
Towards Seamless and Ubiquitous Availability of Dynamic Information in IDEs∗

David Röthlisberger and Orla Greevy
Software Composition Group, University of Bern, Switzerland

{roethlis, greevy}@iam.unibe.ch

Abstract

Software developers faced with unfamiliar object-
oriented code need to build a mental model of the sys-
tem to understand its dynamic flow. Development envi-
ronments typically provide static views of the source code
(e.g., classes and methods), but do not explicitly represent
dynamic collaborations. The task of revealing how static
source artifacts interact at runtime is thus challenging.To
address this we have developed several techniques to repre-
sent dynamic behavior at various levels of granularity di-
rectly in the IDE. In this paper we outline these various
techniques towards a seamless integration of dynamic infor-
mation in the IDE. We elaborate on user feedback we have
gathered and on our empirical experiments to validate our
work. We derive several ideas and visions of further poten-
tial representations of dynamic behavior from this analysis
of our approach. The missing representations we identify
serve to enrich our proposed IDE, so as to provide the de-
veloper from within the IDE with a readily available and
complete picture of a software’s dynamics.

Keywords: dynamic analysis, dynamic collaborations,
development environments, program comprehension

1 Introduction

Maintaining or enhancing object-oriented software sys-
tems requires developers not only to understand static
source artifacts, but also their dynamic interaction. The pri-
mary tool available to developers, the integrated develop-
ment environment (IDE), typically focuses on a static view
of a system. It does not explicitly represent dynamic collab-
oration between static artifacts (e.g., classes or methods). In
the absence of IDE support developers are forced to build up
a mental model of a system’s dynamic behavior. Integrating
explicit representations of dynamic behavior directly in the
IDE would prove helpful in gaining a more accurate under-
standing for a system under investigation.

∗In: Proceedings of the 4th International Workshop on Program Com-
prehension through Dynamic Analysis (PCODA), 2008

To achieve the goal of representing dynamic behavior
seamlessly in the IDE, we are faced with several challenges,
such as:

• How can we efficiently gather dynamic information
and immediately make it available from within the
IDE?

• How do we represent dynamic behavior of a system in
an IDE?

• How do we validate that our proposed representations
are useful for developers?

Our key focus is to present our experience to date and
to identify our visions for further IDE enhancements to ex-
ploit seamless integration of dynamic information in vari-
ous forms, providing developers with relevant information
to understand a software’s dynamics.

In this paper we report on the techniques we devised to
address the above challenges. In Section 2 we present an
overview of our techniques to represent dynamic behavior
explicitly in the IDE, such as (i) visualizations, (ii) enrich-
ments to the source code view, or (iii) techniques to query
dynamic information from within the IDE. We present a
summary of developer feedback and results of our evalu-
ations in Section 3. Based on this, we have identified rep-
resentations of dynamic behavior to support developers In
Section 4, we outline ideas for further enhancements to an
IDE encompassing dynamic information.

2 Existing Approaches Integrating Dynamic
Analysis in IDEs

In our work to date, we have developed four different
approaches to reason about dynamic information directly in
the IDE. Each approach works on different levels of granu-
larity, from the fine-grained source code level, the dynamic
interaction of static artifacts to a coarse-grained represen-
tation of user-identifiable features of a system. Our tech-
niques provide the developer with several entry points for
gaining an understanding of software system, e.g., to cor-
rect a specific defect. If a defect occurs in a specific feature,



the developer may first gain an overview of the feature’s
dynamics, then locate candidate entities (e.g., methods) that
may contain the defect. In a next step, the developer rea-
sons about the specific communication patterns between the
candidate entities and finally drills down to the source code
level to study the dynamics on a fine-grained level to pin-
point and correct the defect.

We provide a brief overview of our four proposals to rep-
resent dynamic information in the IDE. We implemented
our IDE enhancements in the Squeak Smalltalk IDE [7] as
it provides an extensible framework to adapt and extend its
tools, We take advantage of our previously implemented a
technique, partial behavioral reflection, to efficiently and se-
lectively gather runtime information [3].. Applying our en-
hancements to other IDEs, e.g., Eclipse could be achieved
using similar techniques.

2.1 Feature Representation

To explicitly represent features, i.e., behavioral entities
of a software system, we introduce our Feature Browser
[10], an enhancement to a traditional IDE.

We describe our Feature Browser taking as an example
a Wiki application. The developer first specifies within the
IDE that dynamic data should be recorded for the applica-
tion (i.e., at the package level) and then associates names
with the features (i.e., external user-understandable units
of behavior of the application) under investigation, e.g.,
“wikiEditPage”. Then she exercises a feature in the applica-
tion. The IDE takes care of gathering and storing dynamic
data of the feature. The IDE now provides the developer
with an explicit feature representation of behavioral data for
“wikiEditPage”. To study the features of interest, the devel-
oper selects them either in our Feature browser or invokes
an action we added next to the class and method browser to
open all features that use a particular class or method.

Figure 1 depicts our feature browser’s core components.
The Compact Feature Overview (1) enables visually com-
parison of several features . The small nodes in a feature
view can represent either methods or classes and are colored
according to the feature affinity metric proposed by Greevy
[5]. Entities used in only one feature (colored blue) can
be distinguished from entities used in several or all features
(colored orange or red). The coloring scheme makes it eas-
ier to quickly grasp similarities between features, anomalies
or to locate erroneous behavior.

The Feature Tree (2) provides the developer a more de-
tailed view on a feature by representing the method call tree
triggered while it was exercised. The root of the tree is the
first, e.g., the “main” method of the feature, child nodes are
methods being invoked by this main method. All nodes in
this tree are colored according to the feature affinity metric.
To make this tree navigable for reasonable sized execution

Figure 2. Class collaboration chart for class
Graph.

traces we applied several compression techniques such as
subexpression removal [8] or sequence and repetition re-
moval as proposed by Hamou-Lhadj [6]. A developer can
open this feature tree by clicking on a node (i.e., a method)
in the compact feature overview or by selecting a feature in
which a method opened in the IDE participates.

The Feature Artifact Browser (3) shows all entities used
in a particular feature in a dedicated source browsing envi-
ronment. Only entities (e.g., packages, classes, or methods)
which are actually used in the selected feature are shown so
the developer can focus on parts of the code responsible for
the feature’s behavior.

2.2 Representing Dynamic Collaboration

To refine their mental model of a feature’s behavior, de-
velopers typically want to reason about more fine-grained
interactions to reveal how classes communicates with each
other. Studying this kind of dynamic interaction may un-
cover unwanted behavior, such as incorrect or missing com-
munication between instances. To study this level of inter-
action we provide a range of collaboration charts. A class
collaboration chart of the class Graph of a visualization tool
is shown in Figure 2. Similar charts exist for packages or
methods.

Our charts show compact representations of package,
class or method runtime communications. Our class col-
laboration chart is similar to a UML sequence diagram, al-
though the order of calls is not preserved, To avoid clutter-
ing the chart with too much information, we show commu-
nication paths between classes, i.e., message sends occur-
ring in an instance of a class with an instance of another
class as a receiver, as edges in the chart. The thickness of
an edge reflects the relative frequency of the interaction, as
in the work of Ducasse et al. [4].

Our charts are directly accessible either from within the
feature browser, or from the static view on source code of
the IDE, e.g., by selecting a particular class and opening a
class collaboration chart for this class. In the latter case,
the application has to be executed before the class collabo-
ration chart can be shown. The charts are always dedicated

2



Figure 1. Schema of the Feature Browser.

to a specific run of the subject system triggered by the de-
veloper, either by running scripts to exercise behavior or by
manually interacting with the subject application.

2.3 Dynamic Data Querying

Dynamic analysis approaches need to deal with vast
amounts of data [1]. In the two previous approaches, we
addressed this by focusing on one particular execution of
a system and by compressing the resulting execution trace.
However, developers often want to understand the dynamic
behavior of the application “in general”, i.e., for as many
different executions as possible, although full coverage is
of course not achievable for any reasonable big system [1].
For this reason, we keep the data generated by observed en-
tities in a central database accessible from within the IDE
[9].

To effectively reason about the permanently stored dy-
namic data, we extended the IDE’s search capabilities con-
sider both static and dynamic information. Our extended
search enables the developer for instance to search for
senders of messages to a specific receiver type, e.g., only
for methods invoking the size method of class Graph. The
query to solve this problem is shown in the code section
below (query 1).

SHOW senders OF Graph . s ize
SHOW c o l l a b o r a t o r s OF Graph
SHOW method invoca t i on IN Wiki ORDER BY

frequency

The query language syntax is similar to SQL. Query
2 returns all classes collaborating with Graph at runtime,

while query 3 provides a list of all methods being invoked
in the package Graph, ordered by invocation frequency.
Other search facilities are dynamic implementors, package
or method collaborators, or method execution times. The
results of such queries are directly embedded in the IDE
and can be browsed using IDE functionalities.

2.4 Dynamic Information Integrated in
Source Code

On the lowest level of granularity, we embed dynamic
information directly into the source code of methods [11].
When reading source code of dynamically-types languages
such as Smalltalk, it may be difficult to completely under-
stand the code as there is no type information. Polymor-
phism further complicates the task. It is unclear which
methods are invoked at runtime and what kind of objects
are stored in variables. We enrich the source code view
to feed in information obtained by dynamic analysis. The
code statement in Figure 3 highlights our enhancements to
the source view. We add icons to message sends and vari-
ables accesses in source code. Clicking on an icon either
reveals what methods were executed for a message send or
show all type of objects a variable stored at runtime. Of
course the developer can directly navigate to a method or
a variable type shown in the respective list by clicking on
the item. An interesting side-effect of these enhancements
is that they also reveal which parts of a method have never
been executed, as these parts will be missing these icons for
dynamic information.

To obtain the dynamic data for these extensions we query

3



Figure 3. Dynamic information embedded in
source code.

the database mentioned in Section 2.3. We apply caching
strategies: as soon as a method’s source code has been
displayed once, including dynamic information icons. We
cache results of various queries submitted for this method
until either the method’s source code has changed or more
dynamic information has been gathered.

3 Validation of Existing Techniques

We validate our various approaches to integrate dynamic
information in the IDE from a user perspective. In previ-
ous works we also validate it from an efficiency and perfor-
mance perspective [10, 11].

3.1 User Validation

We validated out Feature Browser (Section 2.1) by
means of an empirical study involving twelve developers fa-
miliar with both the Smalltalk language and IDE. We asked
the subjects to correct two defects of similar complexity in
a Wiki system. For one defect the developers used the tradi-
tional Squeak IDE, for the other we provided them with our
IDE-embedded feature browser. The order in which they
used each environment was randomly assigned. We then
compared both, the efficiency (i.e., time spent) to correctly
locate the cause of the defect in source code and to actually
correct the defect entirely. The performance of the subjects
was in average 30% better with the feature browser concern-
ing defect location and 10% better concerning defect cor-
rection. Both figures are statistically significant. For more
details of this study we refer the reader to our previous work
[10].

We validated the other techniques, collaboration charts,
dynamic information querying, and enriched source code
view, by means of providing a questionnaire to several de-
velopers and asked them to apply our techniques in a con-
trolled experiment we defined. We also involved the sub-
jects of the feature browser. For all techniques, we used set
of general questions as well as specific questions for each
technique. Every questionnaire was answered by at least
three subjects. We used the same Wiki application (i.e.,
Pier) for each experiment as none of the subjects had prior
knowledge of this system. We assigned the subjects spe-
cific tasks to solve, providing them with just one of our four
techniques. The tasks were for instance to describe the role
of an key model class, to enhance the system with a feature

Statement Av.
rating

Impact of feature browsing in program comprehension 4.2
Impact of collaboration charts on program understanding 3.2
Effect of collaboration charts on execution overview 4.3
Impact of querying dynamic inf. on prog. understanding 3.4
Impact of querying dynamic inf. on navigation of static artifacts 3.8
Effect of source code enrichments on execution overview 4.0
Effect of source code enrichments on navigation of static artifacts 3.9
Impact of source code enrichments on program comprehension 3.3

Figure 4. Answers obtained from our ques-
tionnaires

similar to an already existing feature, or to adapt a feature
without impacting any other system behavior. After solving
three tasks we gave the subjects the questionnaire. Table 4
provides a selection of answers from the questionnaires.

We obtained many suggestions, ideas, or wishes for fu-
ture enhancements to represent dynamic information in the
IDE, this feedback incorporates in Section 4.

4 Competing the Representation of Software
Dynamics in IDEs

We elaborate on several opportunities to extend our
existing work on integrating dynamic information in the
IDE. We identify shortcomings, problems, or issues in the
current work and present ideas and suggestions obtained
from developers that participated in our experiments.

Identifying Missing Features. A shortcoming of the cur-
rent solution is the requirement to select specific static ar-
tifacts of the subject system (e.g., packages or classes) to
collect dynamic data, and to then run one or many system’s
features. The IDE should automatically take care of gath-
ering dynamic information from all system entities. Dy-
namic data should be as readily available as static informa-
tion (e.g., list of methods or instance variables of a class).
Moreover, developers want to be able to associate a partic-
ular execution with the dynamic data it generated, but for
other scenarios they also want to access all gathered infor-
mation about an artifact in order to achieve a high level of
coverage. If the IDE were to automatically collect dynamic
information, developers would be freed from this respon-
sibility and would be more likely to incorporate views on
system’s dynamics in their daily work, in particular when
these views show reliable, complete and accurate informa-
tion.

To gather dynamic data, a system first needs to be
executed. Instead of relying on the developer to run the
application manually or with scripts, the IDE could contin-
uously run the system in the background, in particular after

4



changes to the system’s code base. The developer could
record some scripts on a high level (e.g., by recording user
actions in the application) that could be fed into the IDE so
it could run the system. The IDE could easily determine
code (e.g., methods or source code statements) that have
never been executed and either try to find execution paths
for this code or alert the developer to refine the provided
scripts. This procedure would improve code coverage.
The general, idea is to empower the IDE and to relieve
the developer of the responsibility to ensure that as many
parts of the system as possible are covered by dynamic
analysis. The IDE is the appropriate tool to assume this
responsibility as it is very familiar to developers (they
spend most of their working time in this environment),
and as it already provides sophisticated means to work
with static code. We understand dynamic views as being
orthogonal to static views and hence nicely completing
IDE’s mostly static perspective.

Developer Suggestions. One suggestion of developers was
to use dynamic information not only to enhance and com-
plete the static perspective of a system, but to build means
and concepts to browse, develop and maintain software in a
environment that primarily display entities by their dynamic
relationships, e.g., a browser that shows classes on a two-
dimensional map showing communication as paths while
the distance between any two classes represents how heav-
ily they communicate with each other. Entities are placed
closer to each other the more they collaborate. Another de-
veloper mentioned the importance of having full coverage,
i.e., he often wants to know whether two entities will ever
communicate to each other in any possible system execu-
tion. Of similar importance is a big picture view: While fo-
cusing on a particular feature or execution is interesting in
many scenarios, there is often also a need to get an overview
of all possible dynamic communication occurring in an ap-
plication, e.g., to present to a new developer how the system
generally functions at runtime.

5 Conclusions

In this paper we described four different techniques to
seamlessly integrate dynamic information in IDEs to rea-
son about software’s dynamics. These four techniques are
(1) a feature browser to reason about features, (2) collabo-
ration charts to visualize dynamic communication between
static artifacts in the IDE, (3) facilities to query dynamic
information, and (4) enrichments to source code to embed
information of its dynamic behavior. We performed sev-
eral user experiments to evaluate these techniques and to
solicit feedback from developers about ideas for future en-
hancements. We presented both the results from the various
studies (e.g., results of questionnaires) and a comprehensive

list of issues in the current approach. Finally we identified
further opportunities for extend and complete the represen-
tation of software’s dynamics in IDEs.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] T. Ball. The concept of dynamic analysis. In Proceed-
ings European Software Engineering Conference and ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (ESEC/FSC 1999), number 1687 in
LNCS, pages 216–234, Heidelberg, 1999. Springer Verlag.

[2] M. Denker and S. Ducasse. Software evolution from the
field: an experience report from the Squeak maintainers. In
Proceedings of the ERCIM Working Group on Software Evo-
lution (2006), volume 166 of Electronic Notes in Theoretical
Computer Science, pages 81–91. Elsevier, Jan. 2007.

[3] M. Denker, O. Greevy, and M. Lanza. Higher abstrac-
tions for dynamic analysis. In 2nd International Work-
shop on Program Comprehension through Dynamic Anal-
ysis (PCODA 2006), pages 32–38, 2006.

[4] S. Ducasse, M. Lanza, and R. Bertuli. High-level polymetric
views of condensed run-time information. In Proceedings
of 8th European Conference on Software Maintenance and
Reengineering (CSMR’04), pages 309–318, Los Alamitos
CA, 2004. IEEE Computer Society Press.

[5] O. Greevy. Enriching Reverse Engineering with Feature
Analysis. PhD thesis, University of Berne, May 2007.

[6] A. Hamou-Lhadj and T. Lethbridge. An efficient algorithm
for detecting patterns in traces of procedure calls. In Pro-
ceedings of 1st International Workshop on Dynamic Analy-
sis (WODA), May 2003.

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, a practical
Smalltalk written in itself. In Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (OOPSLA’97),
pages 318–326. ACM Press, Nov. 1997.

[8] J.-M. S. Philippe Flajolet, Paolo Sipala. Analytic varia-
tions on the common subexpression problem. In Automata,
Languages, and Programming, volume 443 of LNCS, pages
220–234. Springer Verlag, 1990.

[9] D. Röthlisberger. Querying runtime information in the ide.
In Proceedings of the 2008 workshop on Query Technolo-
gies and Applications for Program Comprehension (QTAPC
2008), 2008. To appear.

[10] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Feature
driven browsing. In Proceedings of the 2007 International
Conference on Dynamic Languages (ICDL 2007), pages 79–
100. ACM Digital Library, 2007.

[11] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Exploit-
ing runtime information in the ide. In Proceedings of the
2008 International Conference on Program Comprehension
(ICPC 2008), 2008. To appear.

5


