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ABSTRACT
Encapsulation in object-oriented languages has tradition-
ally been based on static type systems. As a consequence,
dynamically-typed languages have only limited support for
encapsulation. This is surprising, considering that encapsu-
lation is one of the most fundamental and important con-
cepts behind object-oriented programming and that it is es-
sential for writing programs that are maintainable and reli-
able, and that remain robust as they evolve.

In this paper we describe the problems that are caused
by insufficient encapsulation mechanisms and then present
object-oriented encapsulation, a simple and uniform approach
that solves these problems by bringing state of the art en-
capsulation features to dynamically typed languages. We
provide a detailed discussion of our design rationales and
compare them and their consequences to the encapsulation
approaches used for statically typed languages. We also de-
scribe an implementation of object-oriented encapsulation in
Smalltalk. Benchmarks show that extensive use of object-
oriented encapsulation results in a slowdown of less than 15
per cent.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Classes and objects; Inheritance

General Terms
Languages

Keywords
Dynamic typing, Encapsulation, Encapsulation Policies, In-
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1. INTRODUCTION
Encapsulation is widely acknowledged as being one of the
cornerstones of object-oriented programming [22]. But what
does the term mean? In a classic paper, Alan Snyder defined
encapsulation as follows [28, p. 39]:

Encapsulation is a technique for minimizing inter-

dependencies among separately-written modules by

defining strict external interfaces. The external in-

terface of a module serves as a contract between the

module and its clients, and thus between the designer

of the module and other designers.

We have added the emphasis to point out that while this
definition captures the essence of encapsulation for modules,
it does not adequately define encapsulation in the context
of objects. To see this, suppose that we are trying to encap-
sulate an object that maintains an internal data structure,
such as a tree. We would like to protect the invariants of the
tree, but clients need to traverse it. If we pass our users an
unrestricted reference —an alias — to the tree, clients might
modify the tree in a way that breaks the invariant. What
we would like to do is to allow the encapsulating object full
access to the tree, including the right to modify it, but to
restrict the access that is granted to clients.

Solving this kind of encapsulation problem requires some
sort of protection based not on modules but on individual
references to objects. In contrast to module encapsulation as
defined by Snyder, the primary purpose of these object en-
capsulation [8] techniques is not to facilitate code evolution,
but to increase code reliability. It does this by allowing the
programmer to implement data structures whose instances
are guaranteed to be protected from the invocation of inap-
propriate operations on their subobjects.

Today, most statically typed object-oriented languages such
as Java, C++, and C# provide relatively good support for
module encapsulation, and many proposals have been made
for augmenting the static type systems of such languages so
that they can also express object encapsulation [2, 3, 8, 9,
13, 17, 20, 21, 25].

However, things are quite different in dynamically typed
languages. Popular dynamically typed languages such as



Smalltalk, Self, Python, and Ruby still provide no encapsu-
lation at all, or support it in a very limited way. Proposals
such as MUST for an encapsulation model for Smalltalk [30]
have never been adopted, either in Smalltalk or in any other
popular dynamically typed language.

The encapsulation model [12] proposed by the developers of
Self was rejected, and is not available in more recent versions
of the Self language [1]. There have been proposals dating
back at least as far as 1987 for extending Smalltalk with
some (limited) features for object encapsulation [7], but 17
years later, such features are still not available in Smalltalk.

In this paper, we propose an object-oriented encapsulation
model (OOE) for dynamically typed languages such as Small-
talk and Ruby. It provides a uniform and expressive mech-
anism to address most of the module and object encapsu-
lation problems of which we are aware. OOE is compatible
with dynamic languages because it is based entirely on mes-
sage passing and has a simple semantics that makes it easy
to understand and reason about.

OOE supports module encapsulation using Composable En-
capsulation Policies [27]: the degree of encapsulation is not
dictated by the implementor of a module, but is selected
by the user subject to policies defined by the implementor.
It also allows encapsulation policies to be associated with
individual references to objects, which is sufficient to solve
many, although not all, object encapsulation problems.

The rest of this paper is structured as follows. We first
describe the problems that are caused by insufficient encap-
sulation, and develop a set of goals that an effective encap-
sulation mechanism should meet (Section 2). After giving
a brief outline of our proposal for Object-oriented Encap-
sulation (OOE) in Section 3, we describe OOE in detail in
Section 4, deferring to Section 5 the discussion of why we
took particular design decisions, and the alternatives that
we considered and rejected. In Section 6, we give a detailed
description of our implementation of OOE in Smalltalk and
use benchmarks to evaluate its impact on performance. In
Section 7 we evaluate OOE against our goals; Section 8 de-
scribes related work and Section 9 concludes.

2. PROBLEMS AND GOALS
In this section, we set the context for our work, and motivate
it by describing the problems that are caused by inadequate
encapsulation mechanisms. Based on these problems, we
then formulate a set of goals for an object-oriented encap-
sulation model for dynamically typed languages.

2.1 Encapsulation in Dynamic Languages
Why is it that encapsulation, which is such a well-established
feature of statically typed languages, is so poorly supported
in dynamically typed languages? We believe that there are
three reasons.

First, most of the proposed encapsulation models address
only a small subset of the various encapsulation problems,
and so no one of them seemed to add enough value to justify
the additional complexity. For example, the model proposed
for Self [12] addresses the issue of how to prevent a method

from being called from within another module1, but does not
address other module encapsulation problems such as pre-
venting a method from being overridden, nor does it provide
any help in the control of object aliasing. This model was
in fact included in an experimental release of Self, but was
soon removed because it was found to be too complex. An
alternative proposal, from Noble, Clarke and Potter [24],
suggests extending languages like Self with dynamic object
encapsulation using techniques based on object ownership,
but it does not address the fact that the base languages do
not provide simple module encapsulation.

Secondly, many of the proposed encapsulation models are
not well-suited to the lightweight, dynamic, and entirely
message-based spirit of these languages. For example, the
Smalltalk extension MUST [30] significantly affects the light-
weight and dynamic character of the language by requiring
the programmer to make quite static encapsulation decisions
both when declaring methods and when sending messages.
Other approaches, such as that of Noble, Clarke and Potter
[24], are so restrictive that they would prohibit several com-
mon programming patterns such as external iterators [20]
and are hard to implement efficiently (see Section 8).

Thirdly, language designers may have perceived that the
kind of experimental programming for which dynamic lan-
guages were originally promoted —rapid prototyping and
single programmer experimental projects —did not need en-
capsulation. This perception may have been compounded
by the mismatch between available encapsulation techniques
and the experimental style.

Agile programming methodologies such as extreme program-
ming [6] make a virtue out of change and expand the reach of
techniques previously thought suitable only for experimen-
tal programming to include customer-driven projects under-
taken by a sizable team. The success of these methodolo-
gies has shown that the third reason was not well founded.
In particular, communal code ownership demands that pro-
grammers be given a way of expressing their intent as to
which methods are to be callable by which objects. Thus,
we feel that there is a real need for encapsulation in dynamic
languages, if only a mechanism can be found that is both ad-
equate and appropriate. Indeed, the absence of static types
makes the modularity improvements and reliability guar-
antees that come with powerful encapsulation mechanisms
even more valuable in a dynamically-typed language than in
one with a static type system.

2.2 The Problem of Interdependence
We agree with Snyder that one of the primary purposes
of encapsulation is to minimize interdependencies among
separately-written modules [28]. All object-oriented lan-
guages that are based on classes depend on the class as
the fundamental unit of modularity. In this paper we fo-
cus on class-based languages: this means that our modules
are classes. Hence, module encapsulation means class en-
capsulation, and we use the two terms interchangeably.

1Since the prototype-based language Self has no explicit
modules, the developers instead suggested to use implicit
modules consisting of an object together with its shared an-
cestors.
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Two fundamental operations are defined on classes: inheri-
tance and instantiation. Consequently, there are three ways
in which classes depend on each other: (1) when they are in
an inheritance relationship, (2) when one class instantiates
another to create an instance, and (3) when that instance is
eventually used. Although in many languages instantiation
is a built-in operation of the language (for example, Java’s
new), in Smalltalk it is not: instantiation is accomplished
by sending an ordinary message to the class itself. We will
therefore not single-out instantiation in the discussion that
follows; instantiation can be controlled in Smalltalk using
exactly the same techniques as message send.

2.2.1 Interdependence through Inheritance
Most dynamically typed languages such as Smalltalk and
Ruby do not allow a programmer to hide the internal imple-
mentation features (i.e., methods and instance variables) of
a superclass from its subclasses.

One aspect of this shortcoming is that the designer of a class
cannot specify access restrictions that prevent some or all
of its subclasses from accessing certain instance variables
or calling certain methods. This has severe consequences
for code evolution: whenever a feature of a superclass is
modified, the programmer must check all its (direct and
indirect) subclasses to ensure that the change does not break
existing code. This is because any subclass might use the
modified feature and may rely on its old meaning.

Another aspect of this shortcoming is that the programmer
cannot specify that a certain feature of a class should be
statically bound, that is, that all local references to the fea-
ture’s name should always be bound to the local feature
rather than to an overriding implementation that appears
in a subclass. This is perhaps unsurprising in a language
based on message passing and dynamic binding, but it too
has serious consequences on code evolution. In fact, the con-
sequences of this aspect are even worse. Not only must all
subclasses be checked when an existing feature of a class is
changed, but also all the subclasses and superclasses must
be checked when a new feature is added [29].

To see this, imagine that a maintenance programmer detects
some duplicated code in an existing class C and wants to
extract it into a new internal method called check. To do
this safely, the programmer has to make sure that the check
method does not accidentally override an internal method
with the same name implemented in any of C’s superclasses.
In addition, the programmer also needs to be sure that there
is no method named check in any of C’s subclasses, because
such a method would override the new implementation of
check that was intended to be internal to C.

This dependence on subclasses is particularly problematic:
it is often impossible to check all the possible subclasses of
a certain class, for example, because the programmer of the
class works for a framework vendor and the subclasses are
implemented by (and a trade secret of) its customers.

Python is one of the few dynamically typed languages of
which we are aware that provides even limited support for
decreasing the interdependence between classes that are re-
lated by inheritance. In Python, features whose names that

start with two underscores are “private” in the sense that
these names are valid only from within the class in which
they are defined. Outside of that class, such features are
available under a different name, which is derived from the
original name by prefixing the class name.

Although this makes it unlikely that such an internal feature
will be accidentally called or overridden outside of the class,
it offers no real protection. Furthermore, the approach of
protecting a method based on whether its name fits a con-
vention is clumsy because it requires all the references to the
method to be changed if the programmer decides to change
the status of the method from “private” to “public”.

2.2.2 Interdependence when using Instances
Whereas a class will typically be subclassed only a hand-
ful of times, it will be instantiated many times and its in-
stances will be used from many other classes. Thus, it is
even more important to protect the internal features of an
instance from inappropriate access by a client than it is to
protect them from a subclass. Unfortunately, most dynami-
cally typed languages provide only very limited support for
this sort of encapsulation.

In Smalltalk and Ruby, all instance variables are protected
from direct access from outside the object that contains
them. In contrast, all methods are externally accessible.
Python is even less restrictive: by default, instance vari-
ables are fully accessible from the outside and there is no
effective way of protecting them. Even if the programmer
declares them as “private” by using a name starting with
two underscores, they can still be accessed from the outside
as described in Section 2.2.1.

None of these languages provide any support for declaring
internal methods that cannot be invoked from outside of
the class in which they are defined. This has severe conse-
quences for code evolution: for every change to an existing
method the programmer must check all the classes in the
whole application to ensure that the change does not break
existing code. This is because even if the changed method
was intended to be reserved for internal use, there may still
be invocations of this method from any other class.

Some Smalltalk dialects attempt to solve this problem by
using a special naming convention to specify internal meth-
ods. In the Squeak dialect [19], for example, methods whose
names begin with pvt are effectively private: the compiler
ensures that these messages can be sent only to self. How-
ever, this approach not only prevents accesses to such inter-
nal methods from outside of their class but also from other
objects of the same class. Thus, the pvt convention is a form
of object encapsulation: in practice it is often too strict, be-
cause it prevents many commonly used data structures and
patterns from being implemented. As with Python’s double
underscore, this approach is clumsy because changing the
access attributes of a method requires renaming it.

The utility of the pvt feature is reflected in the Squeak image:
although this feature has been available for years, only 9 out
of about 40 000 methods in the latest Squeak image use it.
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2.3 The Problem of Fragile Data Structures
Module encapsulation, as described by Snyder and imple-
mented in most modern statically typed programming lan-
guages, minimizes the interdependencies between separately-
written modules. However, it is not fine-grained enough to
address the encapsulation problems related to object alias-
ing [18]. Reasoning about a class in an object-oriented pro-
gram involves reasoning about the behavior of its instances,
and those instances will depend for their correct operation
on subobjects instantiated from other classes. If we do
not have an object encapsulation mechanism that allows us
to prohibit inappropriate manipulations of these subobjects
(e.g., through aliases), checking the correctness of a class
may require reasoning about the whole program [8].

As an illustration, consider the class Morph, which is the
root of the GUI framework in Squeak. Morphs have a hi-
erarchic structure: a Morph contains an instance variable
named submorphs, which is a (possibly empty) collection
of Morph objects. Morph also implements a few methods
such as addMorph:, removeMorph:, and moveMorphToFront:,
which add and remove submorphs and change how they are
layered. Since a Morph is responsible for properly display-
ing all of its contents, it must take some additional actions
whenever its set of submorphs is changed, and it is therefore
important that the Morph’s clients always use these meth-
ods to modify the submorph collection, rather than doing
so directly. With class-based encapsulation mechanism, the
only way to ensure this is to make the reference to the sub-
morphs secret and never pass it out of the parent morph.

Unfortunately, this conflicts with the need of some of Morph’s
clients to use the protocol provided in Collection to enumer-
ate the submorphs. As a consequence, the implementor of
Morph has to choose between one of the following unpleasant
alternatives [20].

Value semantics: implement the method submorphs to re-
turn a copy of the submorphs collection. By avoiding
aliases, this approach also avoids the problem of in-
appropriate manipulations through aliases. However,
this is not a general solution to our problem because
value semantics is not always appropriate and its use
can therefore lead to subtle bugs. For example, if
no special care is taken, it can happen that another
thread adds or removes submorphs so that the copy
returned by the method submorphs is out of date be-
fore the client actually used it. Another problem is
that, depending on the usage scenario, this approach
can require a large amount of unnecessary copying,
thus incurring significant time and space penalties.

Proxies: instead of returning a reference to the submorphs
collection itself, return a reference to a proxy [15] that
serves as a protecting container for the submorphs col-
lection. The proxy understands only a safe subset of
the collections methods (e.g., the enumeration pro-
tocol). In addition to being laborious to implement
without language support, and introducing a forward-
ing overhead on every invocation, proxies have several
methodological drawbacks.

1. To protect the real submorphs object consistently,
the programmer must ensure that no reference to

it is ever allowed to escape, either from Morph
or from the proxy class. A single inadvertently
leaked reference, whether through a parameter,
return value or exception, defeats the whole scheme.

2. Whenever relevant methods are added, removed,
renamed and changed in the class OrderedCollec-
tion, the proxy class may also need to be updated
to ensure that all the safe messages are correctly
forwarded and that unrestricted references to the
submorphs object are not passed outside.

3. Subtle semantic problems can arise because of the
different identities of the submorphs object and its
proxy object.

Fat interfaces: instead of implementing a separate proxy
class, one could implement all the necessary enumera-
tion methods directly in class Morph. However, this is
really just a variation of the proxy approach and it suf-
fers from similar problems. It also increases the com-
plexity of the already overly complex Morph interface.
Most importantly, the standard names of the meth-
ods in the enumeration protocol cannot, in general, be
used: whereas the submorphs collection understands
do:, the parent Morph must instead implement meth-
ods like submorphsDo: and boundingPathDo: The need
to use different message names destroys the uniformity
of protocol that makes it possible to write polymorphic
code, which is one of the major benefits of the object-
oriented paradigm.

The implementation of Morph in Squeak currently uses value
semantics: the method submorphs returns a copy of the
submorph collection. However, to avoid excessive copying,
Morph also provides some of the methods that would make
up a fat interface: it implements the methods submorphsDo:,
submorphsReverseDo:, submorphsIndexOf: and many others
directly, although other enumeration methods such as sub-
morphsCollect: are missing.

Morph is by no means unusual: there are many other well-
documented examples that show the usefulness of object
encapsulation for common data structures and patterns such
as stacks and iterators [8, 23].

2.4 Goals
Our goal is to develop an encapsulation mechanism for dy-
namically typed languages that avoids the problems just de-
scribed. We seek a mechanism that is expressive, simple,
and appropriate for dynamic languages.

• Expressive. Our target mechanism must be expres-
sive enough to solve the problems that we discussed in
Sections 2.2 and 2.3. This means that it should facili-
tate code evolution by minimizing the interdependen-
cies between different classes and that it should allow
one to implement reliable data structures by control-
ling access to individual objects through aliases.

• Simple. It should add minimal complexity to dynami-
cally typed languages. This means that the semantics
of the language should remain simple and that the en-
capsulation mechanism should make it no harder to
understand and reason about programs.
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• Appropriate. The absence of type declarations makes
programming in dynamically typed languages more
lightweight than in their static counterparts. It also
makes programming more experimental and incremen-
tal, for example, it is possible to execute and test a
code fragment before all the type declarations are con-
sistent or even present. Furthermore, the absence of
static types allows classes to be reused in diverse and
sometimes unanticipated ways. Our target encapsula-
tion mechanism should support this dynamic style of
programming: it should not burden the programmer
with heavyweight type annotations, it should support
an incremental style of programming and it should
support flexible and unanticipated reuse.

3. OUR PROPOSAL IN A NUTSHELL
Object-oriented Encapsulation (OOE) combines the features
of class and object encapsulation mechanisms. OOE defines
all variables to be local, which means that they are com-
pletely hidden and inaccessible from outside of the structure
in which they are defined.

The encapsulation mechanisms for methods are based on two
cornerstones.

1. OOE uses encapsulation policies [27] to specify the en-
capsulation properties of classes and objects in a uni-
form way. Encapsulation policies can be shared among
objects and classes. We allow different clients to ac-
cess a given object or a class through different encap-
sulation policies; this is accomplished by associating
encapsulation policies with object references.

2. OOE defines encapsulation semantics by distinguish-
ing between three different kinds of message send. The
distinction is purely syntactic and allows us to define
a simple semantics that combines class and object en-
capsulation.

• For self-sends and super-sends, distinguished by
the keywords self and super, the receiver of the
message is statically known to be the current ob-
ject. Thus, object encapsulation is not relevant:
only the encapsulation policies used in the inher-
itance chain of the receiver’s class decide whether
a message send is valid and how it is bound.

• For object-sends (that is, all messages sent to ob-
ject references other than self or super), the en-
capsulation policy that is associated with the tar-
get object reference is used to decide whether a
message send is valid. In this case the target is
treated as a black-box that is accessed through
its external interface; internal details such as how
the target’s class is built from other classes are
irrelevant.

4. OBJECT-ORIENTED ENCAPSULATION
In this section we explain in some detail our model for ob-
ject-oriented encapsulation in dynamically typed languages.
For concreteness, we do this in the context of Smalltalk.
However, since our proposal relies on only the most fun-
damental features of a dynamically typed object-oriented
language based on message passing, we are convinced that

it could also be applied to other languages that fall into this
category (e.g., Ruby and Python).

For conciseness, this section presents our model without
much discussion of our design decisions and without any
attempt to justify them: this material is deferred to Sec-
tion 5.

4.1 All Variables are Local
One purpose of our model is to control and reduce the de-
pendencies between modules, which we assume to be class
definitions. As a first step, we determine that instance vari-
ables are never visible outside of the class in which they are
declared. This means that from within a class definition D,
one cannot access, for reading or writing, any instance vari-
ables that are defined in another class C, even if C and D are
related by inheritance. An immediate consequence of this
rule is that the names of the instance variables in a class D
can be chosen independently of the names of the instance
variables in all the other classes. This provides stronger en-
capsulation than Smalltalk-80, which allows a method in a
subclass to access the instance variables of a superclass.

As an additional restriction, we determine that each instance
of a class can access only its own fields, and not those of
other instances. This restriction is already present in the
Smalltalk-80 language.

Besides instance variables, Smalltalk has the concept of class
variables [16], which correspond to static fields in Java. As
with instance variables, we would like to encapsulate class
variables in the module in which they are declared. There-
fore, we determine that a class variable that is defined in
a class C can be accessed only from the class side of C: it
cannot be accessed from the instance side of C nor can it be
accessed from the class side of subclasses of C. The Small-
talk jargon “the class side of C” corresponds to the Java
terminology “the static members of C”. Thus, in Java ter-
minology, our restriction says that static fields defined in a
class C can be accessed only from the static methods of C,
but not by non-static methods of C nor by static methods
of subclasses of C.

Note that because access to instance variables and class vari-
ables can be granted through accessor methods (i.e., get-
ters and setters), these apparently severe encapsulation con-
straints for variables do not affect the kind of abstractions
that a programmer can write. However, they do allow us
to keep our model uniform and simple: we can now focus
exclusively on the encapsulation of methods.

4.2 Using Encapsulation Policies
Every encapsulation model needs a way to specify what ac-
cess rights should be associated with which methods. This
is usually done by defining a set of keywords such as pub-
lic, private, and protected, which can be used to annotate
methods where they are defined. This provides fine-grained
control over what can be accessed (individual methods), but
very coarse-grained control over whom can perform the ac-
cess (all code in one of a small number of pre-defined cat-
egories). One of the key benefits of our model is that we
use encapsulation policies to specify access rights, and thus
allow much more precision in controlling the whom.
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The concept of encapsulation policies has been described
and formalized in a language-independent way in a previous
paper presented at ECOOP 2004 [27]. We will not repeat
this materiel here, but will focus on the aspects that are
relevant to Object-oriented Encapsulation. A summary of
the relationship between this paper and the ECOOP 2004
paper can be found in Section 8.

4.2.1 What is an Encapsulation Policy?
The basic idea behind encapsulation policies is to separate
the encapsulation aspect of a class from the implementation
aspect of a class. This separation allow these two aspects
to be reused independently. The separation is accomplished
by introducing a new entity, called an encapsulation pol-
icy, which is essentially a mapping from method selectors to
access rights. Encapsulation policies are composable: this
means that not only can new encapsulation policies be de-
fined from scratch (i.e., by explicitly specifying the access
rights for each selector), they can also be defined by reusing
existing policies, in a way that is independent of the inheri-
tance hierarchy. Thus, encapsulation policies have a similar
flavor to Java interfaces, which can also be defined in terms
of other interfaces, and which can be reused across the in-
heritance hierarchy.

Encapsulation policies are used in two ways.

1. The designer of a class can associate an arbitrary num-
ber of encapsulation policies with the class. Each pol-
icy represents a set of encapsulation decisions that cor-
respond to a certain pattern of use. It is important to
note that these policies are independent of a partic-
ular mode of use (e.g., inheritance or message send).
However, the designer of the class can specify default
policies for each mode of use; these apply if the client
does not explicitly select another policy.

2. The client of a class can independently decide which
encapsulation policy to apply and in what way the
class will be used, i.e., whether the class will be sub-
classed or whether its instances will be sent messages.
The chosen policy then defines whether and how the
methods defined by the class can be accessed (e.g.,
whether they can be called or overridden). To avoid
accessing the class in ways that were not intended by
the designer, the chosen policy must be one that is
provided by the class, or a restriction of one that is
provided.

4.2.2 Applying Policies to Individual References
The encapsulation model described in this paper extends
the calculus of Composeable Encapsulation Policies [27] by
allowing encapsulation policies to be applied to individual
object references. Hence, each reference to a Smalltalk ob-
ject has an associated encapsulation policy that defines the
access to the object that is permitted through this reference.

This changes the way that Smalltalk objects are manipu-
lated in several ways.

• Instantiation. Classes are always instantiated through
an encapsulation policy (which may be the default pol-
icy for instantiation). However, this encapsulation pol-
icy is associated with the returned reference to the
object, rather than with the object itself.

• Message send. In Smalltalk, the only thing that can
ultimately be done with an object reference is to send
it a message. It is the encapsulation policy associated
with the object reference that determines whether or
not the message send is valid.

• Assignment. When an object is assigned to a variable,
passed as a argument or returned from a method, a
new object reference is created. The new reference is
a copy of the original and has the same encapsulation
policy.

• Restricting an object reference. A programmer can, if
the encapsulation policy of an object reference allows
it, request an object reference with a more restricted
encapsulation policy for a certain object. This is done
by sending the binary “restrict” message | to the ob-
ject. r | restrictingPolicy is a new reference to the same
to which r refers; the associated encapsulation policy is
the intersection of the policy of r and restrictingPolicy.

• Obtaining object reference with a different encapsula-
tion policy. In certain cases, a programmer can also
request a reference with a completely different encap-
sulation policy for a certain object. This is possible
only if (a) the designer of the object’s class explicitly
allowed this by implementing an appropriate method,
and (b) this method is accessible through the encap-
sulation policy of the available reference.

• Object Identity. The ordinary Smalltalk identity oper-
ator == compares object references without regard for
the associated encapsulation policies: two object refer-
ences are identical if they refer to the same object, even
if the references have different encapsulation policies.
However, since it is possible to retrieve the encapsula-
tion policy associated with an object reference, a pro-
grammer can also check whether two object references
have the same encapsulation policy.

4.3 The Varieties of Access Right
As was mentioned in Section 4.2.1, an encapsulation pol-
icy maps a message selector to a set of access rights. In
this section we consider the kinds of access rights that can
meaningfully be associated with a message.

Recall that we must consider access rights in two different
circumstances: sending a message to an instance and inher-
iting from a class. The situation when using an instance is
simple: either a message can be sent, or the message can-
not be sent. This distinction is modeled with the call right
c: a message m can be sent to a reference r if and only if
the encapsulation policy associated with r maps m to a set
containing c. However, note that a message that cannot be
sent to reference r might still be sendable to the same target
object through a different reference.

The situation is more complex when we consider inheri-
tance. The ability for a class to declare a method that is
“private”, i.e., neither callable nor overridable from its sub-
classes, is very important for maintainability. This is be-
cause a programmer can define such a method without hav-
ing to check whether existing subclasses already define it (see
Section 2.2.1). What, then, does it mean if one of the exist-
ing subclasses does define a method with the same name?
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We say that this means that the method is re-implemented.
It is not overridden, because sends of the private message in
the superclass do not invoke the re-implementing method in
the subclass. Instead, the subclass and the superclass each
have their own method, and both are reachable from their
own scopes. Note that the right to re-implement a method
(which we denote by r) is orthogonal to the right to over-
ride it (denoted by o). It may be quite appropriate for a
superclass to make a particular method re-implementable
and overridable, and to allow one of its subclasses to over-
ride it while another re-implements it.

Thus, we see that for each method there are three indepen-
dent access rights: o, r and c, and so there are potentially
23 = 8 different sets of rights. Which of these combinations
make sense? We determined (and discuss in Section 5.2)
that in a dynamically typed language like Smalltalk, it is not
reasonable for a superclass to prohibit re-implementation
(although it may be quite reasonable for a subclass to de-
cline the proffered r right). This leaves us with four sets of
rights that a superclass can offer to a subclass for each of its
methods: {r}, {or}, {cr} and {cor}.

{r} means “hidden”: the method can be re-implemented,
but not called or overridden.

{or} means “overridable”: the method can be re-implem-
ented or overridden at the discretion of the subclass,
but not called.

{cr} means “callable”: the method can be re-implemented
or called, but not overridden.

{cor} means that the subclass has “full access”.

Note that none of these sets of rights can be obtained in
Smalltalk-80. This is because the language does not support
the concept of re-implementation; a method implemented in
a subclass always overrides the corresponding method in the
superclass.

4.4 Controlling Access to Methods
Together with the access rights defined above, encapsula-
tion policies give the programmer considerable flexibility to
specify whether a method is callable or not, and whether it
should override or reimplement a superclass method. In this
section, we define how these encapsulation decisions affect
the semantics of the language; i.e., we define what it means
for a method to be declared as not callable, and what it
means to re-implement (rather than override) a superclass
method.

Note that the exact form of these definitions is one of the
most crucial issues in an encapsulation model for dynam-
ically typed languages. Our choice is discussed and moti-
vated in Section 5.1.

4.4.1 Three Kinds of Message Send
Smalltalk-80 distinguishes between two kinds of message
send: normal sends and super-sends. Normal message sends
are used to send a message to an arbitrary target object;
they are represented syntactically by an expression denot-
ing the target object followed by the message. Super-sends

C0

policy: P1

C1
foo
    ↑1
bar
    ↑self foo

policy: P2 = [ {cor} foo ]

C2
foo
    ↑2

C3
foo
    ↑3

policy: P3 = [ {cr} foo ]

Figure 1: A chain of subclass definitions showing
encapsulation policies on the inheritance relation.

differ from normal message sends in two ways: first, the tar-
get is always the current object (i.e., self), and second they
cause the message lookup to start, not in the class of the
receiver, but in the superclass of the class that contains the
super-send. Super-sends are syntactically distinguished by
using the keyword super as the target.

In our encapsulation model we partition the set of normal
sends into two categories with different semantics regarding
encapsulation: self-sends and object-sends. As with super-
sends in Smalltalk-80, the distinction is purely syntactic: a
message send is defined to be a self-send if and only if the
receiver of the message is the keyword self2. Object-sends
are defined to be all the message sends that are neither self-
sends nor super-sends. As a consequence, the expressions
x foo and self foo have different semantics, even if the current
value of variable x happens to be self: the first is always an
object-send, while the second is a self-send.

4.4.2 The Semantics of Re-implementation
If a subclass inherits from its superclass using an encapsu-
lation policy that does not allow it to override a method
inherited from a superclass, the subclass is nevertheless al-
lowed to re-implement the method. In other words, it is
allowed to define what is conceptually a new method that
happens to have the same name. This must necessarily af-
fect the meaning of method lookup, but does so differently
for the three different kinds of message send.

2If Smalltalk’s cascade construct [16] is used to send multiple
messages to the keyword self, all of the messages are self-
sends.
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We can now define the semantics of method lookup and re-
implementation. Consider subclasses C0, C1, . . . , Cn, where
C0 is the root of the class hierarchy and Ci is a subclass of
Ci−1, using the encapsulation policy Pi, for all 1 ≤ i ≤ n
(see Figure 1). Consider a message m that is sent from an
object of class Cn by executing a method that is defined in
class Ck, for some k ≤ n. We define the method lookup
for the three different kinds of send in terms of the ordinary
Smalltalk message lookup algorithm, parameterized by the
class where the lookup starts.

• Object-sends. If the message m is object-sent to an
object o, the method lookup starts in the class of o.

• Super-sends. If the message m is super-sent, the method
lookup starts in class Ck−1.

• Self-sends. If the message m is self-sent, we distinguish
two cases.

1. If there is a smallest index i with k < i ≤ n such
that Pi declares the message m not to have the
o right, then the method lookup starts in class
Ci−1.

2. If no such index i exists, the method lookup starts
in class Cn.

This means that for both object-sends and super-sends, the
method lookup is the same as in Smalltalk-80 and entirely
independent of encapsulation policies. Only self-sent mes-
sages are affected by the encapsulation policy.

As an illustration, consider Figure 1 and imagine that the
message bar is sent to an instance of C3, which means that
n = 3 and k = 1. When the method bar (defined in C1)
executes self foo, which foo method is invoked? In the figure,
P2 does associate the o access right with foo, whereas P3

does not. Hence i = 3 and the method lookup for foo starts
in class C2, where foo is indeed found and invoked.

4.4.3 Valid Message Sends
We can now also define the encapsulation restrictions that
apply to message sends. We assume that our message send is
located in a class C, which is defined as a subclass using the
encapsulation policy P , and we then define valid message
sends as follows.

• Object-send. An object-send of a message m to an
object reference r is valid if and only if m has right c
in the encapsulation policy that is associated with r.

• Super-sends. A super-send of a message m is valid if
and only if m has right c in P .

• Self-sends. We partition a self-send of a message m
into two cases.

1. If the method lookup of m yields a method that
is implemented in C or one of its subclasses, then
the send is valid.

2. If the method lookup of m yields a method that
is implemented in one of C’s superclasses, then
the send is valid if m has right c in P .

Thus, for self-sends and super-sends, the only relevant en-
capsulation policy is that of the class defining the method.
In contrast, for object-sends, the only relevant encapsulation
policy is that associated with the object reference. An at-
tempt to send an invalid message generates a messageInvalid
error. This is similar to, but distinct from, a messageNotUn-
derstood error, and can be handled by the programmer in a
similar way.

4.5 Examples
To clarify these definitions, we now present some examples
of how our encapsulation model can be used. We do this
using our previous Smalltalk-based syntax and policy man-
agement proposal [27]. An encapsulation policy literal is a
list of message selectors between brackets [ ]. The meaning
of such a literal is that the listed message selectors are fully
accessible, i.e., they are mapped to the set {cor}, whereas
message selectors that are not listed are hidden, i.e., they
are mapped to the set {r}.

4.5.1 Simple Class Extension
The first example defines Set as a subclass of Collection.

(Collection subclass: Set)
instanceVariableNames: ’array tally’;
policyAt: basicUse put: [add: addAll: remove: . . . ];
policyAt: basicExtend put: basicUse + [keyAt: scanFor: . . . ].

The new subclass offers its clients two encapsulation poli-
cies, named basicUse and basicExtend3. basicUse is defined
using a literal: it associates full access with the message se-
lectors add:, addAll:, remove:, etc. The policy basicExtend
is composite: it grants all the access rights defined in the
policy basicUse, but it also associates full access rights with
the message selectors keyAt:, scanFor:, etc..

Note that policies associated with the names basicUse and
basicExtend are default policies: in the absence of an explic-
itly stated policy, basicUse is used as the default policy for
new instances and basicExtend is used as the default policy
for new subclasses. The default rule was used in the defini-
tion of class Set: since we did not explicitly specify a policy
through which Set inherited from Collection, the basicExtend
policy of class Collection was used. Similarly, if we create an
instance of Set without explicitly specifying the encapsula-
tion policy that should apply to the instance, the default
policy basicUse defined in the class Set is used. However,
we can also create instances with the less restrictive basicEx-
tend policy by sending the message newWithPolicy: to the
class Set.

x := Set new. ”uses default policy basicUse”
x add: 1.
y := Set newWithPolicy: basicExtend.
y add: 1.
y scanFor: 1. ”valid message send”
x scanFor: 1. ”error! invalid message send”

We can also use a more restricted interface to create a sub-
class of Set called RandomizedSet. RandomizedSet defines a
new method randomDo:, which enumerates the elements in

3Those familiar with Smalltalk syntax should note that we
use a distinguished font for symbols rather than a prefix #.
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a random order and is implemented using a helper method
generate that returns a random number. OOE lets us state
explicitly that the class RandomizedSet is not intended to
override any of the methods of the class Set. In the code
below, this is done by specifying that RandomizedSet should
inherit from Set through the encapsulation policy basicUse
noOverride, which is the policy that allows the subclass to
call all the methods in the policy basicUse offered by Set
but disallows the overriding of any of them.

(Set subclass: RandomizedSet withPolicy: basicUse noOverride)
instanceVariableNames: ’seed’;
policyAt: basicUse put: super + [randomDo:];
policyAt: basicExtend put: super + [randomDo: generate]

This minimizes the interdependencies between Randomized-
Set and its superclass, and has the advantage that even if
someone later adds a new internal method generate to Set,
it cannot be confused with the version in RandomizedSet.
However, it should be noted that even though Randomized-
Set uses a restricted encapsulation policy to inherit from
Set, it is still possible for subclasses of RandomizedSet to
use a more liberal encapsulation policy which will permit
them to override methods in Set. Moreover, subclasses can
inherit from RandomizedSet through any of the encapsula-
tion policies that it offers. In our example, these policies
are basicUse and basicExtend, which both grant full access
rights to their message selectors and therefore allow the cor-
responding methods to be overridden. Note that both these
policies are defined using the keyword super that refers to
the policy of the same name in the superclass. (More details
are available in reference 27.)

4.5.2 Collection Hierarchy Example
We now present a more elaborate example that shows how
encapsulation policies can be used to create a simplified col-
lection hierarchy. We first define the class Collection, which
serves as the abstract root class of the hierarchy. This class
is defined as a subclass of the class Object using its default
policy for subclassing. The class Collection offers three en-
capsulation policies — enumeration, readOnly, and basicEx-
tend—which allow the class to be used in different scenar-
ios. This class does not offer a policy named basicUse be-
cause it is abstract and should not be instantiated.

(Object subclass: Collection)
instanceVariableNames: ”;
policyAt: enumeration put: PCollEnumeration;
policyAt: readOnly put: PCollReadOnly;
policyAt: basicExtend put: PAll.

Unlike the Set example, the encapsulation policies used here
are not literals but are globally named constant policies that
are defined independently and can therefore be reused in
many classes. The policy PCollEnumeration grants full ac-
cess rights to the messages in the enumeration protocol,
whereas the policy PCollReadOnly is built as the compo-
sition of the policy PCollEnumeration (which contains only
observer methods) and a policy that contains some other
read-only methods. The policy PAll is a special predefined
policy that allows full access to all message selectors.

Policy named: PCollEnumeration
is: [do: select: detect: collect: reject: . . . ]

Policy named: PCollReadOnly
is: PCollEnumeration + [isEmpty notEmpty size . . . ]

Using Collection, we now define the subclass OrderedCollec-
tion (used to represent an extensible vector). Since the ele-
ments in OrderedCollection are sequenced, this class imple-
ments additional methods such as at: and first. To make
these methods accessible, we add them into the encapsula-
tion policies enumeration and readOnly that are offered by
the class OrderedCollection. Additionally, because this class
is concrete, we offer the named policy PCollSequenced (the
definition of which is not shown) as basicUse.

(Collection subclass: OrderedCollection)
instanceVariableNames: ’array firstIndex lastIndex’;
policyAt: enumeration put: super

+ [from:to:do: reverseDo: . . . ];
policyAt: readOnly put: super + enumeration

+ [at: first last . . . asReadOnly asEnumeration];
policyAt: basicUse put: PCollSequenced;
policyAt: basicExtend put: PAll.

These policies can now be used to create object references
to instances of OrderedCollection under different encapsula-
tion policies. This is done by implementing the methods as-
ReadOnly, asEnumeration, and asSequencedCollection, which
use the new language element selfWithPolicy: to return an
object reference to the receiver of the currently executing
method (i.e., self) through the encapsulation policy that is
specified by the argument. Note that, as for instantiation
and subclassing, the argument to selfWithPolicy: must be
an encapsulation policy that is offered by the current class
(e.g., readOnly) or a policy that is derived from such a policy
using modifiers that make it more restrictive [27].

OrderedCollection>>asReadOnly
↑ selfWithPolicy: readOnly.

OrderedCollection>>asEnumeration
↑ selfWithPolicy: enumerate.

OrderedCollection>>asSequencedCollection
↑ selfWithPolicy: basicUse.

Given these definitions, we must prevent a user that has a
readOnly or enumerate reference from sending it the mes-
sage asSequencedCollection and thus acquiring a reference
with a less restrictive encapsulation policy. This is done by
making sure that the message asSequencedCollection is not
declared to be callable in the encapsulation policies read-
Only and enumeration. Similarly, asReadOnly must not be
declared to be callable in the policy enumeration, because
we intend that the access rights granted by readOnly are a
superset of the access rights granted by enumeration.

Using this OrderedCollection implementation, we can now
implement the method submorphs in the class Morph so that
it returns an object reference that is restricted to the enu-
meration policy.

Morph>>submorphs
↑ submorphs asEnumeration
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C
foo
   ↑1

bar: arg
   self foo.
   arg foo

policy: P = [ {r} foo ]

D
foo
     ↑2

Figure 2: The meaning of method hiding. C>>foo is
hidden. Which of the sends of foo from method bar:
invoke which of the foo methods?

Similarly, we can add support for a fully protected read-only
OrderedCollection by adding an instance creation method
readOnlyWith: to the class side of OrderedCollection.

OrderedCollection class>>readOnlyWith: aCollection
| inst |
inst := self new.
inst addAll: aCollection.
↑ inst asReadOnly.

This method takes a collection as an argument and then
creates a new read-only collection that contains all the ele-
ments in the argument. Note that the object reference re-
turned from this method is unique. It is the only reference
to the newly created object, which can therefore never be
mutated.

5. DESIGN DISCUSSION
In this section we review and discuss the main decisions in
the design of OOE. First, we elaborate on the decision to
base the meaning of method hiding on the distinction be-
tween self-sends and object-sends. Then, we justify our de-
cision regarding the possible combinations of access rights,
and finally we discuss how OOE fits into Smalltalk’s “every-
thing is an object” philosophy.

5.1 The Meaning of Method Hiding
As described in Section 4.3, a method with selector foo that
is implemented in class C is “hidden” from a subclass D
if a policy that assigns only the re-implement right r to
the selector foo is used for the inheritance operation. To
define exactly what such “hiding” means, we must answer
the following two questions, which are illustrated in Figure 2.

1. If D also implements a method with selector foo, and
a method bar: defined in C is invoked on an instance
of D, which sends of foo inside bar: are locally-bound
to the hidden method C>>foo rather than using the
ordinary method lookup?

2. Which sends to the hidden method C>>foo are valid?

In statically typed languages, these questions are usually
answered based on static types. However, in a dynamically
typed language, no static types are available, and so OOE
answers these questions by using a different semantics for
object-sends on the one hand, and self- and super-sends on
the other. This was one of the key design decision in OOE,
and the reasons for this choice are not immediately obvious.
In fact, we could have answered these questions based on
three different kinds of information:

• the dynamic type (i.e., the class) of the receiver,

• the identity of the receiver, and

• the different kinds of message send.

We now elaborate on the advantages and disadvantages of
these three options. Because dynamically typed languages
do not usually allow one to hide methods, we will first see
how hiding is accomplished in statically typed languages
such as Java, C++, and C#.

5.1.1 Based on Static Types
For concreteness, assume that the following Java methods
are implemented in the classes C and D, and that c1 and
c2 are two different instances of C, while d1 and d2 are two
different instances of D.

class C {
private int foo() {

return 1;
}
public void bar(C arg) {

C t;
int i, j, k, l;
t = this;
i = this.foo();
j = t.foo();
k = arg.foo();
l = new D().foo();

}
}

class D extends C {
public int foo() {

return 2;
}

}

In this code, the method C>>foo4 is hidden by labeling its
declaration with the keyword private. According to the Java
semantics, this means:

1. A message send obj.foo is locally-bound to the hidden
method C>>foo if the static type of obj is C.

2. A send to the hidden method C>>foo is valid only if it
occurs within the definition of C.

4Even though we are talking about a statically typed lan-
gauge such as Java, we will nevertheless use the Smalltalk
notation C>>foo to denote the method foo implemented in
the class C.
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As a consequence, when executing c1.bar(c2), the local vari-
ables i, j, and k get the value 1, because all the receivers of
foo have the static type C, while the variable l gets the value
2 because the receiver new D() is of static type D. Executing
d1.bar(d2) has the same effect: i, j, and k still get the value 1
because the three receivers this, t and arg still have the static
type C, even though the objects to which they refer all have
dynamic type D. Furthermore, the expression c1.foo() will
not compile outside of the definition of class C, because the
call to C>>foo is invalid.

The advantage of this approach is that it is statically ob-
servable which calls are locally-bound to the hidden method
C>>foo and whether these calls are valid. Furthermore,
the programmer can always decide which method should
be called by choosing the right static type. However, this
also means that as soon as a program contains methods that
are declared as private, the static types are used not only to
check whether a program is valid, but also to determine the
meaning of the program by defining whether a method is
late-bound! In other words, the types carry crucial seman-
tic information.

5.1.2 Based on the Class of the Receiver
The above approach cannot be applied to dynamically typed
languages because no static types are available. Instead, we
considered defining the semantics of hiding based on the dy-
namic type (i.e., the class) of the receiver together with some
static information about the class hierarchy. We answered
the two questions from Section 5.1 as follows.

1. A send of the message foo is locally-bound to the hid-
den method C>>foo if it occurs in the definition of C
and the class of the receiver is C, D or a subclass of D.

2. A send to the hidden method C>>foo is valid only if it
occurs within the definition of C.

At first glance, this definition seems appropriate because it
guarantees that the method D>>foo is never called by a mes-
sage send that occurs in the definition of C —in other words,
it guarantees that all the sends of foo in C are “hardwired”
to C>>foo, provided that the receiver is an instance of C, D
or a subclass of D. Unfortunately, this is not always what
the programmer expects. As an illustration, consider what
happens if we translate the example from Section 5.1.1 into
Smalltalk.

C>>foo
↑ 1

C>>bar: arg
| i j k l t |
t := self.
i := self foo.
j := t foo.
k := arg foo.
l := (D new) foo

C subclass: D withPolicy: [bar:].

D>>foo
↑ 2

The problem is that because there are no static types, the
programmer has no way of specifying whether a send of foo
should refer to the hidden method C>>foo or to D>>foo.
Thus, it is not clear whether the programmer intended the
expression (D new) foo on the last line of C>>bar: to refer
to the method D>>foo as it does in the corresponding Java
program or to the hidden method C>>foo. The same holds
for the send of foo to the argument arg.

The difference between the type-based and class-based in-
terpretations is reflected in the effect of executing the code
c1 bar: c2. In the Smalltalk example, the local variable l
gets the value 1 because the receiver is an instance of D
and the send of foo is therefore locally-bound. However, in
Java, the variable gets the value 2 as the static type of the
receiver is D. Besides the fact that this may not be what the
programmer intends and expects, the lack of explicit control
makes it impossible to correct the situation.

Other problems with the class-based interpretation are that
it makes static reasoning about the code much more difficult,
and that is hard to implement efficiently. It is in general
impossible to ascertain statically which sends of a hidden
selector are locally-bound to the hidden method. Consider
for example the expression arg foo in the method C>>bar:.
This expression will be locally-bound to the hidden method
if arg is of class C, D or a subclass of D. Otherwise, ordinary
method lookup applies.

Implementation costs are especially high if frequently-used
selectors are hidden in a large class hierarchy. As an ex-
ample, suppose that the class RectangleMorph implements a
new version of = that is incompatible with the semantics of
= used in its superclass, Morph. RectangleMorph therefore
inherits from Morph using a policy that hides the method =.
However, this means that in all the dozens of places where =
is sent in the classes Morph and Object (Object is the super-
class of Morph), the implementation must check, at runtime,
whether the receiver is an instance of class RectangleMorph
or one of its 142 subclasses to know whether this send should
be locally-bound to the hidden method.

This interpretation also causes severe semantic problems if
it is applied in a language that supports multiple reuse of
behavior through multiple inheritance or traits [26]. A prob-
lematic example is illustrated in Figure 3. Here we see a class
C that, besides many other methods, defines methods foo
and bar; method bar contains the expression self foo. Two
classes D1 and D2 inherit from C and override the method
foo, but do not implement any other methods. Now assume
that new class E multiply inherits from both D1 and D2.
It avoids a conflict between the two foo methods by hiding
both of them, and then re-implementing a new method foo.

Clearly, this causes an ambiguity in the method C>>bar be-
cause it is not clear which of the two hidden foo methods
D1>>foo and D2>>foo should be called by the expression self
foo. This ambiguity can be resolved by overriding the mes-
sage bar in E. However, all the other methods in C that send
the message foo to an instance of E or one of E’s subclasses
are also ambiguous and thus also need to be overridden.
Worse, it is not possible to ascertain statically which meth-
ods these are. As a consequence, all the methods that send
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C
foo
   ↑1
 

bar
   self foo.
check: arg
   ↑arg foo

D1
foo
   ↑2

D2
foo
   ↑3

policy: P1 = [ bar, check, foo ]

E
foo
   ↑4

policy: P1 = [ bar, check, {r} foo ]

Figure 3: a semantic problem with the class-based
interpretation of method hiding.

the selector foo would need to be overridden to ensure that
there are no ambiguities at runtime. This may not be practi-
cal because it requires many methods to be overridden even
if, in reality, they send foo only to instances of classes that
are completely unrelated to E.

In our example in Figure 3, we would need to override the
method C>>check: in E because it sends the message foo to
the argument arg, which may or may not be an instance of
E or one of its subclasses.

5.1.3 Based on the Identity of the Receiver
Another alternative is to define the meaning of hiding based
on the identity of the receiver. This would mean the follow-
ing.

1. A send of the message foo is locally-bound to the hid-
den method C>>foo if it occurs within the definition of
C and the receiver is identical to the object that sends
the message (i.e., self).

2. A send to the hidden method C>>foo is valid only if
it occurs within the definition of C and the receiver
is identical to the object that sends the message (i.e.,
self).

Compared to the previous approach, this alternative can be
implemented somewhat more efficiently, because checking
the receiver’s identity is faster than checking whether the
receiver’s class directly or indirectly inherits from another
class. Unfortunately, this check still cannot be done stati-
cally in most cases. As an illustration, consider again the
method C>>bar:. Clearly, the message send self foo on the
third line is always sent to the current receiver object and
so it can be optimized statically. However, for all the other

sends of foo, it is not immediately clear whether the message
is sent to the current object.

A reasonable static analysis could be used to infer that t is
bound to self on the second line and is not modified before
the message foo is sent to it on the forth line. However,
even using a sophisticated analysis, there will always be a
large number of sends like arg foo on line five, where it is
unlikely to be feasible to compute the identity of the receiver
statically.

In addition to these implementation problems, this approach
also leads to a semantics that may be hard to understand.
As an example, compare the subtle semantic difference be-
tween executing the expressions d1 bar: d1 and d1 bar: d2.
At first glance, one would expect these two pieces of code
to have the same effect because neither C nor D has any
instance-specific behavior. However, this is not the case:
in the first expression the value of the local variable k is 1
because arg happens to be identical to self, whereas in the
second expression, this value is 2 because arg and self are
different.

Things get even more tricky if meta-functionality is involved.
As an example, assume that the class C defines an instance
variable counter with a setter method counter:, and a method
C>>resetAll, which resets the value of counter for all the in-
stances of C.

C>>resetAll
self class allInstancesDo: [:each |

each counter: each foo]

Executing d1 resetAll leads to the quite surprising result that
d1 will have its counter value set to 1 whereas all the others
instances of class D have their values set to 2.

5.1.4 Based on Different Message Sends (OOE)
Last but not least, we consider the interpretation that we
selected for OOE, which is based on distinguishing self-sends
from object-sends. This allows us to answer our questions
in a way that is purely static.

1. A send of the selector foo is locally-bound to the hid-
den method C>>foo if it is a self-send that occurs
within a method defined in C.

2. A send to the hidden method C>>foo is valid only if it
is a self-send that occurs within the definition of C.

The advantage of this approach is that once we know that
the class D inherits from C through an encapsulation policy
that hides the method foo, we immediately know which mes-
sage sends are locally-bound. For example, in the method
C>>bar:, only the message send self foo on the third line will
be locally-bound to the method C>>foo; ordinary message
lookup applies to all the other message sends. This means
that if we execute the code d1 bar: d2, the local variable i
will get the value 1 while all the other variables j, k, l will
get the value 2.
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As a consequence, this approach can be implemented more
efficiently than the alternatives that we have presented (see
Section 6 for details about the implementation). Another
advantage over the alternatives is its simplicity, which facil-
itates program understanding and reasoning about the code.
Because the semantics have no dependencies on the identity
of objects, the code in the classes C and D has no instance-
specific behavior, and we can be sure that the expressions d1
bar: d1 and d1 bar: d2 are equivalent. Similarly, the avoid-
ance of any dependance on dynamic type greatly simplifies
things if OOE is used together with a mechanism that allows
multiple reuse of behavior.

Programmers who have never programmed in a language
where self-sends have a special semantics may at first find
it confusing that even if self is identical to t (as in C>>bar:),
the expression self foo is not necessarily equivalent to the ex-
pression t foo. However, our experience from analyzing and
writing code in terms of this model has convinced us that
this is actually a very natural concept, especially when used
in the context of our object-oriented encapsulation model.
We quickly began to think of a self-send as an “internal
send”, i.e., a send that is issued from within an encapsula-
tion boundary and which can therefore access hidden meth-
ods. In contrast, an object-send is an “external send”, i.e., a
send that always accesses its receiver through the encapsula-
tion policy associated with its reference, no matter whether
the message was sent from within the receiver object or from
within some other object that has the same class as the re-
ceiver.

Nevertheless, this approach does have some drawbacks. One
of them is that treating self-sends and object-sends differ-
ently makes all message sends that have self as one of the
arguments asymmetric. As an example, consider the two
expressions self = arg and arg = self. One might expect =
to be symmetric, but because one expression is a self-send
and the other one an object-send, this may not be the case.
Of course, this problem is not really new: message send is
inherently asymmetric in all single-dispatch object-oriented
languages, because only the receiver is taken into account
when the message is dispatched. This issue is analyzed ex-
tensively by Bruce and his co-authors [11].

Another issue is that even if a method C>>foo is hidden
from the subclass D, the class C may still contain sends of
the message foo that finally call the method D>>foo. As
a concrete example, assume that the method hasSameHash:
is implemented in the class Integer and that the subclass
LargeInteger re-implements the method hash.

Integer>>hasSameHash: arg
↑ self hash = arg hash

If this method is executed with instances of LargeInteger as
both the argument and the receiver, the self-send self hash is
locally-bound to the hidden method Integer>>hash whereas
the object-send arg hash invokes the method in LargeInteger.

Unfortunately, such situations cannot be avoided with any
of the alternatives considered in this paper. In fact, we
would encounter the same behavior with the identity-based
approach, while the approach based on dynamic types can

lead to the opposite situation, which is that it calls the hid-
den method in cases where it should not. As we have pointed
out above, this is a consequence of the fact that dynamically
typed languages do not provide any mechanism that lets the
programmer specify explicitly which method he means.

Being aware of this conceptual limitation, the approach of
differentiating between self-sends and object-sends has the
important advantage that the rule is extremely simple and
purely syntactic. Thus, the semantics is clear based on in-
spection of the source code alone. In fact, once one is used
to the fact that self-sends are conceptually different from
object-sends, it is absolutely not surprising that in the above
code, the two conceptually different sends of the message
hash will call different methods if hash is hidden in a sub-
class.

Indeed, this is nothing more than a logical consequence of
using Object-oriented Encapsulation: the self-send is an “in-
ternal send” to the object sending the message, whereas the
object-send is an “external send” that treats the the object
reference arg as a black-box and hence accesses it through
the encapsulation policy that is associated with it. Thus, it
is clear that even if the two receivers have the same class,
the effects of the two sends may well be different because
one send is seeing the features of the class from the inside
whereas the other is seeing it through an encapsulation pol-
icy that might hide certain internal features.

On a more conceptual level, we have found that program-
ming with OOE shifts the focus of the programmer’s think-
ing away from classes, and towards objects and their encap-
sulation polices, i.e., their interfaces. Whenever the pro-
grammer is dealing with an object, it is not really the class
of the object that matters, but the interface that is associ-
ated with the reference to the object. This leads to a style of
programming that emphasizes interfaces, indeed, program-
ming against interfaces (rather than classes) becomes not
only a recommended pattern but the only viable option.

5.2 Combinations of Access Rights
In Section 4.3, we determined that in a dynamically type
language like Smalltalk, it is not reasonable to prohibit re-
implementation of a method in a subclass. In the terminol-
ogy of Java, this means that it is not possible to declare a
method as final. While this decision may look quite contro-
versial at first, it can be justified by looking at the motiva-
tions for declaring a method as final in Java.

According to Arnold and Gosling [4], there are two main
motivations for final: security and performance. Declaring a
method m in a class C as final can improve security because a
programmer cannot declare a subclass that re-implements or
overides m. Therefore, one can rely on its implementation
wherever m is sent to an expression with static type C or
a subtype of C. However, since Smalltalk is not statically
typed, it offers no such type-based guarantees in the first
place. As a consequence, declaring a method as final to
improve security is pointless because another programmer
can always replace an instance of C with an instance of a
new class C′, which does not inherit from C and which can
therefore provide an arbitrary method for m.
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The performance benefit of declaring a method as final stems
from the fact that it allows, in certain situations, the com-
piler to inline invocations of that method. Although this
benefit applies equally to dynamically typed languages, we
feel that including a language mechanism solely for perfor-
mance is inappropriate in a higher-level language like Small-
talk. Not only does it make the language more complex,
but it also tempts programmers to sacrifice extensibility of
a class for the sake of a performance benefit that, in practice,
is often negligible or irrelevant.

Neither are we convinced by the argument that final is ap-
propriate for “perfect” methods that will never need to be
redefined. This argument is especially unconvincing in the
context of a dynamic language where code is often shared
among multiple programmers. In our experience, it is hard if
not impossible to know in advance how another programmer
might want to use a class in the future.

5.3 Encapsulation Policies on the Class Side
In Smalltalk, classes are ordinary objects: they are single-
ton instance of so-called metaclasses [16]. This makes the
language uniform, because all the concepts that apply to
objects also apply to classes. The impact of this on encap-
sulation is that the same encapsulation mechanisms that we
have defined for objects apply also to classes.

Because both class variables and class instance variables can
only be accessed on the class side of the class where they are
defined, a class must define accessor methods to permit its
instances to access these variables. This raises the question
of how such class-side accessor methods are encapsulated,
i.e., who is allowed to call them? Again, the answer is that
because Smalltalk classes are objects, OOE’s mechanisms
for restricting access apply uniformly to methods defined on
the class side.

On the class side, as on the instance side, the programmer
can define encapsulation policies named basicUse and ba-
sicExtend, which are then used as the default policies for
instances and subclasses. If there is a need to use a differ-
ent policy, this can be achieved by using an extended sub-
class creation message such as subclass:withPolicy:classPolicy:
that allows one to explicitly specify the encapsulation policy
through which the implicitly created metaclass accesses its
superclass.

One thing that is not possible is specifying a different in-
stance creation policy for the class object itself: all class
objects are created with the policy basicUse. This is a con-
sequence of the fact that a class is a singleton object that
is automatically created (using the default policy) when the
class is defined.

In spite of all this uniformity, encapsulation policies have
one special feature on the class side. In addition to the poli-
cies basicUse and basicExtend, class objects have a third
default policy called instance. This policy is used whenever
an instance accesses its class using the expression self class.
This feature is important because it provides a way for a
class to give its instances access through a different, and
usually broader, encapsulation policy than that available to
other objects. For example, this mechanism could be used

to allow the instances of the class Delay to call the acces-
sor methods of the class variable TimingSemaphore, while
keeping that accessor hidden from other objects.

An examination of the Squeak image shows that in most
cases it should be sufficient to have only the default encap-
sulation policies on the class side. Nevertheless, allowing
custom encapsulation policies on the class-side is valuable
as it will allow system engineers to hide the large number
of internal meta-methods that are inherited from Behavior,
ClassDescription, and Class. As an example, custom class en-
capsulation policies would make it possible to prevent pro-
grammers from inappropriately accessing the method dic-
tionary using compiledMethodAt:.

6. IMPLEMENTATION
We have extended the Squeak language [19] so that it sup-
ports the encapsulation features presented in this paper. In
this section, we first give a schematic overview of our im-
plementation. Then, we we focus on some implementation
details, and finally, we evaluate the costs of our implemen-
tation based on different benchmarks.

6.1 Schematic Overview
To implement OOE in Smalltalk, we needed to make sure
that all message sends behave according to the semantics we
have defined in Section 4.4. For self-sends and super-sends,
this can be done statically, which means that that there
is essentially no performance penalty compared to ordinary
Smalltalk. For object-sends, this is not quite the case: for
each send to an object reference that is protected by an
encapsulation policy, we must ensure that the send is valid.

6.1.1 Changes to the Compilation Process
We have modified the compilation process so that it reflects
the conceptual difference between self- and super-sends on
the one hand and object-sends on the other hand. Whenever
a method is compiled, we add it to the method dictionary
twice, keyed by both the ordinary message selector and by
an internal symbol that is distinct from all valid message
selectors.

Whereas the ordinary message selectors are used for object-
sends, the internal symbols are used for all self-sends and
super-sends. This means that all the selectors that are self-
sent and super-sent within a method are replaced by internal
symbols. To ensure that the same internal symbol is used
for all the occurrences of a given selector within a class,
we store the mappings between the real selectors and the
internal symbols in a per-class translation table. The first
time that a selector occurs, the internal symbol is generated
and stored in the translation table; it is then looked up on
all subsequent occurrences of the same selector in the class.

Of course, self-sends and super-sends refer not only to meth-
ods that are implemented locally; they also refer to methods
that are implemented in superclasses and subclasses. This
means that during the compilation process, we have to make
sure that the translation tables of classes that are related by
inheritance map the same real selectors to the same inter-
nal symbols, unless the selector is not callable or is declared
to be re-implemented by the encapsulation policy through
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which a subclass inherits from its superclass. We ensure this
by making sure that each translation appears in the table
of only the topmost class that implements or calls the selec-
tor, and by using a lookup algorithm that is similar to the
normal Smalltalk method lookup to do the translation.

The details of this algorithm are outside of the scope of
this paper, but it is worth noting that it takes the access
rights of the encapsulation policies used for the inheritance
operation into account to make sure that all the self-sends
are finally dispatched according to the semantics defined in
section Section 4, and that invalid self-sends and super-sends
are detected at compile-time.

6.1.2 Changes to the Virtual Machine
The compilation process just described ensures that all the
self-sends and super-sends have the right semantics; no mod-
ification to the virtual machine is necessary and we can use
the ordinary Smalltalk message lookup process. For object-
sends, things are a bit more complicated. First, we need
to model the fact that every object reference can have its
own encapsulation policy. The simplest way to do this is
to have each object pointer in the VM not point directly to
an object but instead point to an object reference. Such a
reference consists of two pointers: one to the object and the
other to the encapsulation policy. Objects are represented as
in the standard VM; encapsulation policies are represented
as identity sets that contain all the callable selectors.

Finally, we must change the lookup mechanism for object-
sends in the virtual machine. The new lookup process con-
sists of two steps. First, we need to check whether the send
is actually valid. This means that we have to check whether
the selector is in the identity set that is associated with the
object-reference. If it is not found, we raise a messageIn-
valid exception. Otherwise, the ordinary Smalltalk message
lookup is applied and we proceed as usual: if the method
is found in the method dictionary, it is executed; if not, we
raise a messageNotUnderstood exception.

6.2 Implementation Details
In this section, we discuss some implementation details and
point out the points in which our implementation differs
from the schema described above.

6.2.1 Compilation Process
One difference between the conceptual schema described
above and our actual implementation is that we do not
actually replace all self-sends and super-sends with inter-
nal symbols. The reason for this is that typically only a
small percentage of the methods are re-implemented in sub-
classes. Therefore, we can save space if we duplicate only
the method dictionary entries for methods that are actually
re-implemented in a subclass.

This means that when a new subclass is created and some
methods are added, we at first neither replace any self- and
super-sends with internal symbols nor do we associate the
new methods with an internal symbol in the method dic-
tionary. When a subclass actually re-implements such a
method, we generate a new internal symbol for the original
selector, add it to the translation table, create the necessary

entries in the method dictionaries, and perform the neces-
sary recompilations so that the self- and super-sends to the
original selector refer to the newly created internal symbol
instead.

The downside of this scheme is that it requires more work
at compile time, especially if the programmer performs op-
erations such as changing the superclass of a class. Whether
this scheme is beneficial depends on the target platform
(e.g., whether memory is a critical resource) and on how
frequently re-implementation actually occurs.

Our compilation process generates a special byte-code for
self-sends. This is important because in the case of self- and
super-sends, the virtual machine must not check whether the
sent selector is in the encapsulation policy associated with
the receiver. Since the Smalltalk byte-code set contains a
few dozens of different send byte-codes, introducing a spe-
cial “self-send version” for each of them was not an option.
Instead, we introduced a single new byte-code that sets a
virtual machine flag saying that the next send will be a self-
send, and we modified the compiler so that it generates this
byte-code immediately before each self-send.

6.2.2 Representing Object References
With respect to the virtual machine, the most important
question was how to represent the object references. For
simplicity, we decided to make object-references instances
of a new class ObjectReference that contains two instance
variables to contain the actual object and the relevant part
of the associated encapsulation policy, which is an identity
set containing the callable selectors.

The advantage of this representation is that each object ref-
erence is an ordinary object and can therefore be kept in
the object memory without changing it. In particular, no
changes to the garbage collection algorithm were necessary.
The disadvantage is that this is not the most efficient rep-
resentation. However, thanks to a few relatively simple op-
timizations we could bypass the most critical performance
bottlenecks.

The first optimization is that we made ObjectReference a
compact class, which means that the object header of its in-
stances consists of only a single 32-bit word and contains the
index of its class in the compact classes array. This makes
object references small, and more importantly, it allows the
virtual machine to check whether an object is an object ref-
erence or a real object by looking at the object header alone.
The efficiency of this check is especially important because
we do not represent every object as an object reference. One
reason for this is that there are objects such as integers,
floats, points, arrays, and strings that are instantiated very
frequently, but usually use the default policy for instantia-
tion (i.e., the policy associated with the name basicUse).

Our implementation addresses this issue by allowing the pro-
grammer to integrate the default encapsulation policy into
the method dictionary. To do this, we extended the rep-
resentation of classes so that each class has two method
dictionary pointers that by default both point to the ordi-
nary method dictionary. However, if the programmer tells
the class to integrate the default encapsulation policy, the
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second pointer points to the integrated method dictionary,
which is a method dictionary that maps all the selectors
(including superclass selectors) that are declared as callable
by the default policy to the corresponding method.

This has the advantage that all the instances of these fre-
quently used classes do not need to be wrapped by an in-
stance of ObjectReference as long as they use the default en-
capsulation policy. Besides the fact that this avoids the over-
head for creating the wrapper, it also avoids any additional
overhead for message sending. This is because we changed
the virtual machine so that it uses the pointer to the inte-
grated dictionary for all the object-sends to unwrapped ob-
jects, whereas it uses the pointer to the ordinary dictionary
for all the self- and super-sends as well as for object-sends
to wrapped objects. Since classes by default associate both
of these pointers with the ordinary dictionary, this change
to the virtual machine does not affect classes that do not
integrate their default policy.

The downside of this optimization is that integrating all the
callable selectors into a method dictionary uses more mem-
ory and requires additional care to keep the dictionary en-
tries consistent when the default policy and the class are
modified. However, as our current implementation uses this
optimization for only a dozen or so classes (less than 1%
of all the classes in the Squeak 3.7 image), the additional
memory consumption is negligible.

6.2.3 Method Lookup and Execution
As we have explained above, our implementation creates vir-
tually no overhead to the message lookup in case of self- and
super-sends. The same holds for object-sends that are sent
to instances that use the integrated default policy. However,
in case of object-sends to objects with an arbitrary encapsu-
lation policy, the virtual machine has to perform a lookup in
both the identity set representing the encapsulation policy
and in the method dictionary.

To reduce the overhead associated with these two lookups,
we extended the method lookup cache so that it takes into
account not only the selector and the class of the receiver,
but also the encapsulation policy. If an entry is found that
matches all three of these parameters, we are done and can
immediately execute the associated method without per-
forming a real lookup at all. If the found entry matches
only two parameters, we have to do a lookup in either the
identity set representing the encapsulation policy or in the
method dictionary. Only in the worst case when there is no
match at all do we actually perform both lookups.

If the method lookup yields an ordinary (non-primitive)
method, we can switch context and execute the method as
usual, no matter whether the receiver and the arguments on
the stack are object references or real objects. However, in
the case of primitives, we need to be more careful. This is
because it may or may not be necessary to unwrap the re-
ceiver and the argument before proceeding. The same holds
for byte-codes.

As an example, consider the primitive at:put:, which is used
to insert an object into an array at a certain index. When
this primitive is executed, the receiver, the index and the

Benchmark Orig. image OOE image
Tiny benchmark (byte-codes) 13.0 13.0
Tiny benchmark (sends) 10.0 15.0
STones80 (low-level) 12.6 12.9
STones80 (medium-level) 12.7 17.7
Collection benchmark 13.0 17.3
Squeak MacroBenchmark 10.4 13.7
Average 12.0 14.9

Table 1: Performance overhead (in percent) of the
modified Squeak virtual machine running an original
image and an image that extensively uses OOE.

object to be inserted are on the stack. Since the primitive
expects the receiver to have the format of an array, it needs
to be unwrapped. The same holds for the index, which
needs to be converted into a C-integer. However, the object
to be inserted must not be unwrapped. Instead, it must
be inserted as a wrapped object reference to ensure that
the real object does not “leak out” when the programmer
retrieves the reference from the array.

6.3 Costs
In this section we evaluate the costs of our implementation
in terms of execution speed and memory consumption.

6.3.1 Execution Speed
To evaluate the runtime overhead of our implementation, we
have compared the performance of the modified Squeak vir-
tual machine with the original virtual machine by means of
6 benchmarks5. As a reference, we first executed the bench-
marks in a Squeak 3.7 image on top of a copy of the original
Squeak virtual machine (version 3.6.2), which we compiled
using gcc 2.95.2. Then, we executed the same benchmark in
the same image using our modified virtual machine, which
had been compiled under identical conditions. Finally, we
modified the image so that it made extensive use of encap-
sulation policies, and then again executed the benchmarks
on top of the modified virtual machine.

Table 1 shows the results of this comparison. The num-
bers in the second column show the slowdown (as a percent-
age) that we encountered when we ran the benchmarks in
the original Squeak image on our modified virtual machine.
Since this image does not associate encapsulation policies
with any instances (so wrapper objects are used), these val-
ues are a good indication of the performance penalty that
is caused by our virtual machine modifications. In contrast,
the numbers in the third column show the slowdown that we
encountered when we ran the benchmarks in an image that
applies an encapsulation policy to virtually all the objects
involved in the benchmarks. This means that the overhead
includes the time that is necessary to create all the neces-
sary ObjectReference instances, to wrap and unwrap the real
objects, and to check whether the object-sends are actually
valid.

The first two rows show the results of two micro-benchmarks
that are used to get a raw idea of how many bytecodes

5All the benchmarks were executed under Windows XP on
a notebook equipped with a 1.2 GHz Pentium-III Mobile
Processor and 512 MB RAM.
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and message sends the virtual machine can execute per sec-
ond6. STones80 is a benchmark that is available for many
Smalltalk-80 dialects. Whereas the low-level version mainly
involves arithmetic operations, array operations, block op-
erations and object creation operations, the medium-level
version also performs recursive calls, collection and stream
operations. The collection benchmark is specifically written
for the purpose of evaluating the performance of the OOE
virtual machine, and it makes heavy use of nested collec-
tions. The result in the third column was measured in an
image where every collection instance is wrapped. The only
exception are instances of the class Array, which integrates
the default encapsulation policy (see Section 6.2.2).

The last benchmark is a Squeak macro-benchmark that mea-
sures the time for opening, moving, resizing, and closing
Smalltalk browsers on the screen. The result in the third col-
umn was measured in an image where most of the involved
objects such as every morph (the GUI objects of Squeak),
every collection, and every browser is wrapped. Again, we
used the integrated default policies for basic classes such as
Integer, Strings, Array, Point, and Rectangle.

As an overall result, these benchmarks show that the total
performance overhead for extensive use of OOE in Squeak is
about 15%. Given that we implemented our prototype from
scratch in just a few days, that we have not yet done any
performance tuning, and that we did not have any previous
experience with the Squeak virtual machine (or with any
other Smalltalk VM), this seems to be an acceptable result.
Nevertheless, we believe that there is still a large potential
for improvements. One indication for this is the fact that
the performance penalty of our modified virtual machine is
about 12% even if we do not use any encapsulation policies
and wrapper objects at all. This means that the majority
of the overhead is caused by checking whether an object
is wrapped and maintaining the extended method lookup
cache, whereas only a small amount of the time actually
goes into the additional method lookup, the creation of the
reference objects and the wrapping/unwrapping.

6.3.2 Memory Consumption
Although our implementation strategy does not require the
duplication of any source code or byte code, it does increase
memory consumption for the following reasons.

• For each re-implemented method, an internal symbol
has to be maintained in the translation table, and
an additional association objects is inserted into the
method dictionaries.

• Each class has an additional field to contain the in-
tegrated method dictionary. However, less than 1%
of the classes actually maintain such a method dictio-
nary; in the vast majority of classes this field points to
the ordinary method dictionary.

• An identity dictionary containing all the callable se-
lectors needs to be maintained for each encapsulation
policy that is associated with an object-reference.

6The reference values measured using the original Squeak
virtual machine are 87 252 897 byte-codes/sec and 2 465 693
sends/sec.

• At runtime, an instance of ObjectReference is used
whenever a (non-integrated) encapsulation policy is
applied to an object. Note that our implementation
ensures that ObjectReferences are never nested. We
are also experimenting with a cache that stores Ob-
jectReferences so that they can be reused if the same
encapsulation policy is applied to a particular object
more than once.

The overall increase in memory due to OOE depends on
how encapsulation policies are used. Since we have not yet
finished a consistent refactoring of the Squeak image using
OOE, we are not yet in a position to quantify it.

7. EVALUATION
In Section 2.4, we indicated that our goal was to define an
encapsulation mechanism that was expressive, simple, and
appropriate for dynamic languages. In this section we ex-
amine how well OOE meets these goals.

By way of assessment, we will look again at the problems
from Section 2. If the problem can be solved at all, we can
conclude that OOE is adequately expressive. Determining
if the solution is simple and appropriate is more subjective,
and here is it possible that the reader may reach different
conclusions from the authors.

7.1 The Problem of Interdependence
Class interdependence caused by inheritance and instanti-
ation can be controlled using OOE to the exact degree re-
quired. Returning to the example of the check method (see
Section 2.2.1), recall that we wished to introduce an internal
method check into a class C for the purposes of refactoring.

OOE allows us to make sure that this internal method is not
accidentally overridden and called in any clients, whether
they are subclasses or users of instances of C. This is done
by making sure that the new method check is not included in
any of the existing encapsulation policies that are offered by
the class C. Note that although this completely hides check
from all existing clients, OOE still allows us to make this
method available to future clients by offering a new encap-
sulation policy, for example fullExtend, that grants access
to the method check. Furthermore, if the override right o
is explicitly removed from the policy that C uses to inherit
from its superclass B, then C does not accidentally override
a method with the same name even if it is introduced into
B (and declared as overridable) at a later date.

Is this solution simple, and is it appropriate for a dynamic
language? On the surface, it certainly does not seem simple
when compared to an ad hoc solution such as labeling check
as private. However, such an annotation does not seem to fit
into the semantics of a dynamic language. Given the variety
of different scenarios in which a class can be used, it indeed
seems that to give it a systematic semantics, one would need
to invent a way of defining multiple interfaces for a single
class— in other words, we would need to invent a model
containing something very like encapsulation policies!

Thus, we argue that we have in fact achieved conceptual sim-
plicity. OOE uses a conceptually simple and uniform way to
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specify access rights, and it gives them a simple and stati-
cally observable semantics that makes it easy to understand
and reason about the code. Following the Smalltalk practice
of integrating rich tool support into the programming envi-
ronment, it is now a matter of designing appropriate tools
to improve the practicality of our approach. For instance,
we could provide usability similar to that of keyword-based
techniques if an improved browser displayed each method to-
gether with the corresponding encapsulation attributes and
allowed the programmer to change these attributes directly
in this display.

OOE specifically addresses the needs of incremental devel-
opment where requirements are changing and cannot always
be narrowed down in advance. This is because it allows the
class that provides some behaviour to offer its future clients a
range of encapsulation policies from which to choose. Thus,
an appropriate policy can be chosen at the time that the be-
havior is reused, not at the time that it is defined. In other
words, encapsulation decisions are late-bound, which we feel
is entirely appropriate for a dynamic language.

7.2 The Problem of Fragile Data Structures
The problem of fragile data structures can also be solved
using encapsulation policies, as we have already shown in
Section 4.5.2 for the submorphs example. Is the solution
simple and appropriate? We have added a single language
element to Smalltalk, selfWithPolicy:, which returns a refer-
ence to self with a different set of access rights. This is the
only way in which access rights can be amplified, and be-
cause it gives rights only to self, it can be fully encapsulated.
Our approach also seems appropriate for the dynamic and
lightweight character of the language because it does not
require type annotations; instead, changing the interface of
an object reference is performed by sending a message like
asReadonly.

It is true that this approach places on the programmer the
burden of defining the necessary interface amplification or
restriction methods — methods like asReadOnly and asEnu-
meration. More seriously, the programmer must also en-
sure that the rights granted by the various methods and the
methods included in the various policies correspond. For ex-
ample, if the enumeration policy were to accidentally con-
tain the right to call asReadOnly, the distinction between
readOnly and enumeration would be effectively lost, since
any user possessing the enumeration right could also acquire
the readOnly right.

Without ignoring the dangers of such accidents, we believe
that they indicate a need for tool support rather than a con-
ceptual shortcoming. It is easy to imagine a tool that would
detect when a restrictive policy contained a method that
gave access to a more liberal policy. More generally, a tool
that lets the programmer define a lattice of encapsulation
policies, either by writing constraints or by drawing a dia-
gram, could construct the appropriate policy definitions and
conversion operations and ensure that they correspond. We
see a similarity here with the various tools that automati-
cally generate instance variable access methods. Because in
both cases the underlying semantics is simple (rights associ-
ated with references in the one case, and the fully protected
nature of instance variables in the other), the programmer

soon becomes accustomed to defining the appropriate meth-
ods, and does not feel the need to extend the language with
features such as public instance variables.

8. RELATED WORK
The concept of Composable Encapsulation Policies as a flex-
ible way of specifying and managing the access rights of
methods was introduced by Schärli et al. at ECOOP 2004
using a set-theoretic and programming language-independent
model [27]. The ECOOP paper focuses on the limitations
of keyword based approaches and shows how they are over-
come by encapsulation policies. Furthermore, although it
contains a proposal for specifying and managing encapsu-
lation policies in Smalltalk, it does not discuss how using
such encapsulation policies could or should affect the mean-
ing of a Smalltalk program. Specifically, the prior work does
not address the meaning of the different access rights in a
dynamically typed language, nor does it suggest that en-
capsulation policies could be used to solve common object
encapsulation problems by associating encapsulation poli-
cies with object references rather than with objects.

MUST [30] is another encapsulation model that has been
proposed for the language Smalltalk. The main difference
from our model is that it is only concerned with module en-
capsulation and that it is much more static. Unlike OOE,
MUST does not allow encapsulation decisions to be “late
bound”, that is, postponed until an individual client is about
to use the encapsulated structure. Instead, it requires all
clients in a predefined category (i.e., superclasses, subclasses,
unrelated classes) to access the class through the same in-
terface. Furthermore, it requires the implementor to decide
between different forms of self-sends (e.g., locally-bound self-
send and regular self-send) when a class is written. In con-
trast, OOE has only one form of self-send and allows each
client of a class to decide how they should be bound by
selecting an appropriate encapsulation policy.

The developers of Self also proposed an encapsulation model
that addressed module encapsulation problems [12]. Al-
though Self is a prototype-based language, the Self proposal
is similar to the approach based on the dynamic type of the
receiver discussed in Section 5.1.2. As a consequence, it is
hard to implement efficiently. Another major difference from
OOE is that the Self encapsulation proposal deals only with
the question of which method can be called from where, and
not the harder problem of choosing between re-implementing
and overriding.

The Jigsaw modularity framework, developed by Bracha
in his doctoral dissertation [10], defines a variety of mod-
ule composition operators that control how attributes of a
module are encapsulated. These operators give a program-
mer fine-grained control over module encapsulation, and al-
low the client to customize the access rights. However,
the semantics of static binding and re-implementation is
not based on the distinction between self-sends and object-
sends. Furthermore, there is no support for addressing ob-
ject-encapsulation problems.

Hogg et al. note that object aliasing has been recognized as
a problem in both practical programming and formal veri-
fication for many years [18]. They also explain why many
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existing solutions to the aliasing problem tend to be too
conservative to be useful in practice. Subsequently, there
has been a lot of work on new and more flexible solutions to
aliasing problems. Some of these solutions use various forms
of type annotations on pointer variables. An early form of
this concept is the C++ keyword const, which prevents a
reference from being changed. Other, more sophisticated,
models provide annotations to declare a reference as unique
(i.e., it is the only reference to the object) and borrowed (i.e.,
it is a reference that may not be stored into an object’s in-
stance variables) [3, 9, 17, 20]. Boyland gives an excellent
overview and a comparison of the different annotation-based
proposals [9], and suggests that annotations should not be
considered individually but as a part of a general capability
system for pointers.

Although these proposals are, like OOE, based on defining
access rights to object on the granularity of references, there
are many differences. One of the most significant differences
is that they are based on annotating pointer variables with a
fixed set of predefined access rights, such as read, write, and
exclusiveRead. In contrast, OOE controls which messages
can be passed to an object reference, allowing us to obtain
object references with an unlimited set of customized access
rights, which we represent as encapsulation policies.

While this difference makes reasoning about capabilities eas-
ier and allows them to model certain properties (e.g., unique-
ness) that cannot be modeled using encapsulation policies,
they are fundamentally not object-oriented—unless one’s
universe of objects understand only two messages, read and
write. OOE is integrated into the message-based character
and semantics of dynamically typed languages like Small-
talk, and it avoids type annotations, which do not feature in
dynamic languages. Furthermore, OOE addresses both ob-
ject and module encapsulation problems in a uniform way,
while capabilities address object encapsulation only.

Ownership types are another approach to the aliasing prob-
lem [8, 13, 25]. Unlike capabilities and OOE, the basic con-
cept of this approach is to prevent aliases rather than con-
trolling what can be done through them. On the one hand,
this has the advantage that one can state that a certain
object should be owned by an aggregate and is therefore
automatically protected (by a sophisticated type system)
from being passed outside. This avoids the problem that
one might accidentally pass out an unprotected reference,
and makes the approach easy to reason about. On the other
hand, these same safety guarantees make these approaches
more restrictive, and even recent suggestions for flexible alias
protection still do not allow one to implement many com-
monly used data structures [20]. Barnett and Naumann
tackle some of these limitations by using friendship systems
that allow state dependence across ownership boundaries [5].

Noble et al. proposed an encapsulation model based on ob-
ject ownership for Self [24]. In comparison to OOE, this
model does not provide help for module encapsulation prob-
lems and is too restrictive to express some commonly-used
programming patterns such as external iterators. Where it
can be applied, it gives the programmer more guarantees,
but one has to expect a relatively high runtime overhead,
particularly for the argument rule.

The delegation-based programming language E [14] features
facets, which restrict the methods that can be sent to a cer-
tain object. Although facets and encapsulation policies have
a similar purpose, there are several differences. Facets are
written as wrapper objects that simply delegate the valid
method calls to the real object. This means that in con-
trast to encapsulation policies, facets contain actual code.
Furthermore, facets only control whether a method can be
called, but not whether it can be re-implemented or overrid-
den. This is related to the fact that E is based on delegation
and simulates traditional inheritance by parameterizing the
object constructor with an argument to contain self.

9. SUMMARY AND FUTURE WORK
We have introduced an encapsulation model for dynami-
cally typed languages that addresses both module encap-
sulation problems (i.e., interdependencies between differ-
ent classes) and object encapsulation problems (i.e., frag-
ile data-structures) in a uniform way. Our model is based
on two cornerstones. First, we use encapsulation policies to
capture all of the encapsulation aspects of both classes and
objects, which makes our model uniform and conceptually
simple. Second, we define the meaning of message passing in
the presence of encapsulated objects by introducing the dis-
tinction between two conceptually different kinds of message
send: “internal sends”, which are used for sending a message
to oneself without crossing the encapsulation boundary, and
“external sends”, which are used for sending a message to
another object through the associated encapsulation policy.

In combination, these two cornerstones make our model par-
ticularly appropriate for dynamically typed languages. This
is because of its conceptual simplicity and uniformity, and
the absence of type annotations. Instead, it relies on sending
messages to objects both for defining and for controlling the
operations that can be accessed through individual object
references.

We have presented our model in terms of the language Small-
talk and illustrated it with various examples. We believe
that it is equally applicable to other dynamic object-oriented
languages such as Ruby. We have given a detailed discussion
of the motivation for our design decisions, in particular with
regard to static understandability of the program code, and
we have given a detailed description of our implementation
in Squeak Smalltalk. We also presented different bench-
marks that show that the performance penalty imposed by
our model is moderate.

We are about to refactor more Squeak code using OOE. This
will serve as the basis for a more detailed evaluation of the
practicality of our approach. We also want to experiment
with applying our model to traits [26]. This looks like a very
promising combination because our encapsulation model has
been designed to be well-suited to non-standard composition
mechanisms, and in particular to multiple composition of be-
havior. Furthermore, as mentioned in Section 7, we plan to
provide tool support for constructing and manipulation of
encapsulating encapsulation policies, for expressing recur-
ring encapsulation patterns more easily, and for automatic
detection of possible “encapsulation holes”.
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