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Abstract—Modern IDEs such as Eclipse offer static views of the source code, but such views ignore information about the
runtime behavior of software systems. Since typical object-oriented systems make heavy use of polymorphism and dynamic
binding, static views will miss key information about the runtime architecture. In this article we present an approach to gather and
integrate dynamic information in the Eclipse IDE with the goal of better supporting typical software maintenance activities. By
means of a controlled experiment with 30 professional developers we show that for typical software maintenance tasks integrating
dynamic information into the Eclipse IDE yields a significant 17.5% decrease of time spent while significantly increasing the
correctness of the solutions by 33.5%. We also provide a comprehensive performance evaluation of our approach.

Index Terms—D.2.3.a Object-oriented programming, D.2.6.c Integrated environments, D.2.7.m Restructuring, reverse engineer-
ing, and reengineering, D.2.8.a Complexity measures, D.2.8.b Performance measures
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1 INTRODUCTION

MAINTAINING object-oriented systems is com-
plicated by the fact that conceptually related

code is often scattered over a large source space. The
use of inheritance, interface types, and polymorphism
leads to code that is hard to understand, as it is
unclear which concrete methods are invoked at run-
time at a polymorphic call site even in statically-typed
languages. As integrated development environments
(IDEs) typically focus on browsing static source code,
they provide little help to reveal the execution paths a
system actually takes at runtime. Being able to recon-
struct the execution flow of a system while working
in the IDE can, however, lead to better program
understanding and to more focused navigation in the
source code. In this article we show that developers
can more efficiently maintain object-oriented code in
the IDE if the static views of the IDE are augmented
with dynamic information.

The importance of execution path information be-
comes clear when inspecting Java applications em-
ploying abstract classes or interfaces. The source code
of such applications usually refers to these abstract

• D. Röthlisberger, M. Härry, and O. Nierstrasz are with the Software
Composition Group at the University of Bern, Switzerland.

• W. Binder, P. Moret, and D. Ansaloni are with the University of
Lugano, Switzerland.

• A. Villazón is with the Centro de Investigaciones de Nuevas Tec-
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types, while at runtime concrete subtypes are used.
However, if the source code just refers to abstract
types, it can be difficult to identify the concrete classes
actually used at runtime, since there may exist a
large number of concrete implementations. Similarly,
when examining source code that invokes a particular
method, a large list of candidate method implemen-
tations may be generated. Static analysis alone will
not tell you how frequently, if at all, each of these
candidates is actually invoked. Such information is
nevertheless crucial to assess the performance impact
of particular code statements.

Developers usually resort to debuggers to deter-
mine the actual execution flow of an application. Un-
fortunately, information extracted during a debugging
session is volatile, that is, it disappears at the end of
the session. Furthermore, such information is bound
to a specific execution; in general, it cannot be used
to tell which runtime types occur how often at a
specific place in source code. To analyze and improve
the performance of a system, developers typically
use profilers, which suffer from similar drawbacks
as debuggers: the collected dynamic information is
not integrated in the static source views in the IDE;
developers use such tools only occasionally instead
of continuously benefiting from dynamic information
that is directly available in the static source views.

We present an approach to dynamically analyze
systems and to augment the static views of IDEs with
dynamic information. We implemented this approach
in Senseo, an Eclipse plugin that enables developers
to dynamically analyze Java applications. Senseo en-
riches the source views of Eclipse with several kinds
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of dynamic information such as presenting which con-
crete methods a particular method invokes how often
at runtime, which methods invoke this particular
method, and how many objects or how much memory
is allocated in particular methods. The gathered infor-
mation is aggregated over several runs of the subject
system; the developer decides which runs to take
into account. Senseo also contributes two other means
to integrate dynamic information: first, a view on
the dynamic collaborations between different source
artifacts, which illustrates communication at the level
of packages, classes and methods, and, second, the
Calling Context Ring Chart (CCRC) [1], a navigable
visualization of the system’s Calling Context Tree
(CCT) [2].

To validate the practical usefulness of Senseo, we
conducted a controlled user experiment with 30 pro-
fessional Java developers to obtain reliable quanti-
tative and qualitative feedback about the impact on
developer productivity contributed by Senseo and the
dynamic information it integrates in Eclipse. The sub-
jects solved five typical software maintenance tasks in
an unfamiliar, medium-sized software system. While
half the subjects only used the standard Eclipse IDE,
the other half additionally used the Senseo plugin.
The experiment shows that the availability of dynamic
information as provided by Senseo yields a significant
decrease in time of 17.5% and a significant increase in
correctness of 33.5%.

We contribute (i) an approach to gather and inte-
grate dynamic information in the Eclipse IDE, (ii) a
controlled user experiment to validate the practical
usefulness of the approach, and (iii) a detailed per-
formance evaluation of Senseo, our implementation of
the approach. With respect to our prior work [3], [4],
(ii) and (iii) are novel, original contributions.

The article is structured as follows: In Section 2 we
present a use case motivating the need for dynamic in-
formation within the IDE. Section 3 introduces Senseo,
a plugin that integrates dynamic information in the
Eclipse IDE. Section 4 explains our approach to gather
dynamic information from a running application. Sec-
tion 5 validates the practical usefulness of Senseo for
software maintenance tasks with a controlled experi-
ment involving 30 professional developers. Section 6
reports on the efficiency of Senseo. Section 7 presents
related work. Finally, Section 8 concludes the article.

2 MOTIVATION

S ENSEO aims at improving understanding and
maintenance of object-oriented software systems

by providing the developer dynamic information col-
lected from multiple runs of an application, such as
from the execution of unit tests. In order to motivate
the need for exposing dynamic information in the
IDE, we consider the Eclipse JDT1, a set of plug-

1. http://www.eclipse.org/jdt

ins implementing the Eclipse Java IDE. JDT encom-
passes interfaces and classes modeling Java source
code artifacts, such as classes, methods, fields, or
local variables. Clients of this representation usually
refer to interface types, such as IJavaElement or
IJavaProject, as the following code snippet found
in JavadocHover illustrates:

IJavaProject javaProject = null;
IJavaElement element = elements[0];
if (element.getElementType()==IJavaElement.FIELD){

javaProject = element.getJavaProject();
} else if (element.getElementType() ==

IJavaElement.LOCAL_VARIABLE) {
javaProject = element.getParent()

.getJavaProject();
}

This code is difficult to understand due to the lack
of information about runtime types of variables and
any other dynamic information: (i) it is unclear which
getJavaProject methods are invoked at runtime;
(ii) the variable javaProject could still be null at
the end of the code snippet, as not all possible types
of elements might be covered by the conditionals;
(iii) the execution frequency of this code and thus its
performance impact is unknown.

These questions cannot be easily answered using
only the IDE’s static source views because there
are more than ten different implementations of the
method getJavaProject in the JDT, thus, we do not
know which implementations are actually used. Fur-
thermore, JDT contains many interfaces and classes
implementing IJavaElement, therefore, we cannot
statically determine which types of elements are used
at runtime in this code.

Using a debugger, we find out that element is
of type SourceField in one scenario. However, we
know that debuggers focus on specific runs, thus we
still cannot know all the different types element
has in this code. To reveal all types of element
and all getJavaProject methods invoked by this
polymorphic call site, we would have to debug many
more scenarios, which is very time-consuming as this
code is executed many times for each system run.

For all these reasons, it is much more convenient
for a developer if the IDE itself could show dynamic
information aggregated over several runs within the
static source views, that is, Eclipse’s source code
viewer should show precisely which methods are
invoked at runtime, including detailed runtime types
for receiver, arguments, and return values. In addi-
tion, information about the number of method invo-
cations or object allocations helps developers identify
performance bottlenecks in an application. If devel-
opers are interested in a specific execution, Senseo
also allows them to just analyze the information from
this single scenario. If source code enriched with
dynamic information changes, the recorded dynamic
information about this piece of code is invalidated.
For instance, if a method changes, we invalidate all
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dynamic information about this method itself and all
its directly or indirectly invoked methods.

3 INTEGRATING DYNAMIC INFORMATION IN
IDES

IN this section we present an approach to augment
IDEs with dynamic information, towards the goal

of supporting the understanding of runtime behavior
of applications. First, we present the architecture of
Senseo, an Eclipse plugin implementing our approach.
Second, we discuss different kinds of dynamic in-
formation that can support program understanding.
Third, we illustrate how Senseo integrates and visual-
izes such dynamic information within Eclipse. More
information about Senseo is available in a master’s the-
sis [5] concerned with this project and on its website2

where it is also available for download.

3.1 Architecture
Dynamic information can be collected using a mod-
ified Java Virtual Machine (JVM), with a profiling
agent in native code using the standard JVM Tool
Interface (JVMTI), or with the aid of program transfor-
mation or bytecode instrumentation techniques. For
portability and compatibility reasons, we chose the
last approach. Instead of using a low-level bytecode
engineering library to instrument code, we use high-
level aspect-oriented programming (AOP) [6] to spec-
ify instrumentation as an aspect. This approach not
only results in a compact implementation, but it also
ensures ease of maintenance and extension.

Because it is important that the gathered dynamic
information covers the complete program execution,
Senseo uses MAJOR [7], [8], an aspect weaver that
supports comprehensive aspect weaving into every
class linked in a JVM, including the standard Java
class library and dynamically loaded or generated
classes. MAJOR is based on the standard AspectJ [9]
compiler and weaver and uses advanced bytecode
instrumentation techniques to ensure portability [10].

The application to be analyzed is executed in a
separate application JVM where MAJOR weaves the
data-gathering aspect into every loaded class, while
the Eclipse IDE with the Senseo plugin runs in a stan-
dard JVM to avoid perturbations. While the subject
system is still running, the gathered dynamic data
is periodically transmitted from the application JVM
to Eclipse using a socket. We do not have to halt
the application to obtain its dynamic data. Senseo
receives the transfered data, processes it, and stores
the aggregated information in its own storage system
which is optimized for fast access from the IDE (see
Fig. 1).

To analyze the application dynamically within the
IDE, developers have to execute it with Senseo. Before

2. http://scg.unibe.ch/research/senseo
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Fig. 1. Setup to gather dynamic information.

starting the application, developers can define what
kind of dynamic information should be gathered at
runtime. By default, all packages and classes of the
application and the Java class library are dynamically
analyzed. However, developers can restrict the anal-
ysis to specific classes or even methods to reduce the
analysis overhead if only specific areas need to be ob-
served. Senseo aggregates dynamic information over
all application runs executed with it, but developers
can clear the store and start afresh.

3.2 Dynamic Information

The Senseo plugin integrates the following dynamic
information into the IDE: (i) method invocation, that
is, which method was invoked with which receiver
and argument types. Additionally, return types are
recorded as well. (ii) The number of invocations is
recorded to ease locating frequently invoked methods
or unused code. (iii) Information about number of
created objects helps developers to locate expensive
code while (iv) allocated memory informs about the
actual size of the created objects. The last three kinds
of dynamic information are particularly well suited to
identify and optimize inefficient source artifacts.

To gather such dynamic information, Senseo relies
on the CCT. The CCT [2] allows dynamic information
to be collected separately for each calling context.
A calling context is a stack of methods that have
been invoked but have not yet completed. The CCT
helps the dynamic inter-procedural control flow of an
application to be analyzed.

3.3 Enhancements to the IDE

We now describe how these different kinds of dy-
namic information are presented in Eclipse by Senseo.
Source code enhancements. We use tooltips, small
windows that pop up when the mouse hovers over
a source element to complement source code without
impeding its readability. Senseo tooltips are interactive;
that is, the developer can open the class of a receiver
type by clicking on it.
Method header tooltip. When the mouse hovers over
the method name in a method header, the tooltip
shows (i) all callers invoking that particular method,
(ii) all callees of the method, and, optionally, (iii) all
argument and return value types. For each piece of
information we also show how often a particular
invocation occurred. Fig. 2 (1) shows a tooltip for the
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Fig. 2. All six interactive views of Senseo.

concrete method endElement. If available, we also
show information about argument and return types
when the mouse is over the declared arguments of
a method or the declared return type. These tooltips
also display how often specific argument and return
value types occurred at runtime.
Method body tooltip. Source elements in the method
body also support tooltips. For each call site of the
method, we provide the dynamic callee information
as for the method name, namely concretely invoked
methods, optionally along with argument or return
types that occurred in this method for that particular
method invocation at runtime.
Ruler columns. In Eclipse, the source code editor
comes with two ruler columns: The left one shows
local annotations (errors, warnings, etc.) while the
right one presents an overview of all annotations from
the entire document. We extended these two rulers to
also display dynamic information. For every executed
method in a Java source file, the overview ruler
(Fig. 2 (3)) presents how often it has been executed
on average per system run using three different icons
colored using a heat scheme: blue means only a few,
yellow several, and red many invocations [11]. Clicking
on such an annotation icon triggers a jump to the
declaration of the method in the file. The ruler on the
left (Fig. 2 (2)) shows the frequency of invocation of a
particular method on a scale from 1 to 6, compared
to all other invoked methods. A completely filled bar
for a method denotes methods that have been invoked
the most in this application. These two rulers allow
developers to quickly identify hot spots in their code.

Developers can choose between different kinds of
dynamic information to be visualized in the rulers,
such as the number of objects a method creates or
the amount of memory it allocates, either on average

or in total over all executions. Such metrics allow
developers to quickly assess the runtime complexity
of specific methods and thus to locate candidate meth-
ods for optimization.
Package Explorer. The package explorer is the main
tool in Eclipse used to locate packages and classes of
an application. Senseo augments the package explorer
with dynamic information to guide the developer at
a high level to the source artifacts of interest, see
Fig. 2 (4). For this purpose, we annotate packages and
classes in the explorer tree with icons denoting the de-
gree to which they contribute to the selected dynamic
metric such as amount of allocated memory. Thus a
class aggregates the metric value of all its methods,
a package the value of all its classes. Similar to the
overview ruler the metric values are mapped to blue,
yellow, and red package explorer icons representing a
heat coloring scheme [11].
Collaboration View. In a separate view next to the
source code editor (Fig. 2 (6)), Senseo presents all dy-
namic collaborators for the currently selected artifact.
For instance, if a method has been selected, the collab-
oration view shows all packages or classes invoking
methods of the package or class in which the selected
method is declared (callers). The collaboration view
also shows all packages or classes with which the
package or class declaring the method is actively
communicating (callees). For the method itself, the
collaboration view lists all direct callers and callees.
Calling Context Ring Chart (CCRC). The CCRC [1]
offers a compact visualization of a CCT and provides
navigation mechanisms to locate and explore subtrees
of interest for the software maintenance task at hand
(Fig. 2 (5)). Like the Sunburst visualization [12], CCRC
uses a circular layout. The CCT root is represented as a
circle in the center. Callee methods are represented by
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ring segments surrounding the caller’s ring segment.
For a detailed analysis of certain calling contexts, CCT
subtrees can be visualized separately and the number
of displayed tree layers can be limited.

4 COLLECTING DYNAMIC INFORMATION

IN this section we explain our approach to collecting
dynamic information using AOP.
Senseo requires flexible support to aggregate dy-

namic information. For instance, runtime type infor-
mation is needed separately for each pair of caller and
callee methods, while memory allocation metrics need
to be aggregated for the whole execution of a method
(including direct and indirect callees). In order to
support different ways of aggregating metrics, a data
structure is needed to store dynamic information sep-
arately for each executed calling context. The CCT [2]
perfectly fits this requirement.

Our CCT representation is designed for extensibility
so that additional metrics can be easily integrated.
Each CCT node stores dynamic information and refers
to an identifier of the target method for which the
metrics have been collected. It also links to the parent
and child nodes for navigation in the CCT.

Our implementation leverages MAJOR [7], [8], an
aspect weaver with two distinguishing features. First,
MAJOR supports complete method coverage. Method
invocations through reflection and callbacks from na-
tive code into bytecode are correctly handled. Second,
MAJOR provides efficient access to complete calling
context information through customizable, thread-
local shadow stacks. Using the pseudo-variables
thisStack and thisSP, the aspect gets access to
the array holding the current thread’s shadow stack,
respectively to the array index (shadow stack pointer)
corresponding to the currently executing method.

Fig. 3 illustrates three advices3 of our aspect for
CCT construction and dynamic information collec-
tion. In the CCTAspect, each thread generates a
separate, thread-local CCT. The shadow stack is an
array of CCTNode instances, representing nodes in
the thread-local CCT. A special root node is stored at
position zero. Periodically, after a configurable num-
ber of profiled method calls, each thread integrates its
thread-local CCT into a shared CCT in a synchronized
manner. This approach reduces contention on the
shared CCT, yielding significant overhead reduction
in comparison with an alternative solution where
all threads directly update a shared CCT upon each
method invocation.

The first advice in Fig. 3 intercepts method en-
tries and pushes the CCTNode representing the
invoked method onto the shadow stack. To this
end, it gets the caller’s CCTNode instance from

3. Aspects specify pointcuts to intercept selected join points in the
execution of programs, such as method calls. Advices adapt join
points with code to be executed before, after or around them.

before(): execution(* *(..)) {
CCTNode[] ss = thisStack; int sp = thisSP;
ss[sp] = ss[sp-1].

profileCall(thisJoinPointStaticPart);
ss[sp].storeRcvArgsRuntimeTypes(thisJoinPoint);

}

after() returning(Object o): execution(* *(..)) {
CCTNode[] ss = thisStack; int sp = thisSP;
ss[sp].storeRetRuntimeType(o);
ss[sp] = null;

}

after() returning(Object o): call(*.new(..)) {
CCTNode[] ss = thisStack; int sp = thisSP;
ss[sp].storeObjAlloc(o);

}
...

}

Fig. 3. Simplified excerpt of the CCTAspect

the shadow stack (i.e., at position sp-1) and in-
vokes the profileCall method, which takes as
argument an identifier of the callee method. We
use static join points, accessed through AspectJ’s
thisJoinPointStaticPart pseudo-variable, to
uniquely identify method entries; they provide in-
formation about the method signature, modifiers,
etc. The profileCall method returns the callee’s
CCTNode instance and increments its invocation
counter; if the same callee has not been invoked in the
same calling context before, a new CCTNode instance
is created as child of the caller’s node.

The second advice in Fig. 3 deals with normal
method completion, popping the method’s entry from
the shadow stack. For simplicity, here we do not show
cleanup of the shadow stack in the case of a method
completing abnormally by throwing an exception [8].

The third advice intercepts object creation to keep
track of the number of created objects and the mem-
ory allocated for each calling context. The method
storeObjAlloc(Object) uses the object size esti-
mation functionality of the java.lang.instrument
API to update the memory allocation statistics in the
corresponding CCTNode instance.
CCTAspect collects the receiver, argument and re-

sult runtime types using dynamic join points.
During execution, the aspect code periodically

sends the collected metrics to the Senseo plugin in the
IDE. Upon metrics transmission, thread-local CCTs
of terminated threads are first integrated into the
shared CCT. Afterwards, the shared CCT is traversed
to aggregate the metrics as required by Senseo. Finally,
the aggregated metrics are sent to the plugin through
a socket. Metrics aggregation and serialization may
proceed in parallel with the program threads, since
they operate on thread-local CCTs most of the time.

5 VALIDATION

W E conducted a controlled experiment with 30
professional Java developers to evaluate the
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benefits of Senseo [3] for software maintenance. We
now describe the experimental design, the subjects,
the evaluation procedure, the final results (including
qualitative feedback), as well as threats to validity.

5.1 Experimental Design
This experiment aims at quantitatively evaluating the
impact of Senseo and the dynamic information it inte-
grates in the Eclipse IDE on developer productivity
in terms of efficiently and correctly solving typical
software maintenance tasks. We therefore analyze two
variables in this experiment: time spent and correctness.
This experiment also reveals which kind of tasks
benefit the most from the availability of dynamic
information in the IDE. The experimental design we
opted for is similar to the one applied in the study
of Cornelissen et al. [13] which evaluated a trace
visualization tool called EXTRAVIS.
Study Hypotheses. We claim that the availability of
Senseo reduces the amount of time it takes to solve
software maintenance tasks and that it increases the
correctness of the solutions. Accordingly, we formu-
late the following two null hypotheses:

• H10: Having Senseo available does not impact the
time for solving the maintenance tasks.

• H20: Having Senseo available does not impact the
correctness of the task solutions.

Congruently, we formulate these two alternative hy-
potheses:

• H1: Having Senseo available reduces the time for
solving the maintenance tasks.

• H2: Having Senseo available increases the correct-
ness of the task solutions.

We test the two null hypotheses by assigning each
subject to either a control group or an experimen-
tal group. While the experimental group has Senseo
available for answering typical software maintenance
tasks and questions, the control group uses a stan-
dard Eclipse IDE; otherwise there is no difference in
treatment between the two subject groups. As both
groups have nearly equal expertise, differences in
time or solution correctness can be attributed to the
availability of the Senseo plugin.
Study Participants. We asked 30 software developers
working in industry (24) or with former industrial
experience (6) to participate in our experiment. Par-
ticipation was voluntary and unpaid. All subjects
answered a questionnaire asking for their expertise
with Java, Eclipse, and specific skills in software engi-
neering, such as how often they work with unfamiliar
code. All participants are familiar with Java and the
Eclipse IDE.

The subjects have between one and 25 years of pro-
fessional experience as software engineers (average
4.8 years, median 4 years). 27 subjects have a univer-
sity degree in computer science while three subjects
either studied in another area or learned software

TABLE 1
Average expertise in control and experimental group

Expertise variable Control group Exper. group
Years of experience 4.73 4.40
Java experience [0..4] 2.93 2.80
Eclipse experience [0..4] 2.80 2.67
Unfamiliar code exp. [0..4] 2.73 2.73

engineering on the job. The subjects are very heteroge-
neous and thus fairly representative (seven different
nationalities, working for eight different companies).
In a Likert scale [14] from 0 (no experience) to 4
(expert) subjects rated themselves on average 2.93 for
Java experience, 2.73 for Eclipse experience, and 2.72
for experience in working with unfamiliar code. All
these ratings refer to “very experienced”.

To assign the 30 subjects to either the experimental
or the control group, we used the obtained expertise
information. To assess the expertise we considered
four variables as given by the subjects: number of
years of professional experience in software engineer-
ing, experience with Java, Eclipse and with maintain-
ing unfamiliar code. For each subject we searched for
a pair with similar expertise concerning these vari-
ables and then randomly assigned these two persons
to either of the two groups. This leads to a very similar
overall expertise in both groups as shown in Table 1.
Subject System and Tasks. As a subject system we
have chosen jEdit4, version 4.2, an open-source text
editor written in Java. JEdit consists of 32 packages
with 5275 methods in 892 classes totaling more than
100 KLOC. We opted for jEdit as a subject system
as it is medium-sized and representative of many
software projects found in industry. JEdit has a long
history of development spanning nearly ten years and
involving more than ten developers. Even though it
has been refactored several times, a careful analysis
of the code quality revealed several design flaws,
such as the use of deprecated code, tight coupling of
many source entities to package-external artifacts, and
lack of cohesion in almost all packages, which makes
jEdit hard to understand. We expect many industrial
systems to have similar quality problems, thus we
consider jEdit to be a well-suited subject application
fairly typical for many industrial systems developers
come across on their job. Furthermore, the domain of
a text editor is familiar to everyone, thus no special
domain-knowledge is required to understand jEdit.

The tasks we gave the subjects are concerned with
analyzing and gaining an understanding for various
features of jEdit. While choosing the tasks, our main
goal was to select tasks representative for real main-
tenance scenarios. Furthermore, these tasks must not
be biased towards dynamic analysis. To assure that
these criteria are met we selected the tasks according
to the framework proposed by Pacione et al. [15].

4. http://www.jedit.org/
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TABLE 2
The five software maintenance tasks

Task Activities Description
1.1 A 1, 9 Locating in the code the feature

“indent selected lines” and naming
the packages and architectural layers in
which it is implemented

1.2 A 1, 4 ,5 Describing package collaborations in
this feature

2.1 A 8 Comparing fan-in, fan-out of three classes
used in various features

2.2 A 4, 5, 6, 8 Describing coupling between the
packages of these three classes

3.1 A 1, 3, 4, 5 Analyzing the order in which methods
of a class used in the “folding” feature
are invoked

3.2 A 1, 3, 5, 7 Locating clients of this class and
analyzing the communication patterns
between the class and its clients

4.1 A 4, 5, 8, 9 Comparing on a fine-grained method level
the two features “shift indent left”
and “remove trailing whitespaces” to
locate a defect in the first feature

4.2 A 2 Correcting this defect by comparing
it to the other, flawless feature

5.1 A 4, 5, 6, 7 Exploring an algorithm in a specific class
used in the “spaces to tabs” feature
and analyzing its performance

5.2 A 5, 6, 7, 8 Comparing this algorithm to another,
similar algorithm in terms of efficiency

They identified nine principal activities for reverse
engineering and software maintenance tasks covering
both static and dynamic analysis. Based on these
activities they propose several characteristical tasks
including all identified activities. We thus design our
tasks following this framework to respect all nine
principal activities, which avoids a potential bias to-
wards Senseo.

This leads us to the definition of five tasks, each
divided into two subtasks, resulting in ten different
questions we asked to the subjects. Table 2 outlines
all five tasks and their subtasks, including the jEdit
features covered, and explains which of Pacione’s
activities they cover. A more detailed description of
the tasks can be found in Marcel Härry’s master’s
thesis [5]. The five tasks are independent of each
other; the order in which the tasks are solved does
not matter. Task five is special since we use it as a
“time sink task” to avoid ceiling effects [16]. Subjects
that can answer the questions quickly might spend
considerably more time on the last task when they
notice that there is still much time available, so the
addition of a time-consuming task at the end which is
not considered in the evaluation ensures that subjects
have a constant time pressure for all relevant tasks.
The first four tasks still cover all of Pacione’s activities.

All questions are open, that is, subjects cannot
select from multiple choices but have to write a text
in their own words. Beforehand, the experimenters
solved all tasks individually to prepare an answer
model according to which the subjects’ answers were
corrected. The answer model is the combination of the

individual solutions of the experimenters.
Experimental Procedure. We gave the subjects a short
five minute introduction to the experiment setup.
Subjects from the experimental group additionally
received a 20 minute introduction to Senseo, following
a prepared script to ensure that every subject receives
the same information. We provided the Senseo subjects
with a short description and a screenshot highlighting
and explaining the core features of Senseo, to serve as
a reference during the experiment.

Afterwards, we started the experiment. We super-
vised all subjects during the entire experiment and
recorded the time they took to answer each ques-
tion. Concerning infrastructure, each subject obtained
the same pre-configured Eclipse installation we dis-
tributed in a virtual image. The only difference be-
tween the control group and the experimental group
was the availability of the Senseo plugin, otherwise the
Eclipse IDE was configured in exactly the same way.

We provided the Senseo group with pre-recorded
dynamic information obtained by executing all actions
from the menu bar of jEdit to make sure that the pre-
recorded information is not biased towards the ex-
periment tasks. Recording these execution traces took
around ten minutes; most time was spent manually
triggering the menu items while the actual recording
was efficient, that is, not much slower than without
dynamic data recording activated. We provided pre-
recorded dynamic information to control the variable
of tracing the appropriate software features. Although
it does not take much time to gather dynamic in-
formation with Senseo, freeing subjects from this task
makes sure that the subjects’ performance in the ex-
periment is only dependent on how Senseo presents
the information and not on which information has
been recorded. As the control group did not receive
any dynamic information, we clearly stated in the task
descriptions how to run and analyze the feature under
study with the conventional debugger in Eclipse.

We expect that executing appropriate scenarios of a
software system to gather dynamic data is not difficult
in practice. Usually, software maintenance tasks are
expressed in terms of features that need to be changed
or corrected, thus it is clear to developers which
features to record. Often industrial systems comprise
a set of unit or component tests exercising particular
system features, thus execution scenarios are already
encoded in these tests. If such tests are not available,
developers can, as illustrated in the case of jEdit, in
reasonable time manually exercise system features as
its end-users would do.
Variables and Evaluation. The two dependent vari-
ables we study in this experiment are time the sub-
jects spend to answer the questions, and correctness
of the answers. Keeping track of the answer time
is straightforward as we prohibited going back to
previously answered questions. We simply record
the time span between the starting time of one
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TABLE 3
Statistical evaluation of the experimental results

Group Mean Stdev. K.-S. Lev F t p
Time [m]:
Eclipse 114.80 20.62 0.27
Senseo 94.73 (-17.5%) 12.4 0.18 3.06 3.23 .0016
Correctness (points):
Eclipse 11.33 2.58 0.31
Senseo 15.13 (+33.5%) 2.10 0.24 0.22 4.42 .0001

question and the next. Correctness is measured us-
ing a score from 0 to 4 according to the overlap
with the answer model, which forms a set of ex-
pected answer elements. For instance, for task 1.1,
the correct answer lists packages jedit.textarea,
jedit.indent, jedit.buffer, and jedit. For
each correctly named package, the subject’s answer
receives one point. All answers were corrected by
at least two experiments to ensure double-check the
correction.

The only independent variable in our experiment is
whether the Senseo plugin is available in the Eclipse
IDE to the subjects during the experiment.

We apply the parametric, one-tailed Student’s t-test
to test our two hypotheses at a confidence level of
95% (α=0.05). To validate that the t-test can be used,
we first apply the Kolmogorov-Smirnov test to verify
normal distribution and then Levene’s test to check
for equality of variance in the sample.

5.2 Results and Discussion
In this section we analyze the results obtained in the
experiment. First, we evaluate the results for time and
correctness. Second, we identify for which types of
tasks the availability of dynamic information in the
IDE is most useful. Finally, we evaluate the qualita-
tive feedback we gathered by means of a debriefing
questionnaire.

Only three subjects could not complete the time
sink task (task 5) in the two hours we allotted, but
everybody finished the four relevant tasks.
Time. On average, the Senseo group spent 17.5% less
time solving the maintenance tasks. The time spent by
the two groups is visualized as a box plot in Fig. 4.

To statistically verify whether Senseo has an impact
on the time to answer the questions, we test the null
hypothesis H10 which says that there is no impact. We
successfully applied the Kolmogorov-Smirnov and
the Levene test on the time data (see Table 3), thus
we are able to apply Student’s t-test to evaluate H10.
The application of the t-test allows us to reject the null
hypothesis and instead accept the alternative hypoth-
esis, which means that the time spent is statistically
significantly reduced by the availability of Senseo as
the p-value is with 0.0016 considerably lower than
α=0.05 (see Table 3).

From the observations of subjects during the ex-
periment, from their informal feedback during the

debriefing interviews, and particularly from the for-
mal questionnaires (see below), we could conclude
that subjects using Senseo were more efficient due to
the following reasons: (i) the availability of dynamic
information in the source code tooltips helps devel-
opers to more quickly gain an understanding how
source artifacts communicate with each other, (ii) the
visualizations of dynamic information such as num-
ber of method invocations shown in ruler columns
and package tree enable developers to quickly spot
which source elements are executed and how often,
and (iii) as the collaboration view accurately presents
all source artifacts that are related or collaborate with
a selected source entity such as a package, class
or method, developers can more quickly navigate
to code relevant for a specific task. Due to space
restrictions, we omit a discussion of observational and
informal data we gathered during the experiment.
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Fig. 4. Box plots comparing time spent and correct-
ness between control and experimental group

Correctness. The Senseo group’s answers for the four
maintenance question are 33.5% more correct, which
is also shown in the box plot in Fig. 4.

To test the null hypothesis H20, which suggests
that there is no effect of the availability of Senseo on
answer correctness, we can also use the Student’s t-
test as the Kolmogorov-Smirnov and the Levene test
succeeded for the correctness data (compare Table 3).
As the t-test gives a p-value of 0.0001 which is clearly
below α=0.05, we reject the null hypotheses and ac-
cept the alternative hypothesis H2, which means that
having Senseo available during software maintenance
activities helps developers to more correctly solve
maintenance tasks.

The evaluation of the questionnaire, the observa-
tions during and the informal interviews after the
experiment allowed us to attribute the improvements
in correctness to the same techniques of Senseo that
also improved the efficiency: (i) precise information
about runtime collaboration or execution paths as
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TABLE 4
Task individual performance concerning time required

and correctness.

Task Time [m] Correctness (points)
Eclipse Senseo Eclipse Senseo

Task 1 511 425 (-16.8%) 38 53 (+39.5%)
Task 2 388 340 (-12.4%) 58 79 (+36.2%)
Task 3 437 291 (-33.4%) 52 69 (+32.7%)
Task 4 386 365 (-5.4%) 22 26 (+18.2%)

TABLE 5
Percentage of subjects using specific dynamic

information in particular tasks

Dynamic Information Task 1 Task 2 Task 3 Task 4
Runtime types (Tooltip) 33% 47% 47% 20%
Number of invocations 53% 67% 40% 27%
Number of created objects 33% 47% 27% 13%
Number of exec. bytecodes 27% 33% 20% 7%
CCRC 7% 7% 0% 0%
Dynamic collaborators
(callers, callees) 53% 80% 73% 33%

highlighted in the extended source tooltips enables
developers to accurately navigate to dependent ar-
tifacts, (ii) information about execution complexity
(number of method calls or number and size of cre-
ated objects shown in ruler columns or package tree)
eases the correct identification of inefficient code, and
(iii) accurate overviews of collaborating artifacts given
by the collaboration view supports developers in ex-
ploring all relevant parts of the system to completely
address a task.
Task-dependent Results. We also analyzed the two
variables, time spent and correctness, for each task
individually to reveal which kinds of tasks benefit
most from dynamic information integrated in Eclipse.
Table 4 presents the aggregated results for time spent
and correctness for each subject group and each task
individually. Tasks 1, 2 and 3 benefit significantly
from the availability of Senseo both in terms of time
required to solve them and the correctness of the
solution. However, for task 4 the benefit of Senseo is
less pronounced.
Qualitative Feedback. We also collected qualitative
feedback using a questionnaire to evaluate the im-
pact of particular parts of Senseo on specific kinds of
maintenance tasks. This evaluation yields answers to
the question which Senseo feature and which kind of
dynamic information is actually relevant or useful in
what kind of maintenance tasks.

In Table 5 we list for each task the percentage of
subjects that used a specific kind of dynamic infor-
mation integrated by Senseo (“Did you use dynamic
information X in task Y?”), and Table 6 presents how
useful subjects rated each Senseo technique on a Likert
scale from 0 (useless) to 4 (very useful).

From the evaluation, we draw the conclusion that
there are basically three kinds of tasks whose solution
process is very well supported by the availability of

TABLE 6
Mean ratings of the subjects for each feature of

Senseo

Dynamic Information Mean rating [0..4]
Tooltip showing runtime types 3.6
Ruler column incl. dynamic info 3.2
Overview ruler column incl. dyn. info 3.0
Package tree incl. dynamic info 2.4
CCRC 2.1
Collaboration view 3.7

dynamic information in IDEs: (i) tasks requiring de-
velopers to understand how different source artifacts
collaborate or depend on each other, (ii) tasks in which
developers have to assess how often code is executed
or how complex its execution is, and (iii) tasks that
require the developer to understand which code is
related to a given feature. This conclusion agrees
with the quantitative results discussed earlier where
we revealed that task 1 (feature and collaboration
understanding), task 2 (quality assessment) and task 3
(control flow understanding) benefited most from the
availability of Senseo, while for task 4 (low level defect
correction) dynamic information was less useful.

From the results evaluating the different Senseo con-
cepts (Table 6), we conclude that developers particu-
larly benefit from the availability of the collaboration
views and runtime type information in source code.
Also considered useful are visualizations of dynamic
information in the source code columns such as the
presentation of number of invoked methods in a
method or class. The aggregated dynamic information
presented in the package tree are perceived as less
useful by the developers, probably because it is not
meaningful to study runtime complexity at a high
package level. The subjects also could not benefit
from the CCRC as this visualization serves the rather
specialized task of performance optimization which
has not been directly covered by the maintenance
tasks of the experiment.

Subjects in both the control group and the Senseo
group used various standard tools of Eclipse. Table 7
lists for each tool how many subjects used it during
the experiment and how they rated on average its
usefulness on a scale from 0 (useless) to 4 (very
useful). The results show that Senseo subjects used
the standard Eclipse less and also considered them
to be less useful than subjects of the control group.
Particularly the Eclipse debugger and inspector haven
been used less as Senseo already embeds similar infor-
mation in the source perspectives.

5.3 Threats to Validity

In this section we discuss several threats to validity
concerning this experiment. We distinguish between
(i) construct validity, that is, threats due to how we
operationalized the time and correctness measures,
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TABLE 7
Users and usefulness rating for standard Eclipse tools.

Eclipse tool Control group Senseo group
Users Rating Users Rating

Package explorer 14 2.4 10 2.1
Source code editor 15 2.8 13 2.7
Debugger 10 1.8 4 1.3
Inspector 6 1.5 0 –
Declaration view 7 2.1 8 2.1
Type hierarchy 14 1.9 8 2.1
Call hierarchy 12 1.7 4 2.5
Reference view 5 2.0 2 1.5
Search 15 2.7 11 1.8

(ii) internal validity, that is, threats due to inferences
between treatment and effect during the analysis, and
(iii) external validity which refers to threats concern-
ing the generalization of the experiment results.
Construct Validity. Due to the operationalization of
the time and correctness variables, the results might
not hold in real, non-experimental situations. For
instance, subjects could have been more attentive
than they would be in their daily job, or they could
have been more anxious as they were observed and
assumed that their performance was being evaluated.
However, we consider this threat to be negligible
as we made clear that subjects’ performance is not
evaluated. Furthermore, this threat is likely to affect
both the control and the experimental group, equally.
Internal Validity. Some threats to internal validity
originate from the subjects. First, subjects might not
have the required expertise to properly solve the
maintenance tasks. This threat is largely eliminated by
preliminary assessment of the subjects’ expertise con-
cerning their Java, Eclipse and software maintenance
skills. Additionally, we required them to not have
expert knowledge in developing jEdit. Second, the
experimental group might have had more knowledge
than the control group. This threat is mitigated by
assigning the subjects in a randomized manner to the
two groups in a way that both groups have nearly
equal expertise (see Table 1).

Other threats to internal validity stem from the
maintenance tasks we prepared. First, the tasks could
have been too difficult or time-consuming to solve.
This threat is refuted by the fact that nearly all subjects
from both groups could solve all tasks in time (except
two from the control group and one from the Senseo
group). Moreover, each question was answered fully
correctly by at least one person from each group.
Additionally, we asked subjects in the questionnaire
directly how they judged the time pressure and the
difficulty. On average, the ratings were 2.8 for time
pressure (representing “felt no time pressure”) and
3.1 for average difficulty of all tasks (which means
“appropriately difficult”). Second, the threat that we
formulated tasks favoring Senseo is largely limited as
we used Pacione’s established framework [15] to find

the tasks used in the experiment. Third, a threat for
the correctness evaluation is that the experimenters
might have favored Senseo while grading subjects’
answers. By initially building an answer model ac-
cording to which the subjects answers were graded,
we mitigated this threat. For the obtained answers
the experimenters gave points as pre-defined in the
answer model which in turn has been formulated and
validated by two persons individually.
External Validity. Generalizing the results of the ex-
periment could be unjustified due to the selection of
tasks, subjects, or the application used in the exper-
iment. This threat is mitigated since we selected the
maintenance tasks carefully to follow Pacione’s frame-
work [15] of representative maintenance tasks. We
furthermore asked open questions to the subjects to
better model industrial reality than would be possible
with multiple choice questions.

As the subjects work for different companies and
have a high variety of education profiles, the study
participants should be fairly representative for pro-
fessional software developers and thus not impose a
threat to generalization.

In Section 5.1 we described several reasons why
jEdit is representative for many industrial systems.
Additionally, we asked subjects at the end of the ex-
periment how comparable in terms of maintainability
they consider jEdit to be to systems they daily work
with. On average, they gave on a Likert scale from 0
(totally different) to 4 (very representative) a rating
of 3.1, which refers to “many similarities”. Hence
we are confident to have found with jEdit a system
representative for most industrial applications.

6 PERFORMANCE

IN order to validate that Senseo offers sufficient per-
formance to cope with real-world workloads, we

evaluated the different sources of overhead and ana-
lyzed the amount of transmitted data for the DaCapo
benchmarks5 [17]. For our measurements, we use
MAJOR6 version 0.6 with AspectJ7 version 1.6.5 and
the SunJDK 1.6.0 13 Hotspot Server Virtual Machine.
We execute the benchmarks on a quadcore machine
running CentOS Enterprise Linux 5.3 (Intel Xeon,
2.4GHz, 16GB RAM).

Fig. 5 shows the overhead for CCT creation, collec-
tion of dynamic information (including the number
of method invocations, the number of object alloca-
tions, the estimated allocated bytes, and the runtime
receiver, argument, and return value types), as well as
serialization and data transmission to the Eclipse plu-
gin, including processing of the received data by the
plugin. In this measurement setting, each benchmark
is executed 15 times and the median execution time

5. http://dacapobench.org/
6. http://www.inf.usi.ch/projects/ferrari/
7. http://www.eclipse.org/aspectj/
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Fig. 5. Senseo overhead for the DaCapo benchmarks

is taken for computing the overhead. For each run of
each benchmark, the CCT and the gathered dynamic
information are serialized and transmitted once upon
benchmark completion. To this end, we modify the
DaCapo benchmark harness in order to delay the end
of a measurement until the transmitted data have
been received and processed by the Eclipse plugin.
Fig. 5 also shows the average overhead (geometric
mean) for the DaCapo suite.

On average (geometric mean), CCT creation alone
causes an overhead of factor 2.68. CCT creation and
collection of dynamic information result in an over-
head of factor 9.07. The total overhead, including
serialization/transmission, is of factor 9.47. For all
benchmarks, the larger part of the overhead is due
to the collection of dynamic information, where the
collection of runtime type information is particularly
expensive. Serialization/transmission causes only mi-
nor overhead, because in these measurement settings
serialization/transmission happens only once upon
benchmark completion.

Senseo features an optimized serialization mecha-
nism that transmits the CCT in an incremental way,
sending only those nodes where some dynamic infor-
mation has changed since the previous transmission.
Thanks to the principle of locality, typically only a
small subset of the CCT nodes is transmitted. Thus, it
is possible to frequently update the dynamic informa-
tion in the Eclipse plugin, such as once per second.

Fig. 6 illustrates the size of successively trans-
mitted data packets for a single run of DaCapo’s
“eclipse” benchmark with a serialization/transmis-
sion rate of 1.25 packets per second.8 Such a high
serialization/transmission rate ensures that the devel-
oper always sees up-to-date dynamic information in
the IDE, refreshed more than once per second, while
the application under maintenance is running in the
MAJOR JVM. In total, 370 packets are sent, that is, the
total runtime of “eclipse” is about 296s in this setting
(causing an overhead factor of 14.8, whereas a single
serialization/transmission upon benchmark comple-

8. We chose the “eclipse” benchmark for this measurement, since
it has the longest execution time in the DaCapo suite in our
measurement environment.
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tion induces an overhead of factor 7.9 as shown in
Fig. 5). For each packet, Fig. 6 differentiates between
the size of the transmitted CCT nodes and the size of
the sent dynamic information.

While most packets are rather small, below 1MB,
some packets are considerably larger, reaching up
to 9MB. The packets 60–79 appear as a major peak
in the figure. We found that these packets convey
dynamic information collected while the “eclipse”
benchmark is compiling some projects. The minor
peak in Fig. 6 (packets 227–232) corresponds to some
XML data processing. The initial packets, collecting
during the startup phase of “eclipse”, are very small.
This can be explained by the fact that the startup
phase is IO-intensive and involves much class-loading
and just-in-time compilation by the JVM, which are
mostly implemented in native code and are therefore
not amenable to MAJOR’s instrumentation.

As Senseo can be used to gather dynamic informa-
tion from all applications used in the DaCapo suite
in reasonable time, we conclude that Senseo is fast
enough to cope even with large-sized applications,
and it is possible to frequently transmit the collected
dynamic information to the Eclipse plugin, continu-
ously providing up-to-date dynamic information to
the software developer. Even though the overall over-
head is high when gathering dynamic information,
we do not consider this as a major issue, as the
application does not need to run at productive speed
while analyzing it.

7 RELATED WORK

IN this section we present related work in the con-
text of dynamic information collection and devel-

opment environments.
Dynamic Analysis for Program Comprehension.
JFluid exploits dynamic bytecode instrumentation and
code hotswapping to collect dynamic information
[18]. JFluid uses a hard-coded, low-level instrumen-
tation to collect gross time for a single code region
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and to build a CCT augmented with accumulated
execution time for individual methods. In contrast,
we use a flexible, high-level, aspect-based approach
to specify CCT construction and dynamic information
collection, which eases customization and extension.
Similar to Senseo, JFluid runs the application under
instrumentation in a separate JVM, which communi-
cates with the visualization part through a socket and
also through shared memory. JFluid is a pure profiling
tool, whereas Senseo was designed to support program
understanding and maintenance. The JFluid technol-
ogy is integrated into the NetBeans Profiler [19].
For Eclipse, the Test & Performance Tools Platform
(TPTP)9 is available, which allows developers to build
performance measuring and profiling tools.

Dufour et al. [20] present a variety of dynamic infor-
mation for Java programs. They introduce a tool called
*J [21] for metrics measurement. In contrast to our
fully portable approach, *J relies on the Java Virtual
Machine Profiler Interface (JVMPI), which is known
to cause high performance overhead and requires
profiler agents to be written in native code.

Sampling-based profiling techniques, which are of-
ten used for feedback-directed optimizations in dy-
namic compilers [22], help significantly reduce the
overhead of metrics collection. However, sampling
produces incomplete and possibly inaccurate infor-
mation, whereas Senseo requires complete and exact
metrics for all executed methods. Hence, we rely on
MAJOR to comprehensively weave our aspect into all
methods in the system.

With static analysis, especially with static type infer-
ence [23], it is possible to gain insights into the types
that variables assume at runtime. However, static type
inference is computationally expensive and cannot
always provide precise results in the context of object-
oriented languages [24]. Furthermore, static analysis
does not cover dynamically generated code, although
dynamic bytecode generation is a common technique.

Dynamic analyses based on tracing mechanisms
traditionally focus on capturing a method call tree,
but existing approaches usually do not bridge the gap
between dynamic behavior and the static structure
of a program or present the analysis results in tools
separated from the IDE [25], [26], [27]. Jinsight [28]
for example is a visualization tool providing several
views analyzing the running of Java programs to
detect performance issues. Jinsight’s support to gain
an understanding for the program execution is limited
and its views are separated from the IDE. Collabora-
tion Browser [29] recovers objects collaboration from
execution traces and identifies collaboration patterns.
A pattern is displayed as a UML sequence diagram or
in another high-level view in a tool separated from the
IDE; this approach requires detailed knowledge about
the system implementation to reduce the amount of

9. http://www.eclipse.org/tptp

information displayed in the diagrams, which renders
the approach less usable for unfamiliar systems.

Senseo differs from these related works by integrat-
ing the dynamic information in the IDE locally to
specific static system artifacts instead of providing a
general overview in a separated tool. Such a local
integration particularly recognizes the conceptual re-
lation between static and dynamic aspects of software
systems. Ferret [30] follows a similar approach by in-
tegrating a query tool into Eclipse to allow developers
executing conceptual queries about source artifacts
directly in the IDE. An example of such a query is
“callers of method x”. Ferret focuses on querying
static information, but is also able to take into account
dynamic information to obtain more precise results.
In contrary to Senseo, Ferret does not aim at giving
an overview of the system or enriching the static IDE
perspectives with dynamic information.
Integration of Dynamic Analysis in IDEs. Seesoft
[31] is a software visualization system that eases
software analysis by mapping each line of code to
a colored row. The color indicates an interest met-
ric using a heat map approach: red lines are for
instance most recently changed lines and blue lines
least recently changed. Seesoft explores different data
sources, namely static or dynamic analysis (mainly
profiling), but also version control information such
as age or author(s) of source artifacts. The Seesoft ap-
proach can easily be embedded in an IDE. As Seesoft,
however, focuses on single lines of code, it does not
scale for large object-oriented software systems.

Ferret [30] recognizes the conceptual relation be-
tween static and dynamic aspects of software systems
by integrating a query tool into Eclipse to allow
developers to execute conceptual queries about source
artifacts directly in the IDE. An example of such a
query is “callers of method x”. Ferret focuses on
querying static information, but is also able to take
into account dynamic and evolutionary information
to obtain more precise results [30]. Ferret implements
36 conceptual queries of which five also consider dy-
namic information, such as which methods are actu-
ally invoked and what other methods these methods
invoked at runtime. Ferret just gathers information
about method invocations and does not integrate such
information in the static source perspectives of IDEs
like Senseo. Instead developers have to query for
particular information.

Reiss [32] visualizes the dynamics of Java programs
in real time, e.g., the number of method invocations.
Löwe et al. [33] follows a similar approach by merg-
ing information from static analysis with information
from dynamic analysis to generate visualizations. The
visualizations of these two approaches are not tightly
integrated in an IDE though, but are provided by
a separated tool. Thus, it is not directly possible to
use these analyses while working with source code.
We consider it as crucial to incorporate knowledge
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about the dynamics of programs into the IDE to ease
navigating within the source space.
Prior Empirical Evaluations. Other researchers also
conducted controlled experiments to validate tools
supporting software maintenance tasks. Bennet et al.
[34] empirically evaluates sequence diagram tools
with developers to reveal which features of these tools
are useful in practice for software understanding. The
study results are particularly useful to identify which
features of sequence diagram tools could be integrate
into IDEs to improve software maintenance.
Cornelissen et al. [13] evaluated a trace visualizing
tool with 24 student subjects. They present the de-
sign of a controlled experiment for the quantitative
evaluation of their tool Extravis for program com-
prehension. They report a 22% decrease in time and
43% increase in correctness of solving various typical
software maintenance tasks.
Quante et al. [35] evaluated with 25 students the
benefits of Dynamic Object Process Graphs (DOPGs)
for program comprehension. While these graphs are
built from execution traces, they do not actually visu-
alize entire traces but describe the control flow of an
application from the perspective of a single object. The
involved students had to perform a series of feature
location tasks in two systems. The use of DOPGs by
the experimental group lead to a significant decrease
in time and a significant increase in correctness in case
of the first system. However, the differences in case
of the second system were not statistically significant
and Quante et al. suggest to perform further evalua-
tion with more than one system.

8 CONCLUSION
In this article we presented Senseo, an approach for
gathering and integrating various kinds of dynamic
information from running Java applications within
the Eclipse IDE. The provided dynamic information
includes callers, callees, runtime type information,
method invocation counters, and object allocation
metrics. Senseo integrates dynamic information in the
package tree, the ruler columns, and in the source
editor tooltips of the Eclipse IDE. In addition, Senseo
offers a condensed and interactive visualization of the
CCT and provides a navigable view on all dynamic
collaborators of a source artifact (package, class, or
method). The dynamic information is continuously
updated in the IDE while an application is running.

An important issue of dynamic analysis is the selec-
tion of execution scenarios from which the dynamic
data stems. The information integrated by Senseo into
the IDE is as complete as the analyzed execution
scenarios; the encoding of such scenarios, for instance
with a set of test cases, is hence crucial to benefit from
Senseo in practice.

A controlled experiment with 30 professional de-
velopers confirms that the dynamic information pro-
vided by Senseo significantly improves correctness

and reduces the time needed for various software
maintenance tasks. A performance evaluation shows
that our approach is practical and able to visualize
dynamic information in the IDE that is updated more
than once per second.
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D. von Dincklage, and B. Wiedermann, “The DaCapo bench-
marks: Java benchmarking development and analysis,” in
OOPSLA ’06: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages,
and Applications. New York, NY, USA: ACM Press, Oct. 2006,
pp. 169–190.

[18] M. Dmitriev, “Profiling Java applications using code hotswap-
ping and dynamic call graph revelation,” in WOSP ’04: Pro-
ceedings of the Fourth International Workshop on Software and
Performance. ACM Press, 2004, pp. 139–150.

[19] NetBeans, “The NetBeans Profiler Project,” Web pages at http:
//profiler.netbeans.org/.

[20] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dy-
namic metrics for Java,” ACM SIGPLAN Notices, vol. 38, no. 11,
pp. 149–168, Nov. 2003.

[21] B. Dufour, L. Hendren, and C. Verbrugge, “*J: A tool for dy-
namic analysis of Java programs,” in OOPSLA ’03: Companion
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. New York,
NY, USA: ACM Press, 2003, pp. 306–307.

[22] M. Arnold and B. G. Ryder, “A framework for reducing
the cost of instrumented code,” in SIGPLAN Conference on
Programming Language Design and Implementation, 2001, pp.
168–179.

[23] J. Pleviak and A. A. Chien, “Precise concrete type inference
for object-oriented languages,” in Proceedings of OOPSLA ’94,
1994, pp. 324–340.

[24] P. Rapicault, M. Blay-Fornarino, S. Ducasse, and
A.-M. Dery, “Dynamic type inference to support
object-oriented reengineering in smalltalk,” pp. 76–77,
1998, proceedings of the ECOOP ’98 International
Workshop Experiences in Object-Oriented Reengineering,
abstract in Object-Oriented Technology (ECOOP ’98
Workshop Reader forthcoming LNCS). [Online]. Available:
http://scg.unibe.ch/archive/famoos/Rapi98a/type.pdf

[25] A. Hamou-Lhadj and T. Lethbridge, “A survey of trace ex-
ploration tools and techniques,” in Proceedings IBM Centers for
Advanced Studies Conferences (CASON 2004). Indianapolis IN:
IBM Press, 2004, pp. 42–55.

[26] A. Dunsmore, M. Roper, and M. Wood, “Object-oriented in-
spection in the face of delocalisation,” in Proceedings of ICSE ’00
(22nd International Conference on Software Engineering). ACM
Press, 2000, pp. 467–476.

[27] N. Wilde and R. Huitt, “Maintenance support for object-
oriented programs,” IEEE Transactions on Software Engineering,
vol. SE-18, no. 12, pp. 1038–1044, Dec. 1992.

[28] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides, “Visual-
izing the behavior of object-oriented systems,” in Proceedings
of International Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’93), Oct. 1993, pp.
326–337.

[29] T. Richner and S. Ducasse, “Using dynamic information
for the iterative recovery of collaborations and roles,” in
Proceedings of 18th IEEE International Conference on Software
Maintenance (ICSM’02). Los Alamitos CA: IEEE Computer

Society, Oct. 2002, p. 34. [Online]. Available: http://scg.unibe.
ch/archive/papers/Rich02aRolesExtractionICSM2002.pdf

[30] B. de Alwis and G. C. Murphy, “Answering conceptual queries
with ferret,” in Proceedings of the 30th International Conference
on Software Engineering (ICSE). New York, NY, USA: ACM,
2008, pp. 21–30.

[31] S. G. Eick, J. L. Steffen, and S. Eric E., Jr., “SeeSoft—a tool for
visualizing line oriented software statistics,” IEEE Transactions
on Software Engineering, vol. 18, no. 11, pp. 957–968, Nov. 1992,
depth.

[32] S. P. Reiss, “Visualizing Java in action,” in Proceedings of SoftVis
2003 (ACM Symposium on Software Visualization), 2003, pp. 57–
66.
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