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Abstract

Mainstream IDEs such as Eclipse support developers
in managing software projects mainly by offering static
views of the source code. Such a static perspective ne-
glects any information about runtime behavior. However,
object-oriented programs heavily rely on polymorphism and
late-binding, which makes them difficult to understand just
based on their static structure. Developers thus resort to de-
buggers or profilers to study the system’s dynamics. How-
ever, the information provided by these tools is volatile and
hence cannot be exploited to ease the navigation of the
source space. In this paper we present an approach to
augment the static source perspective with dynamic metrics
such as precise runtime type information, or memory and
object allocation statistics. Dynamic metrics can leverage
the understanding for the behavior and structure of a sys-
tem. We rely on dynamic data gathering based on aspects
to analyze running Java systems. By solving concrete use
cases we illustrate how dynamic metrics directly available
in the IDE are useful. We also comprehensively report on
the efficiency of our approach to gather dynamic metrics.

1. Introduction

Maintaining object-oriented systems is complicated by
the fact that conceptually related code is often scattered over
a large source space. The use of inheritance, interface types
and polymorphism leads to hard to understand source code,
as it is unclear which concrete methods are invoked at run-
time at a polymorphic call site even in statically-typed lan-
guages. As IDEs typically focus on browsing static source
code, they provide little help to reveal the execution paths
a system actually takes at runtime. However, being able
to, for instance, reconstruct the execution flow of a system
while working in the IDE, can lead to a better understanding
and a more focused navigation of the source space. In this
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paper we claim that developers can more efficiently main-
tain object-oriented code in the IDE if the static views of the
IDE are augmented with dynamic information.

The importance of execution path information becomes
clear when inspecting Java applications employing abstract
classes or interfaces. Source code of such applications usu-
ally refers to these abstract types, while at runtime concrete
types are used. However, locating the concrete class whose
methods are executed at runtime when the source code just
refers to interface types, can be extremely cumbersome with
static navigation, since there may be a large number of con-
crete implementations of a declared type. Similarly, when
examining source code that invokes a particular method,
a large list of candidate method implementations may be
generated. Static analysis alone will not tell you how fre-
quently, if at all, each of these candidates is actually in-
voked. However, such information is crucial to assess the
performance impact of particular code statements.

Developers usually resort to debuggers to determine the
execution flow of an application. However, information ex-
tracted in a debugging session is volatile, that is, it disap-
pears at the end of the session. Furthermore such informa-
tion is bound to specific executions, so it cannot be used
in general to tell which runtime types occur how often at a
specific place in source code. To analyze and improve the
performance of a system, developers typically use profilers,
which suffer from the same drawbacks as debuggers: nei-
ther tool feeds aggregated information back to the IDE, thus
developers use them only occasionally instead of benefiting
from runtime information directly in the static IDE views.

This paper presents an approach to dynamically analyze
systems, and to augment the static perspectives of IDEs
with various dynamic metrics. To prototype this approach
we implemented Senseo, an Eclipse plugin that enables de-
velopers to dynamically analyze Java applications. Senseo
enriches the source views of Eclipse with several dynamic
metrics such as information about which concrete methods
a particular method invokes how often at runtime, which
methods invoke this particular method, or how many ob-
jects or how much memory is allocated in particular meth-



ods. These dynamic metrics are aggregated over several
runs of the subject system; the developer decides which runs
to take into account. The paper contributes the following:
(i) a technique to efficiently analyze systems dynamically,
(ii) useful dynamic metrics for software maintenance, (iii)
means to integrate these metrics in IDEs, and (iv) an evalu-
ation of the efficiency and usefulness of the entire approach.

The paper is structured as follows: In Section 2 we
present several concrete use cases highlighting the need for
dynamic metrics available directly in the IDE. Section 3 il-
lustrates our approach to integrate dynamic metrics in IDEs;
we introduce Senseo, our prototype to augment Eclipse with
dynamic metrics. In this section we also validate the prac-
tical usefulness by solving the use cases from Section 2
with Senseo. Section 4 explains our approach to gather dy-
namic metrics from running applications and validates this
approach with efficiency benchmarks. Section 5 presents
related work in the context of gathering dynamic data and
its visualization. Finally, Section 6 concludes the paper.

2. Use Cases

Senseo aims primarily at supporting two typical use
cases that arise when maintaining object-oriented software
systems. In the first use case developers attempt to gain an
understanding of the execution paths and runtime types of
an object-oriented system employing complex hierarchies
including abstract classes and interfaces. In the second use
case, developers must improve the overall speed of the sys-
tem due to critical performance issues. We summarize the
difficulties arising in each use case when the developer is
limited to using the plain static views of a typical IDE.

Understanding abstract class and interface hierar-
chies. As a case study we take the Eclipse JDT1, a set of
plug-ins implementing the Eclipse Java IDE. JDT encom-
passes interfaces and classes modeling Java source code
artifacts such as classes, methods, fields, or local vari-
ables. Figure 1 shows an extract of the JDT interfaces
and classes representing static artifacts of a class. Clients
of this representation usually refer to interface types such
as IJavaElement or IJavaProject, as the following
code snippet found in JavadocHover illustrates:

IJavaElement element = elements[0];
if (element.getElementType() ==

IJavaElement.FIELD) {
IJavaProject javaProject = element.
getJavaProject();

} else if (element. getElementType() ==
IJavaElement.LOCAL_VARIABLE) {
IJavaProject javaProject = element.
getParent().getJavaProject();

}

1http://www.eclipse.org/jdt

There is a problem in this code: For some elements the re-
sulting javaProject is wrong or undefined. The devel-
oper has the impression that the if conditions are not com-
prehensive or not correct at all. Another possibility is that
the method getJavaProject is wrongly implemented
for some element types. Thus the developer has several
questions about this code:

1. Which getJavaProject methods are invoked?

2. Which types are stored in variable element; are all
relevant cases covered with if statements?

To answer these questions purely based on static infor-
mation, we can use the references and declarations search
tool of Eclipse. For the first question, we search for all
declarations of method getJavaProject. However, the
JDT declares more than 20 methods with this name, most of
which are not related to the representation of source code el-
ements. We have to skim through this list to find out which
declarations are defined in subtypes of IJavaElement.
After having found those declarations, we still cannot be
sure which are actually invoked in this code.

To address the second question, we first search for all
classes implementing IJavaElement in the list of ref-
erences to this interface. This yields a list with more than
2000 elements; all are false positives as IJavaElement is
not supposed to be implemented by clients. We thus search
for all sub-interfaces of IJavaElement to see whether
those have implementing classes. After locating two direct
sub-interfaces (IMember and ILocalVariable), each
of which has more than 1000 references in JDT, we give
up searching for references to indirect sub-interfaces such
as IField or IType. It is not possible to statically find
all concrete implementing classes of IJavaElement, in
particular not those actually used in this code.

Thus we resort to use the debugger. We find out that
element is of type SourceField in one scenario. How-
ever, we know that debuggers focus on specific runs, thus
we still cannot know all the different types element has
in this code. To reveal all types of element and all
getJavaProject methods invoked by this polymorphic
message send, we would have to debug many more scenar-
ios, which is very time-consuming as this code is executed
many times for each system run.

For all these reasons, it is much more convenient for a
developer if the IDE itself could collect and show runtime
information aggregated over several runs together with the
static structure, that is, augmenting Eclipse’s source code
viewer to show precisely which methods are invoked at
runtime and how often, optionally even displaying runtime
types for receiver, arguments, and return values.

Assessing runtime complexity. Running this code
shows that accessing the Java-project for some types of



Figure 1. JDT interface and class hierarchies representing Java source elements (extract).

source elements is remarkably slow. Developers addressing
the efficiency problem need to know for which types the im-
plementation of getJavaProject is slow and why, that
is, for instance, whether the inefficient implementations cre-
ate many objects or repeatedly execute code.

We tackle these questions by profiling this code exam-
ple. The profiler indeed gives us answers about the code’s
execution performance, but similarly to debuggers, profil-
ers also focus on specific runs of a system and hence only
show the efficiency of getJavaProject for the partic-
ular types used in a specific run. In the profiled run, all
executed getJavaProject methods are reasonably ef-
ficient. However, it turns out that for very specific runs
not reproducible while profiling, very slow implementations
of getJavaProject are executed. The runtime perfor-
mance of this method obviously depends heavily on the re-
ceiver of the message send.

Thus, we need to have information about runtime com-
plexity aggregated over multiple runs to pinpoint specific
method executions being slow. We claim that it is best
to have such aggregated information in the IDE, at a
fine-grained method level to illustrate complexity, for in-
stance, based on receivers of a message send, but also at a
more coarse-grained level, for instance, entire packages or
classes, to allow candidate locations in source code for per-
formance issues to be quickly identified at a glance. The
IDE itself should give general evidence about possible per-
formance bottlenecks.

3. Integrating Dynamic Metrics in IDEs

In this section we present an approach to augment IDEs
with dynamic metrics, towards the goal of supporting the
understanding of runtime behavior of applications. We pro-
totyped this approach in Senseo, a plugin for the Eclipse

Java IDE integrating dynamic metrics in familiar Eclipse
tools such as package explorer, source editor, or ruler
columns (the vertical bars next to the editor view). We
first present the basic architecture of Senseo and second dis-
cuss dynamic metrics that can leverage runtime understand-
ing directly in the IDE. Third, we illustrate several practi-
cal integrations and visualizations of these dynamic metrics
brought to Eclipse by Senseo. Eventually, we solve the use
cases of Section 2 to validate how useful our approach is.

3.1. Architecture

Senseo uses MAJOR, an aspect weaving tool enabling
comprehensive aspect weaving into every class loaded in a
Java VM, including the standard Java class library, vendor
specific classes, and dynamically generated classes. MA-
JOR is based on the standard AspectJ [9] compiler and
weaver and uses advanced bytecode instrumentation tech-
niques to ensure portability [3]. MAJOR provides aspects
to gather runtime information of the application under in-
strumentation. The collected data is used to build calling
context profiles containing different dynamic metrics such
as number of created objects.

The application to be analyzed is executed in a separate
application VM where MAJOR weaves the data gathering
aspect into every loaded class, while the Eclipse IDE runs
in a standard VM to avoid perturbations. While the subject
system is still running, we periodically transfer the gathered
dynamic data from the application VM to Eclipse using a
socket. We do not have to halt the application to obtain
its dynamic data. Senseo receives the transfered data, pro-
cesses it and stores the aggregated information in its own
storage system which is optimized for fast access from the
IDE. Figure 2 gives an overview of the setup of our ap-
proach.
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Figure 2. Setup to gather dynamic metrics.

To analyze the application dynamically within the IDE,
developers have to execute it with Senseo. Before starting
the application, developers can define which dynamic met-
rics should be gathered at runtime. By default, all packages
and classes of the application are dynamically analyzed.
However, developers can restrict the analysis to specific
classes or even methods to reduce the analysis overhead if
only specific areas need to be observed. As soon as Eclipse
receives the raw dynamic data over the socket from MAJOR,
Senseo aggregates the received data (for instance, counting
how often a method was invoked) and then directly displays
the dynamic information. Section 3.2 proposes useful dy-
namic metrics to gather and Section 3.3 illustrates means to
integrate these metrics in Eclipse. Usually Senseo aggre-
gates dynamic data over all application runs executed with
it, but developers can empty the storage and start afresh.

3.2. Dynamic Metrics

To support the use cases of Section 2, we integrate the
following dynamic metrics into the IDE.

Message sending. In object-oriented programs, under-
standing how objects send messages to each other at run-
time is crucial. We therefore extract the following informa-
tion about message sends:

Invoked Methods. Often invoked methods are not imple-
mented in the statically defined type (i.e., class), but in its
super- or subtypes, when inheritance, respectively dynamic
binding, are used. Having information in the IDE about
the methods invoked is intended to help developers better
understand collaborations between objects and ease naviga-
tion of the runtime execution flow.

Optionally, developers can ask to gather more informa-
tion about message sends when starting the application with
Senseo. Such additional information includes:

• Receiver types. Often sub-types of the type imple-
menting the method receive the message send at run-
time. Knowing receiver types and their frequency thus
further increases program understanding.

• Argument types. Information about actual argument
types and their frequency increases the understanding
for a method, i.e., how it is used at runtime.

• Return types. As return values pass results from one
method to another, knowing their types and their fre-
quency helps developers to better understand com-
munication between different methods, for instance,
whether a null return value is to be expected.

Number of invocations. This dynamic metric helps
the developer quickly identify hot spots in code, that is,
very frequently invoked methods or classes containing such
methods. Furthermore, methods never invoked at runtime
become visible, which is useful when removing dead code
or extending the test coverage of the application’s test suite.
Related to this metric is the number of invocations of other
methods triggered from a particular method.

Number of created objects. By reading static source
code, a developer usually cannot tell how many objects are
created at runtime in a class, in a method or in a line of
source code. It is unclear whether a source artifact creates
one or one thousand objects — or none at all. This dynamic
metric, however, is useful to assess the costs imposed by
the execution of a source artifact, to locate inefficient code,
or to discover potential problems, for instance inefficient
algorithms creating enormous numbers of objects.

Allocated memory. Different objects vary in memory
size. Having many but very tiny objects might not be an
issue, whereas creating a few but very huge objects could
be a sign of an efficiency problem. Hence, we also pro-
vide a dynamic metric recording memory usage of various
source artifacts such as classes or methods. This metric can
be combined with the number of created objects metric to
reveal which types of objects consume most memory and
thus are candidates for optimization.

3.3. Enhancements to the IDE

All these dynamic metrics are seamlessly integrated
with the static perspective provided by the Eclipse IDE.
This ensures that the dynamic metrics augment the static
view of a system. In the following we describe how the
available dynamic metrics augment the IDE.

Source code enhancements. As a technique to comple-
ment source code without impeding its readability we opted
to use hovers, small windows that pop up when the mouse
hovers over a source element (a method name, a variable,
etc.). Hovers are interactive, which means the developer can
for instance open the class of a receiver type by clicking on
it. We now describe the integration of dynamic metrics with
Senseo:

Method header. The hover that appears on mouse over
the method name in a method header shows (i) all senders
invoking that particular method, (ii) all callees, that is, all
methods invoked by this method, and optionally (iii) all



Figure 3. Hover appearing for a method name
in its declaration.

Figure 4. Hover for a message send occurring
in a method.

argument and return value types. For each piece of in-
formation we also show how often a particular invocation
occurred. For instance for a sender, we display the qual-
ified name of the method containing the send (that is, the
calling method) and the number of invocations from this
sender. Optionally, we also display the type of object to
which the message triggering the invocation of the cur-
rent method was sent, if this is a sub-type of the class im-
plementing the current method. For a callee we provide
similar information: The class implementing the invoked
method, the name of the message, and how often a par-
ticular method was invoked. Additionally, we can show
concrete receiver types of the message send, if they are
not the same as the class implementing the called method.
Figure 3 shows a concrete method name hover for method
readFileEntriesWithException.

In a method header, we can optionally show information
about argument and return types, if developers have cho-
sen to gather such data. Hovers presenting this information
appear when the mouse is over the declared arguments of
a method or the defined return type. These hovers also in-
clude numbers about how often specific argument and re-
turn value types occurred at runtime.

Method body. We also augment source elements in the
method body with hovers. For each message send defined
in the method, we provide the dynamic callee information
similarly as for the method name, namely concretely in-
voked methods, optionally along with argument or return
types that occurred in this method for that particular mes-
sage send at runtime, as shown in Figure 4. Of course all

these types listed are always accompanied with the num-
ber of occurrences and the relative frequency of the specific
types at runtime.

Ruler columns. There are two kind of rulers next to the
source editor: (i) the standard ruler on the left showing local
information and (ii) the overview ruler on the right giving an
overview over the entire file opened in the editor. In the tra-
ditional Eclipse IDE these rulers denote annotations for er-
rors or warnings in the source file. Ruler (i) only shows the
annotations for the currently visible part of the file, while
the overview ruler (ii) displays all available annotations for
the entire file. Clicking on such an annotation in (ii) brings
the developer to the annotated line in the source file, for
instance to a line containing an error.

We extended these two rulers to also display dynamic
metrics. For every executed method in a Java source file
the overview ruler presents, for instance, how often it has
been executed in average per system run using three differ-
ent icons colored in a hot/cold scheme: blue means only a
few, yellow several, and red many invocations [19]. Click-
ing on such an annotation icon causes a jump to the dec-
laration of the method in the file. The ruler on the left
side provides more detailed information: It shows on a
scale from 1 to 6 the frequency of invocation of a partic-
ular method compared to all other invoked methods, see
Figure 5. A completely filled bar for a method denotes
methods that have been invoked the most in this application.
The dynamic metrics in these two rulers allow developers to
quickly identify hot spots in their code, that is, methods be-
ing invoked frequently. The applied heat metaphor allows
different methods to be compared in terms of number of in-
vocations.

Figure 5. Rulers left and right of the editor
view showing dynamic metrics.

To associate the continuous distribution of metric values
to a discrete scale with for instance three representations
(e.g., red, yellow, and blue), we use the k-means clustering
algorithm [12].

To see fine-grained values for the dynamic metrics, the
annotations in the two columns are also enriched with hov-
ers. Developers hovering over a heat bar in the left column



or over the annotation icon in the right bar get a hover dis-
playing precise metric values, for instance exact total num-
bers of invocations or even number of invocations from spe-
cific methods or receiver types.

Furthermore, developers can choose between different
dynamic metrics to be visualized in the rulers. Besides
number of invocations of methods, we also provide metrics
such as the number of objects a method creates, the num-
ber of bytecodes it executes, and the amount of memory
it allocates, either on average or in total over all executions.
Such metrics allow developers to quickly assess the runtime
complexity of specific methods and thus to locate candidate
methods for optimization. Changing the dynamic metrics to
be displayed is done in the Eclipse preferences; the chosen
metric is immediately displayed in the rulers.

Package Explorer. The package explorer is the primary
tool in Eclipse to locate packages and classes of an applica-
tion. Senseo augments the package explorer with dynamic
information to guide the developer at a high level to the
source artifacts of interest, for instance to classes creating
many objects. For that purpose, we annotate packages and
classes in the explorer tree with icons denoting the degree
with which they contribute to the selected dynamic metric
such as amount of allocated memory. A class for instance
aggregates the metric value of all its methods, a package the
value of all its classes. Similar to the overview ruler the met-
ric values are mapped to three different package explorer
icons: blue, yellow, and red, representing a heat coloring
scheme [19].

3.4. Evaluation

In Section 2 we raised two questions about a typical code
example from the Eclipse JDT. We show that with Senseo
developers can answer such questions directly in the source
perspective of Eclipse.

First, to determine the getJavaProject methods
invoked in the given code example, developers hold the
mouse over the call site written in source code to get a
hover mentioning all distinct methods that have been in-
voked at runtime at this call site, along with the number of
invocations. This hover saves us from browsing the stat-
ically generated list of more than 20 declarations of this
method by showing us precisely the actually invoked meth-
ods. Second, to find out which types of objects have been
stored in element, we can look at the method call to
getElementType, whose statically defined receiver is
the variable element. The hover can also show the run-
time receiver types of a message send, which are all types
stored in element in this case. It turns out that the types
of element are SourceField, LocalVariable, but
also SourceMethod, thus the if statements in this code
have to be extended to also cover SourceMethod ele-

ments. We were unable to statically elicit this information.
To assess the efficiency of the various invoked

getJavaProject methods, we navigate to the decla-
ration of each such method. The dynamic metrics in the
ruler columns reveal how complex an invocation of this
method is, that is for instance how many objects an invo-
cation creates in average, even depending on the receiver
type. Thanks to these metrics we find out that if the receiver
of getJavaProject is of type LocalVariable, the
code searches iteratively in the chain of parents of this local
variable for a defined Java-project. We can optimize this by
searching directly in the enclosing type of the local variable.

4. Dynamic Metrics Collection

In this section we first explain our approach to dynamic
metrics collection and afterwards investigate its overhead.

4.1. Aspect-based Calling Context Tree
Construction

Senseo requires support for flexibly aggregating dynamic
metrics in various ways. For instance, runtime type infor-
mation is needed separately for each pair of caller and callee
methods, while memory allocation metrics need to be ag-
gregated for the whole execution of a method (including the
execution of its direct and indirect callees). In order to sup-
port different ways of aggregating metrics, we resort to a
generic datastructure that is able to hold different metrics
for each executed calling context. The Calling Context Tree
(CCT) [1] perfectly fits this requirement. Figure 6 illus-
trates a code snippet together with the corresponding CCT
(showing only method invocation counts as metric).

Each CCT node stores dynamic metrics and refers to an
identifier of the target method for which the metrics have
been collected. It also has links to the parent and child
nodes for navigation in the CCT. Our CCT representation
is designed for extensibility so that additional metrics can
be easily integrated.

CCT construction and collection of dynamic metrics can
be implemented either with a modified Java Virtual Ma-
chine (JVM), or through a profiling agent implemented
in native code using the standard JVM Tool Interface
(JVMTI), or with the aid of program transformation respec-
tively bytecode instrumentation techniques. For portabil-
ity and compatibility reasons, we chose the latter approach.
However, instead of using a low-level bytecode engineering
library for implementing the instrumentation, we rely on
high-level aspect-oriented programming (AOP) [10] tech-
niques in order to specify CCT construction and metrics
collection as an aspect. This approach not only results in
a compact implementation, but it ensures ease of mainte-
nance and extension.



Calling Context Tree

  }

}

    h();

  for(int i=1;i<=10;++i) {

void f() {

  for(int j=1;j<=i;++j) {

void h() { return; }

void g(int i) {

  }

    h();

}

#calls = 55

#calls = 10#calls = 10

#calls = 1

h()

g(int)h()

f()

Code Sample

    g(i);

Figure 6. Sample code and its corresponding
CCT

Our implementation leverages MAJOR [21, 22], an as-
pect weaver based on AspectJ [9] offering two distinguish-
ing features. First, MAJOR allows for complete method
coverage. That is, all methods executing in the JVM (af-
ter it has completed bootstrapping) can be woven, including
methods in the standard Java class library. Consequently,
the CCT generated with an aspect that is woven by MA-
JOR faithfully represents the complete program execution.
Method invocations through reflection and callbacks from
native code into bytecode are correctly handled. Second,
MAJOR provides efficient access to complete calling con-
text information through customizable, thread-local shadow
stacks. Using the new pseudo-variables thisStack and
thisSP, the aspect gets access to the array holding the cur-
rent thread’s shadow stack, respectively to the array index
(shadow stack pointer) corresponding to the currently exe-
cuting method.

Figure 7 illustrates three advices2 of our aspect for
CCT construction and dynamic metrics collection. In the
CCTAspect, each thread generates a separate, thread-local
CCT. The shadow stack is an array of CCTNode instances,
representing nodes in the thread-local CCT. A special root
node is stored at position zero. Periodically, after a con-
figurable number of profiled method calls, each thread in-
tegrates its thread-local CCT into a shared CCT in a syn-
chronized manner. This approach reduces contention on
the shared CCT, yielding significant overhead reduction in
comparison with an alternative solution where all threads
directly update a shared CCT upon each method invoca-
tion. Because of space limitations, the details of periodic
CCT integration are not shown in Figure 7.

The first advice in Figure 7 intercepts method en-

2Aspects specify pointcuts to intercept certain points in the execution
of programs (so-called join points), such as method calls, fields access,
etc. Before, after, or around the intercepted join points specified advices
are executed. Advices are methods that have access to some contextual
information of the join points.

before() : execution(* *(..)) {
CCTNode[] ss = thisStack;
int sp = thisSP;
ss[sp] = ss[sp--1].profileCall(
thisJoinPointStaticPart);
ss[sp].storeRcvArgsRuntimeTypes(
thisJoinPoint);

}

after() returning(Object o) :
execution(* *(..)) {

CCTNode[] ss = thisStack;
int sp = thisSP;
ss[sp].storeRetRuntimeType(o);
ss[sp] = null;

}

after() returning(Object o) :
call(*.new(..)) {

CCTNode[] ss = thisStack;
int sp = thisSP;
ss[sp].storeObjAlloc(o);

}
...

}

Figure 7. Simplified excerpt of the CCTAspect

tries and pushes the CCTNode representing the invoked
method onto the shadow stack. To this end, it gets
the caller’s CCTNode instance from the shadow stack
(i.e., at position sp-1) and invokes the profileCall
method, which takes as argument an identifier of the callee
method. We use static join points, accessed through As-
pectJ’s thisJoinPointStaticPart pseudo-variable,
to uniquely identify method entries; they provide infor-
mation about the method signature, modifiers, etc. The
profileCall method returns the callee’s CCTNode in-
stance and increments its invocation counter; if the same
callee has not been invoked in the same calling context be-
fore, a new CCTNode instance is created as child of the
caller’s node.

The second advice in Figure 7 deals with normal method
completion, popping the method’s entry from the shadow
stack. For simplicity, here we do not show cleanup of the
shadow stack in the case of abnormal method completion
throwing an exception [22].

The third advice in Figure 7 intercepts object in-
stantiations to keep track of the number of created ob-
jects and of allocated memory for each calling con-
text. The method storeObjAlloc(Object) uses
the object size estimation functionality provided by the
java.lang.instrumentation API (which is ex-
posed to the aspect) to update the memory allocation statis-
tics in the corresponding CCTNode instance.

In addition to the number of method invocations and
to the object allocation metrics, the CCTAspect collects



the runtime types of receiver, arguments, and result. For
receiver and arguments, this functionality is implemented
in method storeRcvArgsRuntimeTypes used upon
method entry. It takes a dynamic join point instance,
which is accessed through AspectJ’s thisJoinPoint
pseudo-variable in the advice. The dynamic join point
instance provides references to the receiver and to the
method arguments. Upon method completion, the
storeRetRuntimeType method stores the runtime
type of the result. The result object is passed as context
information (returning(Object o)) to the advice.

During the execution, the aspect also takes care of peri-
odically sending the collected metrics to the Senseo plugin
in the IDE. Upon metrics transmission, thread-local CCTs
of terminated threads are first integrated into the shared
CCT. Afterwards, the shared CCT is traversed to aggregate
the metrics as required by Senseo. Finally, the aggregated
metrics are sent to the plugin through a socket. Metrics ag-
gregation and serialization may proceed in parallel with the
program threads, since they operate on thread-local CCTs
most of the time.

4.2. Performance

We evaluate our approach in two different settings. We
use MAJOR3 version 0.5 with AspectJ4 version 1.6.2 and
the SunJDK 1.6.0_13 Hotspot Server Virtual Machine.

In the first setting, we assess the overhead caused by the
collection of dynamic metrics using the standard DaCapo
benchmark suite5; we also explore the different sources of
overhead and their contributions to the overall overhead.
We focus only on the performance of MAJOR and exclude
the overhead of communication with the Senseo plugin.
MAJOR is configured to ensure complete method cover-
age, profiling also execution within the Java class library. In
the first setting, our measurement environment is a 16-core
machine running RedHat Enterprise Linux 5.2 (Intel Xeon,
2.4GHz, 16GB RAM). We chose a high-end machine in or-
der to speed up the benchmarking process, and each mea-
surement represents the median of the overhead factor of 15
runs within the same JVM process. In the second setting,
we measure end-to-end performance of our system (i.e., in-
cluding MAJOR and Senseo), as experienced by the user.
In this setting, we use a typical developer machine (Intel
Core 2 Duo, 2.16Ghz, 2GB RAM).

Setting 1. Figure 8 illustrates the overhead due to the
CCTAspect. We explore and seggregate the overhead con-
tributions of shadow stack maintenance, of CCT construc-
tion, and of collecting memory allocation metrics.

3http://www.inf.unisi.ch/projects/ferrari
4http://www.eclipse.org/aspectj/
5http://dacapobench.org/
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Figure 8. Overhead of shadow stack creation,
CCT construction, and collection of memory
allocation metrics

The geometric mean of the overhead for all the bench-
marks is factor 3.98, while the maximum overhead is fac-
tor 8.75 for “xalan”. The biggest part of this overhead stems
from CCT creation, which is particularly expensive in the
presence of recursions. The collection of memory alloca-
tion metrics causes relatively little overhead, because object
alloction is far less frequent than method invocation and the
corresponding advice can directly access the CCTNode that
has to be updated on the top of the shadow stack.

Setting 2. In order to assess end-to-end performance of
our system, we measure the overhead of running an ap-
plication with Senseo. As a case study, we ran Eclipse
itself as target application and analyzed the usage of the
JDT core. Without Senseo, starting and terminating Eclipse
takes 53 seconds; executing the same scenario with Senseo
takes 188 seconds, i.e., the overhead is 255%. This over-
head includes the collection of all dynamic metrics dis-
cussed in this paper within all JDT core classes, metrics
aggregation, data transmission through a socket, and vi-
sualization of the data in the developer’s Eclipse environ-
ment. Eclipse is conveniently usable while being analyzed.
Considering that the JDT is a large application consisting
of more than 1000 classes and approximately 16000 meth-
ods, our measurements confirm that our approach is practi-
cal also for large workloads.

5. Related Work

5.1. Metrics Collection

JFluid exploits dynamic bytecode instrumentation and
code hotswapping to collect dynamic metrics [4]. JFluid
uses a hard-coded, low-level instrumentation to collect



gross time for a single code region and to build a Call-
ing Context Tree (CCT) augmented with accumulated ex-
ecution time for individual methods. In contrast, we use a
flexible, high-level, aspect-based approach to specify CCT
construction and dynamic metrics collection, which eases
customization and extension. In addition, JFluid relies on
a customized JVM, whereas our tools are fully portable
and compatible with standard JVMs. Similar to Senseo,
JFluid runs the application under instrumentation in a sepa-
rate JVM, which communicates with the visualization part
through a socket and also through shared memory. JFluid is
a pure profiling tool, whereas Senseo was designed to sup-
port program understanding and maintenance. The JFluid
technology is integrated into the NetBeans Profiler [14].

Dufour et al. [5] present a variety of dynamic metrics
for Java programs. They introduce a tool called *J [6] for
metrics measurement. In contrast to our fully portable ap-
proach, *J relies on the Java Virtual Machine Profiler Inter-
face (JVMPI), which is known to cause high performance
overhead and requires profiler agents to be written in native
code.

PROSE [16] provides aspect support within the JVM,
which may ease the collection of certain dynamic metrics
with aspects, thanks to the direct access to JVM internals.
PROSE combines bytecode instrumentation and aspect sup-
port at the just-in-time compiler level. It does not support
aspect weaving in the standard Java class library, a distin-
guishing feature of MAJOR.

Sampling-based profiling techniques, which are often
used for feedback-directed optimizations in dynamic com-
pilers [2], help significantly reduce the overhead of met-
rics collection. However, sampling produces incomplete
and possibly inaccurate information, whereas Senseo re-
quires complete and exact metrics for all executed methods.
Hence, we rely on MAJOR to comprehensively weave our
aspect into all methods in the system.

Dynamic analyses based on tracing mechanisms tradi-
tionally focus on capturing a call tree of message sends,
but existing approaches do not bridge the gap between dy-
namic behavior and the static structure of a program [7,23].
Our work aims at incorporating the information obtained
through dynamic analyses into the IDE and thus connecting
the static structure with the dynamic behavior of the system.

With static analysis, especially with static type infer-
ence [15], it is possible to gain insights into the types that
variables assume at runtime. However, static type inference
is a computationally expensive task and cannot always pro-
vide precise results in the context of object-oriented lan-
guages [17]. Furthermore, static analysis does not cover
dynamically generated code, although dynamic bytecode
generation is a common technique, for instance used in the
“jython” benchmark of the DaCapo suite.

5.2. Augmenting IDEs

Reiss [18] visualizes the dynamics of Java programs in
real time, e.g., the number of message sends received by a
class. Löwe et al. [13] follows a similar approach by merg-
ing information from static analysis with information from
dynamic analysis to generate visualizations. The visualiza-
tions of these two approaches are not tightly integrated in an
IDE though, but are provided by a separated tool. Thus, it
is not directly possible to use these analyses while working
with source code. We consider it as crucial to incorporate
knowledge about the dynamics of programs into the IDE to
ease navigating within the source space.

Other approaches ease and support the navigation of
large software systems by different means than program
analysis. For instance, NavTracks [20] keeps track of the
navigation history of software developers. Using this his-
tory, NavTracks forms associations between related source
files (e.g., class files) and can hence present a recommen-
dation list of entities related to the current selected source
file, that is, source files developers browsed in the past
along with the currently selected file. Mylar [8] computes
a degree-of-interest value for each source artifact based on
historical navigation. The relative degree-of-interest of ar-
tifacts is highlighted using colors — interesting entities are
assigned a “hot” color. We also use heat colors to denote the
degree of dynamic metrics such as number of invocations,
but base our model on dynamic data.

6. Conclusions

In this paper we motivated the integration of dynamic
information into IDEs such as Eclipse to ease maintain-
ing object-oriented applications written in languages such
as Java. We presented Senseo, an Eclipse plugin enabling
developers to dynamically analyze their applications from
within Eclipse. Senseo uses aspect-oriented programming
techniques to gather runtime data from the system. Senseo
presents gathered dynamic metrics such as execution flow
information, runtime type information, numbers of method
invocations, or amount of memory executed by augmenting
the familiar static source views (package explorer, source
editor, etc.). For instance, Senseo integrates dynamic met-
rics in hovers, in the ruler columns of the editor, or by an-
notating icons in the package explorer. We evaluated our
work by solving concrete, practical use cases with Senseo
and by thoroughly conducting performance benchmarks, as
efficiency is most critical when it comes to dynamic analy-
sis. Senseo as a tool is described in more detail in a separate
tool demonstration paper. We plan to exploit the dynamic
data gathered with Senseo by other means than augmenting
the source perspective, for instance by visualizing the data
in software maps [11]. Other future works include studying



how to employ Senseo in a team environment, for instance
by making accessible data of different runs to all team mem-
bers working on the same project. Moreover, Senseo should
automatically choose the most useful dynamic metric for
the task-at-hand, for instance dependent on the particular
performance bottleneck to be fixed.
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