
Representing and Integrating Dynamic Collaborations in IDEs∗

David Röthlisberger and Orla Greevy
Software Composition Group, University of Bern, Switzerland

{roethlis, greevy}@iam.unibe.ch

Abstract

Static views of object-oriented source code as presented
in a development environment (IDE) do not provide explicit
representations of dynamic collaboration to describe how
source artifacts communicate at runtime. Direct access
within an IDE to explicit representations of dynamic col-
laborations would provide developers with useful insights
into a system’s behavior. In this paper we describe how
we seamlessly integrate novel interactive visual representa-
tions of dynamic collaborations between static artifacts to
complement traditional static concepts within the IDE. We
motivate our work and introduce our enhancements in our
prototype IDE (Hermion) and provide validation for our
work by means of case studies and benchmarks.

Keywords: dynamic analysis, dynamic collaborations,
development environments, partial behavioral reflection,
program comprehension

1 Introduction

Object-oriented system behavior stems from the dy-
namic cooperation of interacting classes and methods, thus
source code browsing alone does not answer many of
the questions about how an object-oriented system be-
haves at runtime. There is a lack of solid support for be-
havioral information within existing development environ-
ments (IDEs), forcing developers to maintain a mental map
of the dynamic relationships between source artifacts.

A common practice of object-oriented software develop-
ment is to incorporate documented design patterns to solve
well-known, recurring design problems. Design patterns
are a kind of “micro architectures” consisting of static pro-
gram artifacts and dynamic collaborations between them.
The Chain of Responsibility pattern, for example, processes
a series of objects, involving several different static source
artifacts whose dynamic interaction is often difficult to re-
veal from the source code. While patterns may increase the

∗In: Proceedings of the 15th Working Conference on Reverse Engineer-
ing (WCRE), 2008

flexibility of the system, they usually also introduce a level
of complexity, making a system even more difficult to un-
derstand just by static source code browsing.

Developers typically focus on specific static artifacts,
e.g., key classes which they have identified as relevant for
their current task, and have a need to study their dynamic re-
lationships while source code browsing. Immediate access
to visualizations of dynamic class relationships that evolve
in synch with the static artifacts would provide the devel-
oper with the missing behavioral information.

IDEs such as Eclipse [4] provide plugins to generate vi-
sual representations of a system’s behavior (e.g., UML se-
quence diagrams). These are usually restricted to providing
pure snapshot visualizations and lack interactive capabili-
ties to support navigation directly within the IDE. To of-
fer real added value to a developer, we believe that visu-
alizations should provide a means to navigate through and
browsing the source code of collaborating artifacts.

In a previous work [11] we argued the importance of hav-
ing runtime information embedded in the source code view
of the IDE to understand dynamically-typed object-oriented
software systems, e.g., by integrating dynamic type infor-
mation for variables directly into the source code. In this
work we go one step further: we propose the introduction
of dynamic collaboration representations that are readily ac-
cessible in the IDE as interactive, navigable views. We fo-
cus on three key research questions:

• Why is it crucial to understand how source artifacts
dynamically communicate from within the IDE?

• How can we achieve the immediate availability of dy-
namic information in the IDE?

• How do we browse and reason about dynamic collab-
orations in an IDE?

We address these questions in detail in Section 2. In Sec-
tion 3 we contribute our working prototype IDE Hermion,
to illustrate how to represent, visualize and navigate dy-
namic collaborations directly in the IDE. In Section 4
we validate the efficiency of this approach by conducting
benchmarks. We provide an overview of related work in the
context of our work in Section 5 and conclude in Section 6.



displayOn:

display:on:

display:on:
displayOn:

display:on:

display:on:

:Graph :Undefined
Object

:Element :Rectangle
Shape

:Extent

display:on:

Figure 1. Sequence diagram in Mondrian to
display a graph.

2 Hidden Dynamic Collaboration

The dynamics of object-oriented software systems are
hidden in IDEs. To highlight this, we take as example the
task of trying to understand a concrete incarnation of the
Chain of Responsibility design pattern in one of our case
study systems, Mondrian [8], a graph rendering software.
To fully comprehend the workings of this pattern, the de-
veloper needs to understand how the delegation between the
participating objects works at runtime.

To define a graph of nodes and edges in Mondrian, a
developer specifies the layout and styles of nodes and how
they are connected to each other with edges.

IDEs can often generate UML class diagrams from
source code. The class diagram reveals that Mondrian has
a generic design around a central class Element. The entire
graph is a subclass of Element as are nodes and edges. Dif-
ferent styles applied to nodes are composed and arranged in
a Chain of Responsibility. After being applied, the first style
passes to the next style in the chain until all of the defined
styles have been applied. As an element can be a graph, a
node or an edge, it is virtually impossible to tell from read-
ing the code what methods are actually invoked at runtime.
Elements can also have children, e.g., in a class hierarchy
graph the subclasses of a given class are modeled as child
elements of the element representing that class.

The actual dynamics of Mondrian displaying a graph is
illustrated in the sequence diagram in Figure 1: To render
the whole graph the method Element � displayOn: canvas
is invoked on the graph object. This method triggers the
traversing of the chain of styles. The last style in this chain
triggers the displaying of the element itself, i.e., invoking
method Element � display: element on: canvas which it-
erates over all children of that element and invokes method
Element � displayOn: canvas on them. The style of the

graph itself is undefined. An instance of UndefinedObject
hence directly invokes display: element on: canvas to it-
erate over the graph’s children. Revealing the interplay of
graph, nodes and styles together at runtime is not feasible by
studying a static class diagram or by reading source code,
in particular as both, graph and elements, are simply called
element in the source code. Moreover, it is not obvious
that relevant behavior is implemented in UndefinedObject
intended to be invoked if an element’s style is undefined.

This Mondrian example is typical of the type of chal-
lenges a developer faces when trying to reverse-engineer
a system within the IDE. Relevant source entities may be
identified but it is difficult to see how the static artifacts in-
teract at runtime, as the dynamics of source entities, e.g.,
collaboration between objects, are not explicitly available
in IDEs.

IDE plugins for generating sequence diagrams exist, but
they do not offer a means to browse and navigate the source
artifacts to which the refer, as they are not embedded in
IDEs. They also fail to provide the information immedi-
ately after system’s execution. Moreover, sequence dia-
grams generally cannot deal with large amounts of runtime
data.

3 Representing Dynamic Collaboration in
the IDE

To represent dynamic collaboration in the IDE, we first
need to execute the system to collect runtime information.
Then we empower developers to reason about the runtime
information within the IDE by representing the dynamic in-
formation as interactive and navigable views. Developers
select arbitrary static artifacts within the IDE, e.g., several
classes of an application, whose dynamic collaboration they
need to comprehend for a given usage scenario. Develop-
ers then execute the system (exercising specific features of
interest), and the IDE takes care of the dynamic data collec-
tion and immediately presents this data in form of views to
developers.

3.1 Collecting Dynamic Information

Analyzing the runtime behavior of applications using
tracing tools is time-consuming and generates large amount
of data making such tools inappropriate for integration in
IDEs. Developers require immediate benefit from the re-
sults of dynamic analyzes. Partial behavioral reflection
overcomes these problems as it supports fine-grained selec-
tion of dynamic parts of a system on which to reflect.

We build our approach on the Reflectivity framework pre-
sented in the work of Denker [2]. Internally, this framework
represents method source code by an abstract syntax tree
(AST).

2



The developer triggers the dynamic analysis of the enti-
ties of interest directly from within Hermion and then runs
the system, either using recorded scripts such as test cases
or by directly running the system as an end-user. Reflec-
tive behavior, which is introduced into the binary of meth-
ods, collects information about every message send occur-
ring within the selected entities. For more details of how
we build our IDE enhancements on partial behavioral re-
flection, we refer the reader to our previous work [12].

3.2 Explicit Dynamic Collaboration

Hermion, our prototype IDE encompassing dynamic in-
formation, enables the developer to browse dynamic col-
laborations between static source artifacts as soon as any
dynamic information has been gathered. We refer to the
tool that supports browsing and analysis of dynamic collab-
oration as the interactive collaboration chart. We embed
these charts tightly in the IDE so they are directly accessi-
ble to a developer working on the source code: In the case
of our Mondrian example, a developer selects the static en-
tities of interest, e.g., class Graph, Element and Style to ob-
serve their dynamic behavior, exercises specific features of
Mondrian, and even while the system is running, she can
open an interactive collaboration chart showing the dy-
namic communication occurring between instances of the
selected classes.

3.2.1 Interactive Collaboration Charts

In this section we describe the details of our Interactive Col-
laboration Charts. All our views are graph representations
of dynamic collaborations at different levels of granularity.
Their interactive capabilities support navigation of source
code artifacts. Furthermore we map information (e.g., num-
ber of message sends) to edges and nodes, similar to the
polymetric views for visualizing runtime information de-
scribed in the work of Ducasse et al. [3].

Class Collaboration Chart. This chart (see Figure 2) is
conceptually similar to UML’s sequence diagram. It dis-
plays how messages are passed between classes. As se-
quence diagrams do not scale for larger applications with
a deep nesting level of message sending involving many
classes, we condense the information in the collaboration
chart to show each message sent between selected classes
only once. We take into account indirect communication,
i.e., if class A sends a message to a not selected class, but
this class sends a message to any selected class, we show
a dashed line between the two selected classes denoting in-
direct communication. The order of message sends is not
preserved in this view (the same message send between two
classes is displayed as one single edge, not matter how of-
ten it occurs). As a result the collaboration chart does not

become too cluttered even with large systems. To further
compress the dynamic information we adopt an approach
similar to that described by Hamou-Lhadj and Lethbridge
[5]: we ignore repeated message sends occurring as a result
of loops or recursions when calculating the message send
frequency. The views guide the developer to understand
how selected artifacts interplay at runtime without being
confronted with too much information.

In our Mondrian example, performed by the three classes
Graph, Element and Style, we show the interactive col-
laboration chart in Figure 2. All messages exchanged by
these classes, including UndefinedObject, are visually rep-
resented. The developer can convert the whole chart into an
UML sequence diagram or select a specific message send
and open a new class collaboration chart with this message
send as a starting point. Additionally, it is also possible to
open an interactive collaboration chart on a specific method,
i.e., seeing all collaboration between this method and other
methods. Clicking on the edge #displayOn: leaving Graph
for instance brings up the method collaboration chart shown
in Figure 3.

Package and Method Collaboration Chart.
We provide a big picture view of dynamic collaboration

at the package level, typically representing the entire sys-
tem, if necessary even including system packages. The de-
veloper can study the collaboration between any two pack-
ages by clicking on the edge between the two packages to
discover which classes actually communicate to each other.
It is then possible to open a Class Collaboration Chart on
any two collaborating classes to study the collaboration on
a message sending level.

To reason about communication on a method level, we
use a method collaboration chart focusing on a particular
method. This graph shows all messages sent from within
this method as edges that invoke other methods. Figure 3
presents the method collaboration chart for the method Ele-
ment � displayOn: canvas of our Mondrian example.

A key characteristic of our collaboration charts is that
they are interactive and support browsing within the IDE.
Clicking on any class in a class collaboration chart opens
this class in source code. By clicking on a message send be-
tween two classes (i.e., an edge) the user can, for example,
see all methods being invoked by this send or open method
collaboration charts having the invoked method as a root.

Additional dynamic information is available on demand
in collaboration charts, e.g., the average execution time of a
message send, the number of times a message has been sent,
or the number of instances of a class. Such information may
prove useful to assess or identify performance bottlenecks.
We also provide visual means to quickly identify frequent
communication paths by displaying the edges in this path
thicker, as shown in Figure 3. Finally, the charts are dy-
namically modifiable, i.e., the developer can for instance

3



Figure 2. Integration of a class collaboration chart in the Squeak Smalltalk IDE

Figure 3. Method Collaboration Chart generated by the IDE

remove static artifacts from the chart or add additional ar-
tifacts (e.g., classes) that should also be taken into account
when rendering the chart.

In the following, we explain how these charts are tightly
embedded in the IDE, i.e., how these charts integrate with
the static view on source artifacts such as packages, classes
or methods.

3.3 Enhancing Existing IDE Tools

Typically, an IDE provides means to browse source code
entities in a top-down manner, i.e., going down from pack-
ages, classes to single methods, e.g., by using a tree view.
In the Squeak Smalltalk IDE [6] packages, classes, method
categories and methods are navigated in columns in this or-
der, as visible in Figure 2. We enhance this source code
view in Squeak Smalltalk with a means to select several
static artifacts of the same kind. The IDE instruments these
selected entities on demand with partial behavioral reflec-
tion as described in Section 3.1 to gather dynamic informa-
tion, without having to halt the system if it is already run-
ning. The developer then exercises a feature of interest in
the system or runs a particular test case to generate runtime
data. Within the IDE the developer chooses the class col-
laboration chart to view this chart based on the previously

gathered information.
Such a scenario is illustrated in Figure 2 where the

classes Graph, Element and Style have been selected. After
the program, i.e., Mondrian, has been executed, selecting
the tab “Class Collaboration” brings up the class collabora-
tion chart for these three classes

In all charts, static artifacts are navigable, e.g., select-
ing a class opens this class in parallel to the chart, or click-
ing on edges in class charts brings up the method being in-
voked. These artifacts are modifiable using editors. Mod-
ifying source code marks all charts involving this source
code as obsolete, i.e., these charts need to be updated by a
new run of the system.

4 Validation

We validate our approach by reporting on the efficiency
and performance of the dynamic information gathering and
the generation of the charts.

We ran a benchmark evaluating the generation of Class
Collaboration Charts: First, we selected the three classes
of our Mondrian example, (Element, Style and Graph), to
generate a chart highlighting how these classes interact at
runtime. To collect runtime data, we let Mondrian generate
ten complex graphs each with a hundred nodes. We mea-

4



Action Measured time (ms)
Execution w/o data collecting 7246
Execution w/ data collecting 20725 (overhead 186%)

Chart rendering 0.2

Figure 4. Time to gather data and render a
class collaboration chart for Mondrian

sured the time to execute our scenario once with and once
without dynamic data collection activated. We also mea-
sured the time to render the charts after having collected the
dynamic information. We present the results in Table 4.

The figures we obtained from our benchmark lead us
to conclude that our technique is efficient enough for most
practical use cases where only a limited number of classes
are to be analyzed.

Drawing the charts is very efficient even for large charts,
as illustrated by the results of both benchmarks.

5 Related Work

Various tools and approaches make use of dynamic
(trace-based) information such as Program Explorer [7] and
Jinsight [1]. Richner and Ducasse described a Collabora-
tion Browser [10] which represents a program’s behavior in
terms of collaboration patterns. Unlike our approach these
approaches are only accessible in tools distinct from the
IDE or do not integrate seamlessly with IDE navigation.

Reiss’ [9] Jive tool focuses on visually representing run-
time activity in real time. The goal of this work is to sup-
port software development activities such as debugging and
performance optimizations. We focus on providing insights
and interactive navigational aids for developers while work-
ing with the source code. Our aim is not solely to boost un-
derstanding for the software, but to use the visualization of
runtime collaboration to evolve or maintain a system in the
IDE.

6 Conclusions and Future Work

We described using concrete examples from case stud-
ies how we explicitly represent dynamic collaborations be-
tween static artifacts in our Hermion IDE to enhance pro-
gram comprehension. We emphasized that an important
prerequisite to such an representation of collaboration in
IDEs is an efficient and effective technique to gather dy-
namic information, which is fulfilled by sub-method partial
behavioral reflection [2] as we illustrated by means of con-
ducted benchmarks.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project

“Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. Vi-
sualizing the behavior of object-oriented systems. In Pro-
ceedings of International Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP-
SLA’93), pages 326–337, Oct. 1993.

[2] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall. Sub-
method reflection. Journal of Object Technology, 6(9):231–
251, Oct. 2007.

[3] S. Ducasse, M. Lanza, and R. Bertuli. High-level polymetric
views of condensed run-time information. In Proceedings
of 8th European Conference on Software Maintenance and
Reengineering (CSMR’04), pages 309–318, Los Alamitos
CA, 2004. IEEE Computer Society Press.

[4] Eclipse Platform: Technical Overview, 2003. http://www.-
eclipse.org/whitepapers/eclipse-overview.pdf.

[5] A. Hamou-Lhadj and T. Lethbridge. An efficient algorithm
for detecting patterns in traces of procedure calls. In Pro-
ceedings of 1st International Workshop on Dynamic Analy-
sis (WODA), May 2003.

[6] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, a practical
Smalltalk written in itself. In Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (OOPSLA’97),
pages 318–326. ACM Press, Nov. 1997.

[7] D. Lange and Y. Nakamura. Interactive visualization of de-
sign patterns can help in framework understanding. In Pro-
ceedings ACM International Conference on Object-Oriented
Programming Systems, Languages and Applications (OOP-
SLA’95), pages 342–357, New York NY, 1995. ACM Press.

[8] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on Software
Visualization (SoftVis’06), pages 135–144, New York, NY,
USA, 2006. ACM Press.

[9] S. P. Reiss. Visualizing Java in action. In Proceedings of
SoftVis 2003 (ACM Symposium on Software Visualization),
pages 57–66, 2003.

[10] T. Richner and S. Ducasse. Using dynamic information for
the iterative recovery of collaborations and roles. In Pro-
ceedings of 18th IEEE International Conference on Software
Maintenance (ICSM’02), page 34, Los Alamitos CA, Oct.
2002. IEEE Computer Society.

[11] D. Röthlisberger, M. Denker, and É. Tanter. Unanticipated
partial behavioral reflection: Adapting applications at run-
time. Journal of Computer Languages, Systems and Struc-
tures, 34(2-3):46–65, July 2008.

[12] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Exploit-
ing runtime information in the ide. In Proceedings of the
2008 International Conference on Program Comprehension
(ICPC 2008), 2008. To appear.

5


