (more in [12]).

22

7.2 Structure of a Hook

In Geppetto, hooks are inserted in bytecode to provoke reification and del-
egation at runtime, where and when needed. The execution of a hook is a
three-step process:

• It checks if the link is active for the currently-executing object;
• It reifies dynamic information and packing this information as specified by

the call descriptor of the link;
• It performs the actual delegation to the metaobject, by sending the message

specified in the call descriptor, with the corresponding reified information.

When a link has to be installed, Geppetto evaluates the static selectors
(package, class, method, etc.) and then generates an appropriate string of
Smalltalk code based on the specification of the call descriptor of the link.
This string is then compiled and inserted by ByteSurgeon. For instance,
for the cache link of Section 5.2, the generated Smalltalk code is:

(<meta: #link> isActiveFor: self)
ifTrue: [<meta: #link> metaobject cacheFor: <meta: #arg1>].

First, the activation condition is checked. Note that the link itself is available
as a meta variable for ByteSurgeon. If the link is active for the currently-
executing object, then second delegation occurs: the metaobject is retrieved
from the link, and the #cacheFor: message is sent with the first argument as
parameter. Step two and three, reifying dynamic information and performing
the delegation to the metaobject, occurs in one and the same line of code
by defining a message send whose arguments are the reified information and
whose receiver is the metaobject.

The exact string generated depends on the call descriptor defining the message
name, parameters, and passing mode. For instance, if the passing mode is by
array, it is necessary to first build up the array explicitly in the hook. The
generated code also depends on the scope of the link (e.g., if the link has
object scope, then retrieving the metaobject requires passing the currently-
executing object).

The following code denotes the hook code to send a method to the metaobject
when using object scope and array passing mode:

(<meta: #link> metaobjectForObject: self) cacheMsgSend:
(Array with: self with: <meta: #selector>

with: <meta: #receiver> with: <meta: #arguments>)

23

To cache a message send with a dedicated metaobject for every base level
object in which this message send occurs, we opt for object scope. The hook
hence asks the link for the metaobject associated with the current executing
object. The metalevel message is then sent to the obtained metaobject. The
single argument expected by this message is an array which is explicitly built
up in the hook. To access the different reifications required, e.g., selector,
receiver and arguments, we have again used the meta variables of Byte-
Surgeon.

Note that we optimized the look up of the metaobject by storing it automat-
ically into an instance variable for the current executing object when using
object scope. Subsequent executions of the same hook or of another hook oc-
curring in the same object can then simply read the metaobject from this
instance variable which avoids costly look ups of metaobjects in a dictionary.
Metaobjects are only valid for one single link, hence these metaobject instance
variables are specific to a certain link to make sure that more than one link
can affect a given base level object. A similar optimizing mechanism also exists
for class scope where metaobjects are not stored in instance variables, but in
class variables.

The complete hook for the more complex cache example above has the follow-
ing structure:

(<meta: #link> isActiveFor: self) ifTrue: [
(<meta: #link> metaobjectForObject: self) cacheMsgSend:

(Array with: self with: <meta: #selector>
with: <meta: #receiver> with: <meta: #arguments>)]

ifFalse: [<meta: #proceed> value]

If the link is not active for the current executing object the original operation
has to be executed as denoted in the false predicate. The proceed statement
continues the execution of the original operation around which the installed
hook acts.

The proceed statement provided by ByteSurgeon is also used for the re-
sumable metaobjects presented in Section 5.2. To be able to proceed with
the original operation in the metaobject Geppetto passes the value of the
proceed statement (e.g., a message send or an instance variable access) to the
metaobject. This proceed value is stored in the instance variable proceed of
the metaobject. By sending the message #proceed to a resumable metaobject,
a subclass of ProceedMO, this proceed value is evaluated and the execution of
the original operation is triggered, i.e., proceeded. Note that only metaobjects
that act around a base level operation can proceed with the original operation.

24

7.3 Hook Composition

If more than one hookset is installed in a given application, some hooks of
different hooksets may conflict with each other, for instance if two hooksets
affect the same message send of a given method. Geppetto is capable of
detecting and resolving such a conflict automatically at runtime during the
installation of every new link.

Detecting a hook conflict is a two-step process: First, Geppetto determines
for every link that is being installed, if another link also manipulates a given
method, i.e., if metalevel behavior is already installed in this method. Gep-
petto holds a global repository containing all installed links with a list of the
affected classes and methods for each link. Querying this repository results in
a collection of links affecting a given method. Second, Geppetto analyzes
every instruction of a method to find out where exactly in the method body
more than one link does install a hook. Concretely, the hook installer iterates
over every instruction of such a method and tests for every conflicting link if
it manipulates the current instruction. The following code illustrates this:

conflictingLinks do: [:eachLink |
(method ir allInstructionsMatching: eachLink hookset operationSelector) do: [:instr |

”this instruction is manipulated by the given link”
self addLinkToRepository: eachLink forInstr: instr.

].

As soon as the hook installer has detected all the instructions conflicting with
already installed links as described above, it solves the conflict by collecting
first all the hooks manipulating a given instruction. Second, all these collected
hooks are installed in sequence before, after or instead of the original instruc-
tion, depending on the control attribute specified in the link. The order in the
sequence is determined by the installation time of the conflicting links, the
first installed link will be installed first.

Note that there is not always a conflict when two links manipulate the same
instruction of a method. If one link e.g., executes metalevel behavior before
the original instruction and the second one afterwards then these links do not
conflict at this instruction. Hence the conflict detection algorithm has to take
into account the controls of the links.

Finally, note that Geppetto adopts a simple automatic composition strat-
egy; future work may include considering more advanced link composition
strategies as supported by Reflex [24].

25

System slowdown factor

Geppetto 10.85

Iguana/J 24

MetaclassTalk 20
Table 4
Slowdowns of different reflective systems for the reification of message sends.

8 Evaluation

We now report on preliminary micro-benchmarks that validate the perfor-
mance of Geppetto by comparing it with other reflective frameworks and
architectures. Subsequently we conduct a more complex benchmark measur-
ing the efficiency of the profiler we presented in Section 5.1 by comparing the
execution of some test suites of the Wiki application with and without the
profiler being installed in the Wiki.

8.1 Micro-Benchmarks

For the first micro-benchmark we measure the slowdown of a fully reified mes-
sage send over a non-reified message send. In Table 4 we compare the reflective
systems Iguana/J [5], and MetaclassTalk [25] to Geppetto. The measure-
ment for Iguana/J was taken from [5]. For MetaclassTalk and Geppetto, we
performed the benchmarks on a Windows PC with an Intel Pentium 4 CPU
3.4 GHz and 3 GB RAM. The version of MetaclassTalk used was v0.3beta,
Geppetto was running in Squeak 3.9. For a more detailed explanation and
the source code of the benchmark, see [26].

We are comparing systems to Geppetto that do not provide partial reflec-
tion. As previously mentioned, the real performance gain of partial reflection
arises from the fact that we are able to exactly control what to reify and thus
are able to minimize the reification costs. This benchmark does not cover this
use but lets Geppetto reify every information about a message send to be
comparable with the other systems. The benchmark will thus only give an
impression of the worst case, i.e., when Geppetto is doing full reification of
a message send.

Because Iguana/J uses Java, we cannot directly compare its execution times
with those of Geppetto. So we performed such a comparison with Meta-
classTalk, since both Geppetto and MetaclassTalk are running in the same
environment. We implemented for the operations message sending and in-
stance variable access the same metaobject protocol and the same behavior at

26

MetaclassTalk (ms) Geppetto (ms) Speedup

message send 108 46 2.3x

instance variable read 272 92 2.9x

Table 5
Speedup of Geppetto over MetaclassTalk for reified message send and instance
variable read access.

the metalevel in both proposals to be able to compare the resulting execution
time. The measured execution time includes the reification as well as the pro-
cessing of the metalevel behavior. For message sending we reify the receiver,
the selector and the arguments, for instance variable access the name of the
variable and its value. Table 5 presents the results of the benchmark. The
Windows PC mentioned above was also used to execute this benchmark. For
both operations, message send and instance variable access, we reified almost
every possible information in Geppetto to get a reliable comparison with
MetaclassTalk which does not support controlling which information should
be reified, as described in Section 3.2. Hence Geppetto will perform even
better than the 2-to-3 times speedup compared with MetaclassTalk in cases
where not all information about an operation occurrence is required.

The reason why Geppetto is so much faster than MetaclassTalk lies in the
underlying mechanisms. MetaclassTalk wraps every method (using Method-
Wrappers [22]) by default to allow all message receives to be reified even when
called from a class not under the control of MetaclassTalk. Geppetto on the
other hand does not try to provide reified massage reception in this case, as
we requested only a reification of message sending.

8.2 Benchmarking the Profiler

We conducted a third benchmark denoting the general slowdown caused by
reflective behavior introduced with Geppetto. We go back to the Wiki exam-
ple of Section 5.1 where we installed a profiler in this application and compare
now the execution times of the Wiki test suite with and without the profiler
being active. The test suite contains 131 unit tests. The profiler itself acts
around every method evaluation in the Wiki parts Structure as well as Visitor
and measures the time required to execute the methods in these packages by
stopping the time before and after the execution of the methods. The execu-
tion of the original method is triggered in the profiler metaobject by using the
proceed statement explained in Section 5.2. The obtained execution time is
then stored in a dictionary with the profiled methods as a key and a collec-
tion of measured times as value. As denoted in Section 5.1 we only reify the
selector, the arguments and the class to which the method belongs and pass

27

Test suite # tests w/ profiler (ms) w/o profiler (ms) Slowdown

Structure tests 111 661 76 8.7x

Decoration tests 20 23 8 2.9x

Table 6
Overall slowdown caused by the profiler in the metalevel

this information in plain mode to the profiler.

Table 6 contains the results obtained by running the benchmark on the Wiki
server also used in Section 5.2 to measure the efficiency of the caching meta
behavior. Clearly, the active profiler causes a slowdown between factor 3 and
8. Further benchmarks show that more than 50% of this slowdown is caused
by the execution of the profiling code itself, which means that the reification
and the invocation of the metaobject is not as much responsible for the high
costs of this metalevel profiler as the profiler implementation itself.

These preliminary benchmarks tend to validate that the applied model for
partial behavioral reflection is efficient compared to other models. Hence the
combination of PBR and UBR is indeed fruitful and successful, because UPBR
enables us to use unanticipated reflection in an efficient and effective manner.

9 Future Work

In the future, we plan to focus mainly in two directions: first, we plan to im-
prove Geppetto itself, the second is to explore its usefulness by integrating
it in a variety of applications. As far as improvements to Geppetto itself are
concerned, we plan to explore advanced scoping for reifications (control-flow
based, and more generally, contextual) to give the metaprogrammer even more
means to control where and when reification should occur [27–29]. Another
track is to redesign the underlying mechanisms of Geppetto to install reflec-
tive behavior: we decided to use bytecode transformation as we could leverage
the fast and easy-to-use ByteSurgeon framework. However bytecode is a
very low-level representation means to trade performance with expressiveness.
We plan to extend the Smalltalk structural meta model to provide a high-level
model of sub-method structure and explore its use for Geppetto. We are cur-
rently working on a number of projects that could benefit from Geppetto.
We have experimented with back-in-time debugging [30], but our prototype
uses ByteSurgeon directly [31,32]; we plan to explore how Geppetto can
be used instead.

Another interesting application is to use Geppetto as the basis for dynamic
analysis [33]. We propose in [34] to use Geppetto as an abstraction layer

28

for dynamic analysis tools. The positive effect is twofold: on the one hand it
provides us with a standard API for all dynamic analysis based tools to use,
on the other hand it allows the tool developer to abstract from the actual
implementation technique.

Furthermore, we want to extend Geppetto so that it not only supports be-
havioral but also structural reflection by extending it with interfaces to the
standard model for structural reflection in Smalltalk. Having the means in
Geppetto to perform structural analysis or modifications on running appli-
cations completes the reflective support of our framework and allows the user
to do both structural and behavioral reflection with the same interface in the
same framework.

We consider mechanisms that are currently available to select which operations
to be reified as inadequate. We think we can improve current APIs and in
addition to that we plan to provide a language to select operations, related to
the current work done in Reflex [35] and other systems like JTL [36] or InjectJ
[37]. A related project for Geppetto is to study the usefulness of a graphical
interface to insert hooks into a running application by selecting operations and
operation occurrences interactively. The same graphical environment should
also be capable of presenting information about currently installed reflective
behavior in base level entities to gain a certain degree of overview about the
current reflective status the application and the system itself is in.

Finally, we plan to explore dynamic aspects for Smalltalk with Geppetto.
Because as argued in the body of the work on versatile kernels for AOP [23,38],
the flexible model of partial behavioral reflection on which both Reflex and
Geppetto are based is particularly well-suited to serve as an underlying
infrastructure for AOP. This would then allow Geppetto to provide more
elaborate AOP features than what the other known dynamic AOP systems
for Smalltalk [39,40] do at present.

10 Conclusion

In this paper, we have motivated a particular form of computational reflec-
tion, called unanticipated partial behavioral reflection, which is particularly
well-suited to unanticipated adaptation of real-world systems. Our proposal
combines the dynamicity of unanticipated reflection, i.e., reflection that does
not require preparation of the code of any sort, and the selectivity, efficiency
and flexibility of partial behavioral reflection. We pointed out how well the ad-
vantages of partial behavioral reflection, i.e., the precise selection of required
reifications or the flexible means to engineer the metalevel, can be combined
with unanticipated reflection where the meta behavior is introduced dynam-

29

ically. We have presented a system for unanticipated partial behavioral re-
flection in Squeak, called Geppetto. We illustrated its use with a concrete
example of a Seaside web application which profited in several areas of the
use of unanticipated partial behavioral reflection. Preliminary benchmarks
validate the applicability of our proposal as an extension to the standard re-
flective abilities of Smalltalk. Intended future work on the proposed model
and system will probably direct our work inter alia to a promising dynamic
AOP system in Smalltalk.

Acknowledgments. We thank Stephane Ducasse, Oscar Nierstrasz, Orla
Greevy, Lukas Rengli and the anonymous reviewers for their comments.

References

[1] Röthlisberger, D., Denker, M., Tanter, É.: Unanticipated partial behavioral
reflection. In: Advances in Smalltalk — Proceedings of 14th International
Smalltalk Conference (ISC 2006). Volume 4406 of LNCS., Springer (2007) 47–65

[2] Gamma, E., Helm, R., Vlissides, J., Johnson, R.E.: Design patterns: Abstraction
and reuse of object-oriented design. In Nierstrasz, O., ed.: Proceedings ECOOP
’93. Volume 707 of LNCS., Kaiserslautern, Germany, Springer-Verlag (1993)
406–431

[3] Rao, R.: Implementational reflection in Silica. In America, P., ed.: Proceedings
ECOOP ’91. Volume 512 of LNCS., Geneva, Switzerland, Springer-Verlag
(1991) 251–267

[4] Kiczales, G., Ashley, J., Rodriguez, L., Vahdat, A., Bobrow, D.G.: Metaobject
protocols: Why we want them and what else they can do. In: Object-Oriented
Programming: the CLOS Perspective. MIT Press (1993) 101–118

[5] Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of
application behaviour. In: Proceedings of European Conference on Object-
Oriented Programming. Volume 2374., Springer-Verlag (2002) 205–230

[6] Tarr, P.L., D’Hondt, M., Bergmans, L., Lopes, C.V.: Workshop on aspects and
dimensions of concern: Requirements on, and challenge problems for, advanced
separation of concerns. In Malenfant, J., Moisan, S., Moreira, A.M.D., eds.:
ECOOP 2000 Workshops. Volume 1964 of LNCS., Springer (2000) 203–240

[7] Smith, B.C.: Reflection and semantics in a procedural language. Technical
Report TR-272, MIT, Cambridge, MA (1982)

[8] Ferber, J.: Computational reflection in class-based object-oriented languages.
In: Proceedings OOPSLA ’89, ACM SIGPLAN Notices. Volume 24. (1989) 317–
326

30

[9] Maes, P.: Computational Reflection. PhD thesis, Laboratory for Artificial
Intelligence, Vrije Universiteit Brussel, Brussels Belgium (1987)

[10] McAffer, J.: Engineering the meta level. In Kiczales, G., ed.: Proceedings
of the 1st International Conference on Metalevel Architectures and Reflection
(Reflection 96), San Francisco, USA (1996)

[11] Tanter, É., Noyé, J., Caromel, D., Cointe, P.: Partial behavioral reflection:
Spatial and temporal selection of reification. In: Proceedings of OOPSLA ’03,
ACM SIGPLAN Notices. (2003) 27–46

[12] Denker, M., Ducasse, S., Tanter, É.: Runtime bytecode transformation for
Smalltalk. Journal of Computer Languages, Systems and Structures 32 (2006)
125–139

[13] Ducasse, S., Lienhard, A., Renggli, L.: Seaside — a multiple control flow
web application framework. In: Proceedings of 12th International Smalltalk
Conference (ISC’04). (2004) 231–257

[14] Renggli, L.: Magritte — meta-described web application development. Master’s
thesis, University of Bern (2006)

[15] Goldberg, A., Robson, D.: Smalltalk 80: the Language and its Implementation.
Addison Wesley, Reading, Mass. (1983)

[16] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future:
The story of Squeak, A practical Smalltalk written in itself. In: Proceedings
OOPSLA ’97, ACM SIGPLAN Notices, ACM Press (1997) 318–326

[17] Bouraqadi, N.: Un MOP Smalltalk pour l’étude de la composition et de la
compatibilité des métaclasses. Application à la programmation par aspects (A
Smalltalk MOP for the Study of Metaclass Composition and Compatibility.
Application to Aspect-Oriented Programming - In French). Thèse de doctorat,
Université de Nantes, Nantes, France (1999)

[18] Bouraqadi, N.: Safe metaclass composition using mixin-based inheritance.
Journal of Computer Languages, Systems and Structures 30 (2004) 49–61

[19] Bouraqadi, N., Seriai, A., Leblanc, G.: Towards unified aspect-oriented
programming. In: Proceedings of 13th International Smalltalk Conference
(ISC’05). (2005)

[20] Rivard, F.: Smalltalk: a reflective language. In: Proceedings of REFLECTION
’96. (1996) 21–38

[21] Ducasse, S.: Evaluating message passing control techniques in Smalltalk.
Journal of Object-Oriented Programming (JOOP) 12 (1999) 39–44

[22] Brant, J., Foote, B., Johnson, R., Roberts, D.: Wrappers to the rescue. In:
Proceedings European Conference on Object Oriented Programming (ECOOP
1998). Volume 1445 of LNCS., Springer-Verlag (1998) 396–417

31

[23] Tanter, É., Noyé, J.: A versatile kernel for multi-language AOP. In: Proceedings
of the 4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering (GPCE 2005). Volume 3676 of LNCS., Tallin,
Estonia (2005)

[24] Tanter, É.: Aspects of composition in the Reflex AOP kernel. In Löwe, W.,
Südholt, M., eds.: Proceedings of the 5th International Symposium on Software
Composition (SC 2006). LNCS 4089, Vienna, Austria, Springer (2006) 98–113

[25] Bouraqadi, N.: Concern oriented programming using reflection. In: Workshop
on Advanced Separation of Concerns — OOPSLA 2000. (2000)

[26] Röthlisberger, D.: Geppetto: Enhancing Smalltalk’s reflective capabilities with
unanticipated reflection. Master’s thesis, University of Bern (2006)

[27] Nierstrasz, O., Denker, M., Gı̂rba, T., Lienhard, A.: Analyzing, capturing
and taming software change. In: Proceedings of the Workshop on Revival of
Dynamic Languages (co-located with ECOOP’06). (2006)

[28] Nierstrasz, O., Bergel, A., Denker, M., Ducasse, S., Gaelli, M., Wuyts, R.:
On the revival of dynamic languages. In Gschwind, T., Aßmann, U., eds.:
Proceedings of Software Composition 2005. Volume 3628., LNCS 3628 (2005)
1–13 Invited paper.

[29] Tanter, É.: On dynamically-scoped crosscutting mechanisms. In Kniesel, G.,
ed.: Proceedings of the European Workshop on Aspects in Software (EWAS
2006), Twente, The Netherlands, Technical Report IAI-TR-2006-6, University
of Bonn, Germany (2006) 18–22

[30] Lewis, B.: Debugging backwards in time. In: Proceedings of the Fifth
International Workshop on Automated Debugging (AADEBUG 2003). (2003)

[31] Hofer, C., Denker, M., Ducasse, S.: Design and implementation of a backward-
in-time debugger. In: Proceedings of NODE’06. Volume P-88 of Lecture Notes
in Informatics., Gesellschaft für Informatik (GI) (2006) 17–32

[32] Hofer, C.: Implementing a backward-in-time debugger. Master’s thesis,
University of Bern (2006)

[33] Ball, T.: The concept of dynamic analysis. In: Proceedings European Software
Engineering Conference and ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (ESEC/FSC 1999). Number 1687 in
LNCS, Heidelberg, Springer Verlag (1999) 216–234

[34] Denker, M., Greevy, O., Lanza, M.: Higher abstractions for dynamic analysis.
In: 2nd International Workshop on Program Comprehension through Dynamic
Analysis (PCODA 2006). (2006) 32–38

[35] Tanter, É.: An extensible kernel language for AOP. In: Proceedings of AOSD
Workshop on Open and Dynamic Aspect Languages, Bonn, Germany (2006)

32

[36] Cohen, T., Gil, J.Y., Maman, I.: JTL: the Java tools language. In: OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented
programming languages, systems, and applications, New York, NY, USA, ACM
Press (2006) 89–108

[37] Genßler, T., Kuttruff, V.: Source-to-source transformation in the large.
In: Modular Programming Languages, Joint Modular Languages Conference,
JMLC 2003. Volume 2789 of Lecture Notes in Computer Science., Springer
(2003) 254–265

[38] Tanter, É., Noyé, J.: Motivation and requirements for a versatile AOP kernel.
In: 1st European Interactive Workshop on Aspects in Software (EIWAS 2004),
Berlin, Germany (2004)

[39] Bergel, A.: FacetS: First class entities for an open dynamic AOP language. In:
Proceedings of the Open and Dynamic Aspect Languages Workshop. (2006)

[40] Hirschfeld, R.: AspectS — aspect-oriented programming with Squeak. In Aksit,
M., Mezini, M., Unland, R., eds.: Objects, Components, Architectures, Services,
and Applications for a Networked World. Number 2591 in LNCS, Springer
(2003) 216–232

33

