
Traits: The Formal Model?

Nathanael Schärli, Oscar Nierstrasz, Stéphane Ducasse, Roel Wuyts, and
Andrew Black

Software Composition Group, University of Bern, Switzerland
OGI School of Science & Engineering, Oregon Health and Science University
{schaerli, oscar, ducasse, wuyts}@iam.unibe.ch, black@cse.ogi.edu

Abstract. Traits are reusable units of behaviour that provide a level
of structuring for object-oriented programs above the level of methods
but below the level of classes. Structuring classes with single-inheritance
alone can lead to duplicated code when different branches of the hi-
erarchy need to use the same feature. Multiple-inheritance and mixins
alleviate this problem, but lead to other difficulties in the face of evolu-
tion: changes to classes or mixins can break code lower in the hierarchy
in unexpected ways.

Traits solve both problems by factoring out shared behaviour as sets of
methods that do not depend on state. Trait composition is symmetric
and conflicts must be managed explicitly; this means that changes in the
components do not lead to unexpected side effects.

This paper presents a formal model of traits, and defines some basic
properties of traits and classes. We also model the internal dependencies
created by self and super-sends so that we can specify precisely when
two classes are equivalent.

1 Introduction

Traits provide a mechanism that can be used to factor out shared behaviour from
classes. The purpose of this paper is to provide a formal basis for understanding
and reasoning about traits; it is not intended to be self-contained. A companion
paper, which we will refer to as the “traits paper” [SDNB02], shows that traits
overcome many difficulties with single and multiple inheritance, and with mixins.
We have also reported on the use of an experimental implementation to refactor
a part of the Smalltalk collections hierarchy [BSD02].

The semantics of single inheritance is well understood and it is described by
several operational and denotational formalizations [GR83,CP89]. For concise-
ness, we do not repeat any details of these formalizations. Instead we focus on
two contributions. First, we define traits and the various operators that can be
used to combine traits into compound traits, and ultimately into classes. Sec-
ond, we make precise the internal dependencies within a class that are created
when methods send messages to self and super. This enables us to specify when

? −Id: model3.tex,v 1.40 2003/02/24 16:43:37 oscar Exp −

2 Nathanael Schärli et al.

different ways of composing a class are equivalent from the perspective of pro-
vided and required services. Depending on the programmer’s goals, equivalent
classes might be regarded as legal refactorings, or as alternative views on a more
abstract form of the program.

2 The Traits Language

While developing traits we have not focussed on issues of concrete syntax. In
fact, because our initial implementation is part of the Smalltalk interactive devel-
opment environment, we have been able to defer syntactic considerations almost
entirely: traits are created and manipulated by the traits browser using method
templates and menu selections. However, we have found that readers grasp the
essentials of traits more quickly if they can see the various forms displayed as a
grammar, so in the traits paper we presented an abstract syntax for the princi-
pal operations on traits [SDNB02, section 4]. Here we reproduce that grammar,
and expand it to include constructs for method dictionaries, for the inheritance
operation on classes, and for definitions that give names to classes and traits.

method dictionary: D ::= {} | {x1 7→ m1, . . . , xn 7→ mn}
trait expression: T ::= NT | T + T | T − x | T [x→y]
trait definition: TDef ::= NT = D | NT = D with T
fields: F ::= {} | {f1, f2, . . . , fn}
class expression: C ::= nil | NC | F in D extends NC

| F in D with T extends NC

class definition: CDef ::= NC = C

D denotes a method dictionary, which is either empty or contains a finite
number of services (i.e., bindings of labels to methods) in which all of the labels
xi are distinct. T denotes a trait expression, which can be a named trait NT ,
the symmetric composition T + T of two traits, or a trait that is subject to an
exclusion T − x or an alias T [x→y]. A trait definition binds a trait name NT

to one of two forms: D, a method dictionary, or NT = D with T , a method
dictionary that adds methods to (and possibly overrides methods from) a trait.

F is a possibly empty set of variable (or field) names; it is not important
for our purposes whether these are instance variables, class variables, or static
variables. C denotes a class, which can be nil, a named class NC , or a con-
ventional class F in D extends NC , which consists of some fields F , a method
dictionary D, and a named superclass NC . In addition, a class can be structured
F in D with T extends NC ; the structured class acquires methods from the trait
T augmented (and possibly overridden) by those from the explicit method dic-
tionary D. Finally, a class definition CDef is simply a binding of a class name
NC to a class C.

Since it is context free, this abstract syntax does not capture several context
conditions. These are that a name NT cannot be used as a trait expression until
it has been defined (and similarly for NC). Also, the form F in D places the fields

Traits: The Formal Model 3

defined in F in scope within the method bodies mi that appear in D. Conversely,
no fields are in scope in D in the forms NT = D and NT = D with T .

The syntax does capture some important restrictions that the traits browser
imposes for reasons of human engineering. The with keyword, which allows
method overriding, is second class. It can appear only in the definition of a
named trait or class, and only with a literal method dictionary on the left hand
side: these restrictions help to ensure that all overriding of services in a trait is
explicit.

3 A Model for Traits

3.1 Informal Introduction

Because it is not important for the semantics of traits, we do not represent
the internal structure of methods in our model. Instead, we model methods as
atomic values in a set M, augmented with top and bottom elements to create
a flat lattice; ⊥ represents “no method” and > stands for a “method conflict”.
This also means that our model is independent of any particular programming
language.

Methods should be thought of as implementations, or code sequences. All we
assume about methods is that we can ascertain when they may send messages
to instances of their class. Such message sends are of two kinds: self-sends and
super-sends. Whereas self-sends employ the usual message lookup that starts in
the class of the current instance, super-sends cause the message lookup to start
in the superclass of the class that defines the method containing the super-send.

Traits are essentially sets of bindings of labels to methods; the labels name
the methods. We call these bindings services. Traits both provide services (i.e.,
the methods implemented) and require services (i.e., those that are invoked by
self- and super-sends). When we say that a class or a trait provides a service
with a particular label we mean that a binding of that label to a method exists.
When we say that a service with a particular label is required, we mean that a
binding of that label to a method needs to exist.

We introduce summation (+), exclusion (−), aliasing (→) and overriding (B)
as mechanisms for composing and modifying traits. When traits are composed
with +, labels that are bound to different methods will conflict ; we represent
this by binding the label to > in the sum. The B operation is intended to be
used to override these bindings to > with proper methods.

Traits are subordinate to classes in several ways. Unlike classes, traits bind
neither self nor super. Classes can contain fields, and methods in classes can
refer to those fields, so it is possible for classes to provide accessor methods
(also known assetters and getters). In contrast, traits do not contain fields, and
as a consequence methods in traits cannot refer to fields. However, because the
requirements of a trait method can be met by accessor methods, a trait method
can access state indirectly.

A class is built up from traits, methods, and a single superclass using single
inheritance. If the traits conflict, the class can eliminate the conflict by overriding

4 Nathanael Schärli et al.

the conflicting methods. super is bound only at the point that a class is composed,
and self refers to an instance of a composed class.

The labels required by a class consist of the set of self-sends made by all
the methods reachable by the super-send chain, minus the set of labels of the
provided services. A class is concrete if all its requirements are fulfilled, otherwise
it is abstract. A class is well-founded if the super-sends are properly bound; note
that a well-founded class can still be abstract. Two classes are equivalent if they
provide the same set of services, and all the methods reachable by sequences of
self- and super-sends are the same.

In the remainder of this section we make this model formally precise. In
section 4 we consider several examples from the traits paper, and show how they
are represented in the model.

3.2 Methods

The primitive elements of our model are the following disjoint sets:

– M, a countable set of methods,
– L, a countable set of method labels, and
– F , a countable set of field labels.

Because of the context restriction mentioned in section 2, trait methods can-
not access fields directly. In contrast, class methods can access fields, and the
method dictionaries of classes can define accessor methods that can be used by
trait methods to access fields indirectly. We do not make this distinction explicit
in the model by partitioning M. Instead, it will be sufficient to model methods
as atomic elements, and not to consider their internal structure. For instance,
we make no assumption on how equality of methods is tested in an actual lan-
guage: m1 = m2 might be equality of strings, of syntax trees, of bytecode, or of
something else.

We are, however, interested in which other methods are required by a given
method. We therefore model:

– selfSends : M→ 2L, the set of labels used in self-sends, and
– superSends : M→ 2L, the set of labels used in super-sends.

We extend selfSends and superSends to sets of methods by union:

– selfSends : 2M → 2L

selfSends(µ) =
⋃

m∈µ

selfSends(m)

– superSends : 2M → 2L

superSends(µ) =
⋃

m∈µ

superSends(m)

Traits: The Formal Model 5

Note that the precise definitions of selfSends and superSends are language-
dependent. For example, consider the method

fasten
— anObject — self hook.
anObject := self.
anObject button.
self class new clip.

It is clear that hook should be recognized as a self-send. What about button? A
little local static anaylsis ought to be able to show that this is also a self-send.
Is clip a self-send? We avoid answering this question! clip is a requirment on the
class, but whether it is recognized as such depends on how thorough an analysis
is carried out by the tools. We assume only that selfSends(m) provides a lower
bound on the set of messages that an object might send to instances of its class
while executing m. Other messages might be sent through indirect paths that
are hard to discover.

We extend the set of methods M to a flat lattice M?, with ⊥ @ m ∈M @ >,
and in which all other elements are incomparable. We will use ⊥ to represent
undefined and > to represent a method conflict. Thus, the least upper bound or
join operator t for M? is as shown:

t ⊥ m1 m2 >
⊥ ⊥ m1 m2 >
m1 m1 m1 > >
m2 m2 > m2 >
> > > > >

where m1 6= m2

@@ add the lattice digram to the right of this table @@

Definition 1. A service is a partial function binding a single method label to a
particular method. We use the notation:

x 7→ m

for the service that binds the label x ∈ L to the method m ∈M, and

x 7→ >

to indicate that label x is in conflict.

3.3 Traits

Definition 2. A trait, t ∈ T , is a finite set of services, i.e., a function,

t : L →M?

where {l ∈ L | t(l) 6= ⊥} is a finite set.

6 Nathanael Schärli et al.

Since traits are finite, we will always specify them extensionally, listing only
bindings to elements M and >. For example,

t = {x 7→ m1, y 7→ m2, z 7→ >}

defines a trait t that maps label x to method m1, label y to label m2, and for
which label z has a conflict.

By convention, selfSends and superSends of > and ⊥ are all ∅. We extend
selfSends and superSends to traits in the obvious way:

– selfSends : T → 2L

selfSends(t) def= selfSends(t(L))

– superSends : T → 2L

superSends(t) def= superSends(t(L))

Since traits are just finite mappings, two traits are equal when these mappings
are equal, that is, when equal labels map to equal methods.

Definition 3. The conflicts, conflicts : T → 2L, of a trait t are defined by:

conflicts(t)
def
= {l | t(l) = >}

Definition 4. A method dictionary d is a conflict-free trait, that is, a trait d
such that conflicts(d) = ∅.

Conflict-free traits model the literal method dictionaries D of the traits language
(see section 2).

Definition 5. The provided labels, provided : T → 2L, of a trait t are defined
as:

provided(t)
def
= {l ∈ L | t(l) ∈M}

i.e., the set of all labels that t does not map to ⊥ or >.

Definition 6. The required labels, required : T → 2L, of a trait t are defined
as:

required(t)
def
= selfSends(t) \ provided(t)

Notice that the required labels of a trait do not consider super-sends. However,
when we compose classes from traits we must take super-sends into account in
order to determine the required labels of the class (cf. Definition 17).

Traits: The Formal Model 7

3.4 Trait Operations

Traits can either be specified directly, as lists of services, or they may be com-
posed from other traits, by means of summation (+ : T × T → T), exclu-
sion (− : T × L → T), aliasing ([:=] : T × L × L → T), and overriding
(B : T × T → T).

Definition 7. Summation composes two traits, forming the union of non-conflicting
bindings and “disabling” the conflicting bindings:

(t1 + t2)(l)
def
= t1(l) t t2(l)

For example:

{a 7→ m1, b 7→ m2, c 7→ m3}+ {a 7→ m1, b 7→ m3} = {a 7→ m1, b 7→ >, c 7→ m3}

Proposition 1. Symmetric composition is associative and commutative.

Proof. Immediate from the definition, since the join operator t is associative
and commutative.

Definition 8. Exclusion removes a binding from a trait:

(t− l)(x)
def
=

{
⊥ if x = l
t(x) otherwise

For example:
{a 7→ m1, b 7→ >} − b = {a 7→ m1}

Definition 9. Aliasing introduces an additional name for an existing method:

t[x:=y](l)
def
=

{
t(y) if l = x
t(l) otherwise

For example:

{a 7→ m1, b 7→ m2}[c:=b] = {a 7→ m1, b 7→ m2, c 7→ m2}

These three operations model the +, − and → operations from the language
syntax of section 2.

When composing classes or traits, we may need to replace conflicts by proper
methods. For this reason we introduce the B operator.

Definition 10. A trait t1 may replace some of the bindings in another trait t2,
as follows:

(t1 B t2)(l)
def
=

{
t2(l) if t1(l) = ⊥
t1(l) otherwise

The B operator models the with syntax of the traits language; the trait
d with t is modeled by d B t. Because B is asymmetric, in our concrete traits
language its use is limited to definitions of named traits and named classes in
which literal method definitions appear on the left hand side (see the discussion
in Section 2).

8 Nathanael Schärli et al.

3.5 Classes

Whereas traits are just sets of services without any context, a class binds self

and super for its methods. In addition, a concrete class must provide all its
required methods. Because the method referred to by a super-send depends on
which methods are defined by the various superclasses, to define the meaning of
“required” for a class we must model the entire inheritance chain of the class.
We do this by representing a class as a sequence of method dictionaries.

Definition 11. A class, c ∈ C, is either the empty class, nil, or a sequence
〈φ, t〉·c′, where φ ⊂ F , t ∈ T , and c′ ∈ C.

If we assume that sm is the model for s, then the conventional class

φ in d extends s

is modeled by 〈φ, d〉·sm, and the structured class

φ in d with t extends s

is modeled by 〈φ, d B t〉·sm.

Running Example We will refer to the following example throughout the
remainder of this section.

c = 〈{i}, {a 7→ m6, x 7→ m1, y 7→ m2}〉
· 〈{j}, {b 7→ m7, x 7→ m3, y 7→ m4}〉
· 〈∅, {z 7→ m5}〉
· nil

where
selfSends(m1) = {a, y} superSends(m1) = {x}
selfSends(m2) = ∅ superSends(m2) = ∅
selfSends(m3) = {b} superSends(m3) = ∅
selfSends(m4) = {w} superSends(m4) = {z}
selfSends(m5) = {a} superSends(m5) = ∅
selfSends(m6) = ∅ superSends(m6) = ∅
selfSends(m7) = ∅ superSends(m7) = ∅

For conciseness, we will in future omit the trailing ·nil from all examples.

Definition 12. The incremental method dictionary, delta(c), of a class c, is:

delta(c)
def
=

{
{} if c = nil
d if c = 〈φ, d〉·c′

Definition 13. The superclass, super(c), of c is:

super(c)
def
=

{
nil if c = nil
c′ if c = 〈φ, d〉·c′

Traits: The Formal Model 9

Definition 14. The flattening of a class c, flatten(c), is the B composition of
the method dictionaries in its inheritance chain:

flatten(c)
def
=

{
{} if c = nil
d B flatten(c′) if c = 〈φ, d〉·c′

Definition 15. The method lookup, c � x, of a label x in a class c is:

c � x
def
= flatten(c)(x)

For our running example:

delta(c) = {a 7→ m6, x 7→ m1, y 7→ m2}
super(c) = 〈{b}, {b 7→ m7, x 7→ m3, y 7→ m4}〉·〈∅, {z 7→ m5}〉

delta(super(c)) = {b 7→ m7, x 7→ m3, y 7→ m4}
super(super(c)) = 〈∅, {z 7→ m5}〉

flatten(c) = {a 7→ m6, b 7→ m7, x 7→ m1, y 7→ m2, z 7→ m5}
flatten(super(c)) = {b 7→ m7, x 7→ m3, y 7→ m4, z 7→ m5}

flatten(super(super(c))) = {z 7→ m5}
c � y = m2

super(c) � x = m3

super(super(c)) � x = ⊥

Definition 16. The provided labels, provided : C → 2L, of a class c are defined
as:

provided(c)
def
= {l ∈ L | c � l ∈M}

i.e., the set of all labels that flatten(c) does not map to ⊥ or >.

Definition 17. A class c is well-founded if and only if all super-sends in its
inheritance chain are bound, i.e., if superSends(delta(c)) ⊆ provided(super(c))
and super(c) is well-founded. nil is well-founded by convention. 1

For a particular programming language, a class that is not well-founded may
generate run-time errors, or compile-time errors, depending on the philosphy of
its designers.

In the running example:

provided(c) = {a, b, x, y, z}

c is well-founded since the super-send to x in m1 is bound in super(c).

1 This definition is slightly more restrictive than necessary; in fact, it does no harm
for the superclass to contain a method that has an unbound supersend, provided
that this method is not reachable. Of course, such a method is of no practical use.

10 Nathanael Schärli et al.

3.6 Superclass Reachability and Class Equivalence

The required labels of a class are more subtle than those of a trait, because we
must consider not only self-sends, but also the entire inheritance chain of super-
sends. In the running example c, it is crucial to capture that the fact that the
accessor method b is required (and fulfilled) because m3 is reachable through a
chain of super-sends, whereas w is not required because m4 is not reachable.

Thus, to determine which methods are reachable, we see that we must con-
sider not only the methods bound to the provided labels, but methods that may
be reached by super-sends from the corresponding methods, methods that may
be reached by super-sends from those methods, and so on. We introduce the
notation c↑x1x2...xn = 〈m, c′〉 to mean that it is possible for the method bound
to x1 in class c to perform a super-send to x2, and for the method bound to
x2 in this context to perform a supersend to xn. If this occurs, then xn will
be bound to method m obtained from c′. For example, c↑x = 〈m1, c〉, since the
service x 7→ m1 occurs in delta(c), but c↑b = 〈m7, super(c)〉. For convenience,
we introduce the notation c�x̄, which returns just the method reachable by x̄
without its class, so c�x = m1 and c�b = m7.

Reachability for longer chains must take super-sends into account, so c↑xx =
〈m3, super(c)〉, since m3 is reachable by the super-send chain xx. On the other
hand, c↑xy = ⊥, since y 6∈ superSends(m1). Note that although m4 is not
reachable by any super-send chain starting from c, it is reachable from super(c).

Definition 18. c↑x̄, where c ∈ C and x̄ ∈ L+, is defined recursively, as follows:

nil↑x def
= 〈⊥, nil〉

c↑x def
=

{
〈m, c〉 if m = delta(c)(x) ∈M
super(c)↑x otherwise

c↑x̄y
def
=

{
super(c′)↑y if c↑x̄ = 〈m, c′〉 and y ∈ superSends(m)
〈⊥, nil〉 otherwise

Definition 19.

c�x̄
def
= m, where ∃c′ such that c↑x̄ = 〈m, c′〉

Theorem 1. For any class c and any single message x, c�x = c � x

Proof. By induction on the length of the super-send chain. The base case where
c = nil is trivial. The induction step has two cases, where x is bound in delta(c)
and where it is not.

Definition 20. A method m ∈ M is reachable from class c, if ∃x̄ ∈ L+ such
that m = c�x.

Definition 21. The set of methods reachable from a class c, is:

reachable(c)
def
= {c�x̄ | x̄ ∈ L+} \ {⊥}

Traits: The Formal Model 11

In the running example, reachable(c) = {m1,m2,m3,m5,m6,m7}.

Definition 22. The set of required labels, required(c), of a class c is:

required(c)
def
= selfSends(reachable(c)) \ provided(c)

Note that the required labels include the self-sends, not only of the provided
methods, but also of all methods reachable through super-sends.

Definition 23. A class, c ∈ C, is concrete if required(c) = ∅. A class that is
not concrete is abstract.

In the example, required(c) = {a, b, y} \ {a, b, x, y, z} = ∅, so c is concrete. In
contrast, required(super(c)) = {b, w} \ {b, x, y, z} = {w}, so super(c) is abstract.
Similarly, required(super(super(c))) = {a} \ {y} = {a}, so super(super(c)) is also
abstract.

Two classes are equivalent if exactly the same methods are reachable by the
same super-send chains.

Definition 24. A class c is equivalent to a class c′, c ≡ c′, iff:
provided(c) = provided(c′) and ∀x̄ ∈ L+, c�x̄ = c′�x̄.

Suppose that:

c′ = 〈{a}, {a 7→ m6, x 7→ m1, y 7→ m2, z 7→ m5}〉·〈{b}, {b 7→ m7, x 7→ m3}〉

Then c ≡ c′ since

provided(c) = provided(c′) = {a, b, x, y, z}
c�x = c′�x = m1

c�y = c′�y = m2

c�a = c′�a = m6

c�b = c′�a = m7

c�z = c′�z = m5

c�xx = c′�xx = m3

and no other methods are reachable.

4 Some Examples

In this section, we give the formalizations of some of the examples presented
in the traits paper [SDNB02]. For conciseness, we omit the methods to which
labels are bound except when there is a method conflict. For example, rather
than writing {a 7→ m1, b 7→ m2, c 7→ >} we simply write {a, b, c 7→ >}.

12 Nathanael Schärli et al.

Fig. 1. (a) shows how a trait TCircle is composed from a trait TGeometry and a nested
trait TMagnitude, which is again composed from the trait TEquality. Note that the
provided services of the nested traits are propagated to the composite trait (e.g., max:,
∼=, and area), and similarly, the unsatisfied requirements of the nested traits (e.g.,
center and radius:) are turned into required methods of the composite trait. In (b), we
again use the trait TEquality to specify the comparison behaviour of the trait TColor.
(c) shows how a class Circle is specified by composing the traits TCircle, TColor, and
TDrawing.

Traits: The Formal Model 13

TEquality = {∼=}

TDrawing = {draw, refresh, refreshOn:}

TGeometry = {area, bounds, diameter, scaleBy:, . . .}

TMagnitude = {<=, >, >=, between:and:,max:,min:} with TEquality

TColor = {red, green, blue, hue, saturation, red:, . . . , =, hash}
with TEquality

TCircle = {<, =, hash} with (TMagnitude + TGeometry)

Circle = 〈{center, radius, rgb},
{center, center:, radius, radius:, rgb, rgb:, initialize, =, hash, drawOn:}
with (TColor[colorEquals: → =][colorHash → hash]

+ TCircle[circleEquals: → =][circleHash → hash]
+ TDrawing)〉

extends Object

Fig. 2. Formal definition of the classes and traits shown in figure 1.

4.1 Graphical objects

In Section 3 of the traits paper [SDNB02, figure 5], we presented an example
that uses traits to represent graphical objects, such as circles and rectangles, in
a structured and reusable way. For ease of reference, the figure is reproduced
here as figure 1. We now show how the traits and classes given in figure 1 are
expressed in our model.

Figure 2 presents formalizations of all the traits and classes that are involved
in this example. The first three traits TEquality, TDrawing, TGeometry are
“primitive traits”, which means that they do not make use of any other traits.
None of these traits is complete, because they all send messages that do not
correspond to provided services. In fact, the required labels of these traits are:

required(TEquality) = {=}
required(TDrawing) = {bounds, drawOn:}

required(TGeometry) = {center, radius, radius}

The trait TMagnitude uses the trait TEquality, and implements additional
selectors such as <=, <, >=, etc.. Note that the trait TMagnitude does not pro-
vide the service = required by the trait TEquality. This requirement is therefore
propagated to the trait TMagnitude. Since TMagnitude additionally requires the
service <, the complete set of requirements is required(TMagnitude) = {<,=}.

The trait TColor also uses the trait TEquality, but unlike TMagnitude, it
implements a service =, which satisfies the requirement of TEquality. In addition,

14 Nathanael Schärli et al.

TColor also implements some color methods such as red, green, red:, etc., which
require the services rgb and rgb:.

The trait TCircle is the composition of the traits TMagnitude and TGeom-
etry. In addition, it implements the methods <,=, hash and thereby satisfies all
the requirements for TMagnitude. However, it does not satisfy any of the require-
ments of TGeometry and therefore, required(TCircle) = required(TGeometry).

Finally, we define the class Circle, making use of the traits TColor, TCircle,
TDrawing. This means that we combine these three traits by using the symmetric
composition operator +. Since TColor and TCircle provide different methods
for = and hash, this means that a conflict arises:

conflicts(TColor + TCircle + TDrawing) = {=, hash}

The class Circle resolves this conflict by implementing methods for = and
hash, which replace the conflicting methods. In order to allow these methods
to access the methods from TColor and TCircle, we use aliasing to make these
methods available in Circle under unambiguous names.

Note that the class Circle satisfies all the requirements of the traits that it
uses by defining methods that access its fields center, radius and rgb.

4.2 Read-write synchronization

In Section 5.2 of the traits paper, we describe how we can build a trait that
implements simple read-write synchronization in a reusable way. The problem
assumes the existence of two classes, A and B that are not related by inheritance
and provide unsynchronized read and write methods.

A = 〈{}, {read,write, . . .}〉 ·A′
B = 〈{}, {read,write, . . .}〉 ·B′

Our task is to create synchronized subclasses SyncA and SyncB. This can
be accomplished by writing a trait TSyncReadWrite, that implements a simple
synchronization strategy.

TSyncReadWrite = {read,write, acquireLock, releaseLock}
The methods read and write are implemented as shown in Figure 1 of the

traits paper:

read
self acquireLock.
value := super read.
self releaseLock.
↑ value

write
self acquireLock.
value := super write.
self releaseLock.

Traits: The Formal Model 15

↑ value

This means that the method read first calls the method acquireLock, then it calls
the unsynchronized read method by using a super-send, and finally it calls the
method releaseLock. The method write is similar. Since both acquireLock and
releaseLock need to access a semaphore, the requirements and super-sends of
TSyncReadWrite are as follows.

required(TSyncReadWrite) = {semaphore}
superSends(TSyncReadWrite) = {read,write}

Now we can use this trait to create subclasses SyncA of A and SyncB of B.

SyncA = 〈{semaphore}, {semaphore}B TSyncReadWrite〉 ·A
SyncB = 〈{semaphore}, {semaphore}B TSyncReadWrite〉 · B

Since the superclasses A and B provide methods labeled read and write, the
classes SyncA and SyncB are well-formed. And because SyncA and SyncB both
provide an accessor method labeled semaphore (and the corresponding field),
they are also concrete.

5 Summary

This paper has introduced a formal model for the mechanism described in the
“traits paper” [SDNB02]. It has also formalized the notions of required and
provided methods in an inheritance chain, and has used these notions to explain
what is meant by a well-formed class and a concrete class. Notice that these
definitions are in fact independent of the trait mechanism, and can be applied
to any single-inheritance language.

References

[BSD02] Andrew Black, Nathanael Schärli, and Stéphane Ducasse. Applying traits
to the Smalltalk collection hierarchy. Technical Report IAM-02-007, Institut
für Informatik, Universität Bern, Switzerland, November 2002. Also avail-
able as Technical Report CSE-02-014, OGI School of Science & Engineering,
Beaverton, Oregon, USA.

[CP89] William Cook and Jens Palsberg. A denotational semantics of inheritance
and its correctness. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices,
pages 433–443, October 1989. Published as Proceedings OOPSLA ’89, ACM
SIGPLAN Notices, volume 24, number 10.

[GR83] Adele Goldberg and David Robson. Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading, Mass., May 1983.

[SDNB02] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black.
Traits: Composable units of behavior. Technical Report IAM-02-005, In-
stitut für Informatik, Universität Bern, Switzerland, November 2002. Also
available as Technical Report CSE-02-014, OGI School of Science & Engi-
neering, Beaverton, Oregon, USA.

