
Components, Scripts and Glue�

Jean-Guy Schneider and Oscar Nierstrasz

Software Composition Group, University of Berne,
Institute for Computer Science and Applied Mathematics (IAM),

Neubrückstrasse 10, CH-3012 Bern, Switzerland.
fschneidr,oscar g@iam.unibe.ch
http://www.iam.unibe.ch/ �scg

August 5, 1999

Abstract

Experience has shown us that object-oriented technology alone is not enough to
guarantee that the systems we develop will be flexible and adaptable. Even “well-
designed” object-oriented software may be difficult to understand and adapt to new
requirements. We propose a conceptual framework that will help yield more flex-
ible object-oriented systems by encouraging explicit separation of computational
and compositional elements. We distinguish betweencomponentsthat adhere to an
architectural style,scriptsthat specify compositions, andglue that may be needed
to adapt components’ interfaces and contracts. We also discuss a prototype of
an experimental composition language called PICCOLA that attempts to combine
proven ideas from scripting languages, coordination models and languages, glue
techniques, and architectural specification.

1 Introduction

The last decade has shown that object-oriented technology alone is not enough to cope
with the rapidly changing requirements of present-day applications. One of the rea-
sons is that, although object-oriented methods encourage one to develop rich models
that reflect the objects of the problem domain, this does not necessarily yield software
architectures that can be easily adapted to changing requirements. In particular, object-
oriented methods do not typically lead to designs that make a clear separation between
computational and compositional aspects; this separation is common in component-
based systems.

Component-based systems, on the other hand, achieve flexibility by clearly sepa-
rating the stable parts of the system (i.e., the components) from the specification of
their composition. Components are black-box entities that encapsulate services behind
well-defined interfaces. These interfaces tend to be very restricted in nature, reflect-
ing a particular model of plug-compatibility supported by a component-framework,
rather than being very rich and reflecting real-world entities of the application domain.

�In Software Architectures – Advances and Applications, Leonor Barroca, Jon Hall, and Patrick Hall
(Eds.), pp 13–25, Springer, 1999.

1

Components are not used in isolation, but according to asoftware architecture[30]
that determines the interfaces that components may have and the rules governing their
composition.

This separation of concerns can be seen more clearly when we consider scripting
languages. Whereas conventional programming languages are perfectly suitable for
implementing software components, scripting languages are designed for configuring
and connecting components. The use of scripting languages encourages the develop-
ment of reusable components (“bricks”) highly focused on the solution of particular
problems, and the assembly of these components by means of scripts (“mortar”).

Still, it may be necessary to adapt the behaviour of components in order to com-
pose them. Such adaptations are needed whenever components have to be used in
systems that they have not been designed for. Adaptations of this kind, however, are
often nontrivial (if not impossible) and considerable glue code may be needed to reuse
components coming from different frameworks [12]. In general, glue code is rather
application specific and cannot be reused in different settings, unless well-understood
glue abstractions can be used.

We are currently developing an experimental composition language that allows one
to express applications as compositions in terms of components, scripts, and glue. In
order to support formal reasoning about architectural styles and concrete compositions,
this language is being developed with a formal semantics based on�L, a variant of the
polyadic�-calculus [21].

This chapter is organized as follows: in Section 2, we summarize the state-of-the-
art in component technology and analyze problems with existing approaches. In Sec-
tion 3, we introduce a conceptual framework for software composition as an approach
to overcome these problems. We present our ongoing research on the composition lan-
guage PICCOLA in Section 4, and discuss related work and open problems in Section
5. We conclude with some remarks on future directions.

2 Motivation and State-of-the-Art

In order to cope with the advances in computer hardware technology and rapidly chang-
ing requirements, there has been a continuing trend in the development of software
applications towards so-calledopen systems[32]. Open systems differ from closed,
proprietary systems in the sense that they are not only open in terms of topology (dis-
tributed systems) and platform (heterogeneous hardware and software), but particularly
in terms of changing requirements: they assume that requirements evolve rapidly and
are neither closed nor stable. The essential point is that open systems define a generic
(hence reusable) architecture for a family of applications. An individual application
may either be considered as an instance of a generic family of applications or a snap-
shot in time of an evolving application [23]. By viewing open systems as compositions
of reusable and configurable software components, we expect to cope better with the
requirements of present day applications in general and rapidly evolving requirements
in particular.

Component-based software development is always driven by an underlying com-
ponent framework. A component framework offers a predefined set of reusable and
plug-compatible components and defines a set of rules how components can be in-
stantiated, adapted, and composed. Component-based software development has the
advantage that applications do not have to be developed from scratch: new systems can

2

benefit from well-understood properties and important design decisions of previous
systems and increased flexibility and adaptability during maintenance and evolution.

Object-oriented programming languages and analysis and design methods provide
a well-suited tool-box for component-based software development, but current practice
shows that the technology is often applied in a way that hinders the development of
open systems.

Object-oriented analysis and design methods are domain-driven, which usually
leads to a design based on domain objects. Most of these methods make the assumption
that an application is being built from scratch and they incorporate the reuse of existing
components and architectures too late in the development process (if at all) [28].

In order to successfully plug components together, it is necessary that i) the in-
terface of each component matches the expectations of the other components and ii)
that the “contracts” between the components are well-defined. Therefore, component-
based application development depends on adherence to restricted, plug-compatible
interfaces and standard interaction protocols. However, the result of an object-oriented
analysis and design method generally is a design with rich object interfaces and non-
standard interaction protocols.

Object-oriented programming languages have been very successful for implement-
ing and packaging components, but they offer only limited abstractions for flexibly
connecting components and explicitly representing architectures in applications. Given
the source code of an object-oriented application, it is quite easy to identify the compo-
nents. However, it can be notoriously difficult to tell how the system is composed. The
reason is that object-oriented source code exposesclass hierarchies, notobject interac-
tions. In addition, the way objects are interconnected is typically distributed amongst
the objects themselves, which hinders a clean separation between computational and
compositional features.

Although object-oriented applications can often be adapted to new requirements
with a minimal amount of new code, it can require a great deal of detailed study in
order to find out where exactly the extension is needed. Unfortunately, object-oriented
frameworks do not make their generic architecture explicit, which results in a steep
learning curve before a framework can be successfully reused. Since object-oriented
frameworks focus on subclassing of framework classes (aka white-box reuse), a de-
tailed understanding of the generic architecture is needed in order not to break contracts
between classes. In addition, changing framework classes often implies extensive mod-
ifications of application-specific code.

Visual application builders and scripting languages go a step further than object-
oriented frameworks since they already incorporate important ideas and concepts needed
for component-based application development (e.g., higher-level abstractions for com-
posing components). They generally: focus on a specific application domain (e.g.,
Delphi focuses on database applications for the Windows platform [6]); offer a collec-
tion of reusable components tailored to their application domain; and make the generic
architecture of applications much more explicit than object-oriented frameworks. How-
ever, due to their restriction to specific application domains, visual application builders
and scripting languages are not flexible enough for general-purpose component-based
development and lack a well-understood formal foundation.

3

3 A conceptual framework for software composition

As we have discussed in the previous section, there exist a variety of languages and
tools for building software systems from reusable components. There also exists a
considerable body of best practice, such as design patterns, standard software architec-
tures, and various reflective techniques. However, it is not clear how these techniques
can be productively combined in a disciplined way in order to build flexible and adapt-
able software systems. We propose an approach in which five of these techniques are
combined, namely:

� component frameworksprovide software components that encapsulate useful
functionality;

� architectural description languagesexplicitly specify architectural styles in terms
of interfaces, contracts, and composition rules that components must adhere to
in order to be composable;

� glueabstractions adapt components that need to bridge compositional mismatches;

� scripting languagesare used to specify compactly and declaratively how soft-
ware components are plugged together to achieve some desired result; and

� coordination modelsprovide the coordination media and abstractions that allow
distributed components to cooperate.

Before we discuss this approach in further detail, we first have to introduce the exact
meaning of the terms mentioned above.

3.1 Terminology

A component frameworkis a collection of software components and architectural styles
that determines the interfaces that components may have and the rules governing their
composition. In contrast to an object-oriented framework where an application is gen-
erally built by subclassing framework classes that respond to specific application re-
quirements, a component framework primarily focuses on object and class (i.e., com-
ponent) composition (aka black-box reuse).

A software component itself is astatic abstraction with plugsand can be seen as
a kind ofblack box entitythat hides its implementation details [23]. It is a static en-
tity in the sense that it must be instantiated in order to be used. Finally, a component
has plugs which are not only used toprovideservices, but also torequire them. The
essential point is that components are never used in isolation, but according to a soft-
ware architecture that determines how components are plugged together. Therefore, a
software component has to be considered as an element of a component framework.

A software architecturedescribes a software (sub-)system as a configuration of
components and connectors. A connector connects required ports of a set of com-
ponents to provided ports of other components. A configuration of components and
connectors can be used as a component of another (sub-)system. The main purpose of
software architectures is to make a clear separation between computational elements
(components) and their relationships (connectors) [30]. Anarchitectural styleis an ab-
straction over a family of software architectures. It defines a vocabulary of component
and connector types and a set of rules defining how components and connectors can be
combined [27].

4

An architectural description language(ADL) is a notation that allows for a precise
description of the externally visible properties of a software architecture, supporting
different architectural styles at different levels of abstraction. Externally visible prop-
erties refer to those assumptions other components can make of a component, such as
its provided services, performance characteristics, error handling, and shared resource
usage [4].

It is sometimes necessary to reuse a component in a different environment than
the one it was designed for and which does not match the assumptions the component
makes about the structure of the system that it was to have been a part of. Such a sit-
uation is sometimes referred to ascompositional mismatch[29]. The nature of a com-
positional mismatch can be: i) incompatible assumptions about the architectural styles
of the underlying component frameworks (i.e., architectural mismatch [12]); ii) dif-
ferent data formats (aka interoperability mismatch [15]); iii) different synchronization
schemes, and many more. In such a situation,glue is needed to overcome a composi-
tional mismatch and to adapt the “foreign” component to the new environment. Glue
abstractions are generally divided into two categories:adaptorsbridge different inter-
faces and architectural styles whereastransformersbridge incompatible data formats
[29].

Naturally, it is not enough to have components and frameworks, for building real
applications one needs a way to wire components together (i.e., to expresscomposi-
tions). In recent years, so-calledscripting languageshave become increasingly popu-
lar as they make it very easy to quickly build small, flexible applications from a set of
existing components. These languages typically support a single, specific architectural
style of composing components (e.g., thepipe and filterarchitectural style supported
by UNIX shells), and they are designed with a specific application domain in mind
(e.g., system administration, graphical user interfaces etc.) [26].

Historically, scripting languages were used for automating tasks (e.g., batch pro-
cessing) or for programming-in-the-small. However, modern scripting languages offer
other features as well.

First, scripting languages are extensible: new abstractions can be added to the lan-
guage, encouraging the integration of legacy code into frameworks and applications
[5].

Secondly, scripting languages are embeddable: it is possible to embed them into
existing components, offering a flexible way to adapt and extend applications.

Finally, they offer high-level abstractions for flexibly connecting existing compo-
nents and representing design elements in applications. Scripting can be considered as
a higher-level binding technology for component-based systems [8]. One should note
that in a complete environment, the composition of components using a script again
leads to a reusable component. Therefore, components and scripts can be considered
as a kind ofcomponent algebra.

A new class of formalisms has recently evolved for describing concurrent and dis-
tributed computations based on the concept ofcoordination. The purpose of a coordi-
nation model is similar to the one of software architectures: making a clear separation
between computational elements and their relationships by providing abstractions for
controlling synchronization, communication, creation, and termination of concurrent
and distributed computational activities [2]. One can also consider coordination as the
scripting of concurrent and distributed components.

5

3.2 Concepts in practice

In order to illustrate our approach of components, architectures, scripts, and glue, con-
sider the following UNIX shell script which reverses the lines of a 7-bit character input
stream:1

cat -n | sort -r -n | cut -b8-

Analyzing this shell script, we can immediately identify components and connectors
as well as the underlying architecture: the script consists of: i) a data source (i.e. the
standard input stream ofcat); ii) three components (the UNIX processescat , sort ,
andcut); iii) two connectors (i.e. character streams); and iv) a data sink (the standard
output stream ofcut). The components and the character streams of the script form a
pipeline, where each component only depends on the output of its predecessor. Since
all shell scripts fulfill similar restrictions, they all share a similar overall structure: they
conform to apipe and filter2 architectural style [30].

Further analyzing the shell script, it is possible to detect other important properties
of shell scripts. First, the composition of shell components using the pipe connector
again leads to a shell component (i.e., a filter process which reads from the standard
input stream and writes to the standard output stream). Therefore, all UNIX filters to-
gether with the pipe connector can be viewed as a component algebra. Second, it is
obvious that using thesort filter to reverse lines might not be the most efficient way
to solve this problem: reversing lines is a problem with linear complexity whereas the
complexity of sorting isO(n � logn). If efficiency is a major concern, it is possible
to reimplement the line reverser with the same interface using a more appropriate lan-
guage (e.g., Perl [33]). This is a common approach for application development using
scripting languages [9]. Third, the line reverser scripts only works for 7-bit characters
(thecat filter transforms non-printing characters). If it should be used for 8-bit char-
acters, it is possible to build a wrapper around it which encodes 8-bit characters in 7-bit
characters and decodes them after the lines have been reversed. This is a typical usage
of: i) a transformer in order to bridge incompatible data formats; and ii) a component
in an environment other than the one it has been designed for. Another possibility for
solving the problem is to exchangecat -n by nl -ba . Finally, due to the inher-
ently concurrent nature of the UNIX operating system, the character streams also act
as coordinators (synchronizers) between the three filters.

3.3 Other aspects of the conceptual framework

The primary focus of software architectures is the identification of components that are
necessary for the architecture, design, and implementation of a system. The impor-
tance of software architectures in the software life-cycle is often underestimated. Hav-
ing reusable architectural styles is a precondition for successfully developing reusable
components and frameworks [4] and, therefore, for building component-based appli-
cations.

There is a large variety of architectural description languages emerging from either
industrial or academic research groups [20, 30]. However, most of these languages
offer only a restricted set of architectural styles and are not sufficiently open to sup-
port new (i.e., user-defined) styles, since it is not possible to define new component or
connector types. In addition, they focus on specific application domains and do not
support dynamic reconfiguration of architectures.

1The usage and arguments of the UNIX programs used can be found in an appropriate UNIX manual.
2In UNIX terminology, a command likesort is usually called a filter.

6

As mentioned above, glue techniques are required to adapt components that do
not really fit the system architecture. Today, almost all component glue is based on
wrappersthat pack the original component into a new one with a suitable interface.
These wrappers usually have the form of an adaptor in order to bridge architectural
mismatch or a transformer to overcome interoperability mismatch. If wrappers are
used frequently, this technique can give rise to serious performance problems. How-
ever, most glue problems can be solved by usingbehavioural reflection[19]. The idea
is to intercept the messages that are exchanged between the components and to manip-
ulate them according to the requirements of the receiver of the corresponding message.
In particular, messages can be transformed, delayed, or even delegated. Comparable
approaches have been used in existing languages (Sina [1], CLOS [3], and Smalltalk
[13] to name but a few), but none of these approaches focuses primarily on overcoming
compositional mismatches.

Open applications often have to deal with new kinds of components at run-time
(e.g., exchanging a component of a database system by a new version). It is obvious
that a composition framework must offer some sort of introspection facilities in order
to inspect the interface and capabilities of a new component and its features to dynam-
ically connect it to other components. Modern scripting languages offer abstractions
for: i) dynamically loading and exchanging components; ii) restricted introspection
facilities based on interface declarations of components; and iii) for executing dynam-
ically created code. The last feature is often referred to as an “eval” feature [26].
However, most of these abstractions are rather ad-hoc and lack a well-defined formal
semantics.

Building component-based applications is seldom just a matter of plugging together
components from a single component framework: it often entails building components
as a composition of other (possibly lower-level) components which can be reused in a
family of applications. In contrast to the fact that each software system has an archi-
tecture, it is often not possible to assign one architectural style to a system: a system
may be a combination of several architectural styles (e.g., a filter of a pipe and filter
pipeline is structured in a layered style). Such systems are calledheterogeneous[4, 30].
Therefore, a composition language must provide support for packaging a composition
of components as a new component and for simultaneously using multiple architectural
styles.

4 PICCOLA – a Small Composition Language

Programming software components and combining them using scripts are very dif-
ferent activities that may well benefit from different kinds of tools. We expect that
traditional programming languages will be best suited for programming components,
whereas something we call acomposition languagemay be better for specifying archi-
tectural styles, coordination abstractions, glue abstractions, and scripts.

PICCOLA is a small composition language currently under development that is in-
tended to address these four aspects of composition. The language is being developed
“bottom up” by adding thin layers of abstraction and syntax on top of the� calcu-
lus. The kernel of the PICCOLA prototype is an interpreter (written in Java) of�L –
a conservative extension of the polyadic� calculus, inspired by Dami’s�N calculus
[10], in which agents communicate by passingforms rather than tuples. Forms are
essentially extensible records – i.e., records with an extensible set of attributes – and

7

forms

agents

blackboards

gateway agents

legacy components

Figure 1: A distributed composition medium.

can be used to model dictionaries, first-class contexts (i.e., environments), objects, and
keyword-based parameter-passing (as in Tcl [25] and Python [18]).

PICCOLA attempts to bring together a number of proven ideas from scripting lan-
guages, coordination models and languages, glue techniques, and architectural spec-
ification. Essentially, PICCOLA models everything in terms ofagents, blackboards,
and forms. Active entities (external components, glue, connectors) are modelled as
agents. Agents communicate by posting forms to, and reading forms from, distributed
blackboards. Blackboards resemble the communication media of coordination models
and languages like Linda [7], but are formally modelled aschannelsin �L. Finally,
glue code is handled by specialgateway agentsthat wrap external components and ap-
plications, and byinterceptors– agents that intercept, transform, and adapt messages
intended for other components [14] (see Figure 1).

Scripts are modelled as sets of interconnected agents. Abstractions over agent con-
figurations are values, and can be stored in contexts or communicated in forms. By
the same token, connectors may be specified as coordination abstractions. Consider
the following abstraction in PICCOLA (the syntax is tentative, but friendlier than the
equivalent�L code):

def future (service) (args) = // Defined in the enclosing context
slot = global.newBlackboard() // requires newBlackboard
return (val = slot.read) // early return of access channel
slot.write (service(args)) // write result into blackboard

Futures are a well-known abstraction from concurrent object-based programming
that allow clients to progress in parallel with service providers, until the actual results
are needed. In most programming languages, futures cannot be expressed directly as
an abstraction, but must be either hand-coded or defined as a language extension, either
because the language cannot directly express higher-order abstractions or because one
cannot abstract over all the possible types of arguments of service providers.�L and
PICCOLA support arbitrary abstractions over agents, and finesse the second problem

8

by passing all arguments within forms. A future does not care how many arguments
are expected by the service; they are simply bundled together as a singleargs form.
Another example of a classic mechanism that is impossible to encapsulate as an ab-
straction in most programming languages is areaders/writerssynchronization policy
for concurrently accessed resources. This is relatively straightforward to express in�L

and in PICCOLA by treating such policies as (first-class) wrappers around (first-class)
methods [17].

PICCOLA is still an experimental language. As with the� calculus, there are vari-
ous ways to model objects and components, each with their own advantages and draw-
backs. These must be especially evaluated against the object models of standard com-
ponent libraries and middleware (such as CORBA [24], JavaBeans [31], etc.).

The formal foundations are important, because it is notoriously difficult to reason
about distributed, heterogeneous systems. We intend that PICCOLA support reasoning
at the architectural level about properties such as service guarantees, and the degree
of real concurrency that can be exploited, by means of mappings to the underlying
� calculus foundations. We are working on the relationship between�L and the�
calculus, on a flexible type system for�L (and PICCOLA) based on sorts and types
for the� calculus, and we are exploring techniques for reasoning about behavioural
properties of PICCOLA systems (such as the degree of real concurrency). Technical
details of the formal mapping between� and�L are discussed in [16].

At the same time we are examining a number of practical problems, such as CORBA
scripting from the point of view of available technology, how to wrap and script exter-
nal components (such as JavaBeans), and how to interactively monitor and configure
the composition medium.

5 Discussion

The concepts we have discussed in Section 3 define a framework for composing appli-
cations form component frameworks. One might argue that these concepts only apply
to run-time composition, as scripting languages are typically dynamically compiled or
interpreted. The same ideas, however, apply equally well to compile-time composition.

Consider, for example, the Standard Template Library (STL) [22]. STL provides a
set of C++ container classes (such as vectors, lists, sets etc.) and template algorithms
for common kinds of data manipulations on the container classes (e.g., searching, sort-
ing, merging). STL has all the properties we have previously established for component
frameworks: it focuses on component composition rather than white-box reuse, it in-
corporates a collection of reusable components, fixes the interfaces components may
have, and defines a set of rules how components can be composed. All applications
using STL therefore share a common architectural style.

The line reverser we have introduced in Section 3.2 may be implemented in C++
using STL, using similar concepts to those we have already used in the UNIX shell
scripts: components (STL containers), connectors (generic functions), and glue (e.g.,
input/output stream adapters to makecin andcout look like containers). The major
difference between the C++ program and the shell script is that: i) our C++ program
does not make the underlying architecture of the program explicit; and ii) any C++
program using STL only works in a sequential environment and, therefore, does not
require any coordination abstractions.

Although we can point out many examples of component-based systems that con-

9

form to the conceptual framework we have presented, we have not addressed the issue,
how do we migrate object-oriented applications to component-based architectures?
In parallel to our basic research on PICCOLA, we are participating in FAMOOS,3 a
European industrial research project on reengineering object-oriented legacy systems
towards component-based frameworks. Early adopters of object-oriented technology
now find themselves with large, object-oriented applications that are critical to their
business interests, but are difficult to adapt to changing business needs.

Within FAMOOS we have found that apattern-based approachis most promis-
ing, since similar reengineering problems seem to recur across applications, even with
very different reengineering requirements. Reverse engineering patterns help to extract
models from existing applications and source code, and reengineering patterns help
to identify and resolve problems in legacy code [11]. Nevertheless, there are funda-
mental problems that are difficult to resolve: i) the components are not “just there for
the taking” – it can be very hard to extract components from source code, even if the
end-user functionality suggests that “they must be there somewhere!”; ii) it is hard to
extract architecture from object-oriented source code (or dynamic traces), and hence it
is hard to tell where the architecture may be “broken”; and iii) semantics-preserving
transformations are not enough to get you from even a good object-oriented design to
a flexible component-oriented design (more drastic measures may be needed).

6 Conclusions

Object-oriented programming alone is not enough to guarantee the development of
flexible systems, but it provides a good set of tools and techniques that can be used
for component-based application development. Components, however, are not enough
either, since a component without an architecture is like a single lego piece – all by
itself. CORBA, Delphi, JavaBeans, and D-Active-COM-X-++ are also not enough –
each solves important technical problems, but does not go beyond a specific domain.

We have surveyed some of the problems with object-oriented technology – as it is
used today – and argued that the flexibility and adaptability needed for applications to
cope with changing requirements can only be achieved if we thinknot only in terms
of components, but also in terms ofarchitectures, scripts, andglue. We have also
presented our ongoing research to develop a formal composition language to support
these ideas.

In this chapter we have focussed mainly on technological issues, but there are just
as many, and arguable more important, methodological issues: component frameworks
focus on software solutions, not problems, sohow can we drive analysis and design
so that we will arrive at the available solutions?Frameworks are notoriously hard to
develop, sohow can we iteratively evolve our object-oriented applications to arrive
at a flexible component-based design?Finally, and perhaps most important, software
projects are invariably focussed toward the bottom line, sohow can we convince man-
agement to invest in component technology?

3FAMOOS is an industrial ESPRIT Project (No 21975) in the IT Programme of the Fourth ESPRIT
Framework Programme.

10

Acknowledgements

We thank all members of the Software Composition Group for their support of this
work, especially Franz Achermann, Serge Demeyer, and Markus Lumpe.

References

[1] Mehmet Aksit.On the Design of the Object-Oriented Language Sina. PhD thesis,
University of Twente, NL, 1989.

[2] Farhad Arbab. The IWIM Model for Coordination of Concurrent Activities. In
Paolo Ciancarini and Chris Hankin, editors,Coordination Languages and Mod-
els, LNCS 1061, pages 34–56. Springer, April 1996. Proceedings of Coordination
’96.

[3] Giuseppe Attardi, Cinzia Bonini, Maria Rosaria Boscotrecase, Tito Flagella, and
Mauro Gaspari. Metalevel Programming in CLOS. In Stephen Cook, editor,Pro-
ceedings ECOOP ’89, pages 243–256. Cambridge University Press, July 1989.

[4] Len Bass, Paul Clements, and Rick Kazman.Software Architecture in Practice.
Addison-Wesley, 1998.

[5] David M. Beazley. SWIG and Automated C/C++ Scripting Extensions.Dr. Dobbs
Journal, (282):30–36, February 1998.

[6] Borland International.Borland Delphi Users Manual, 1995.

[7] Nicolas Carriero and David Gelernter.How to Write Parallel Programs: a First
Course. MIT Press, 1990.

[8] Brad J. Cox. Object Oriented Programming – An Evolutionary Approach.
Addison-Wesley, 1986.

[9] Douglas Cunningham, Eswaran Subrahmanian, and Arthur Westerberg. User-
Centered Evolutionary Software Development Using Python and Java. InPro-
ceedings of 6th International Python Conference, pages 1–9, San Jose, October
1997.

[10] Laurent Dami.Software Composition: Towards an Integration of Functional and
Object-Oriented Approaches. PhD thesis, Centre Universitaire d’Informatique,
University of Geneva, CH, 1994.

[11] Stéphane Ducasse, Robb Nebbe, and Tamar Richner. Type-Check Elimination:
Two Reenegineering Patterns. In Jens Coldewey and Paul Dyson, editors,Pro-
ceedings EuroPLoP ’98, pages 161–171, July 1998.

[12] David Garlan, Robert Allen, and John Ockerbloom. Architectural Mismatch:
Why Reuse Is So Hard.IEEE Software, 12(6):17–26, November 1995.

[13] Adele Goldberg and David Robson.Smalltalk-80: The Language. Addison-
Wesley, September 1989.

11

[14] Manuel Günter. Explicit Connectors for Coordination of Active Objects. Master’s
thesis, University of Bern, Institute of Computer Science and Applied Mathemat-
ics, March 1998.

[15] Dimitri Konstantas. Interoperation of Object-Oriented Applications. In Oscar
Nierstrasz and Dennis Tsichritzis, editors,Object-Oriented Software Composi-
tion, pages 69–95. Prentice Hall, 1995.

[16] Markus Lumpe.A �-Calculus Based Approach to Software Composition. PhD
thesis, University of Bern, Institute of Computer Science and Applied Mathemat-
ics, January 1999.

[17] Markus Lumpe, Franz Achermann, and Oscar Nierstrasz. An Extensible Lan-
guage for Composition. Submitted for Publication, 1998.

[18] Mark Lutz. Programming Python: Object-Oriented Scripting. O’Reilly & Asso-
ciates, October 1996.

[19] Jeff McAffer. Meta-level Programming with CodA. In Walter Olthoff, editor,
Proceedings ECOOP ’95, LNCS 952, pages 190– 214. Springer, August 1995.

[20] Nenad Medvidovic and Richard N. Taylor. A Framework for Classifying and
Comparing Architecture Description Languages. In Mehdi Jazayeri and Helmut
Schauer, editors,Proceedings ESEC ’97, LNCS 1301, pages 60–76, September
1997.

[21] Robin Milner. The Polyadic Pi-Calculus: a Tutorial. Technical Report ECS-
LFCS-91-180, Computer Science Department, University of Edinburgh, UK, Oc-
tober 1991.

[22] David R. Musser and Atul Saini.STL Tutorial and Reference Guide. Addison-
Wesley, 1996.

[23] Oscar Nierstrasz and Laurent Dami. Component-Oriented Software Technology.
In Oscar Nierstrasz and Dennis Tsichritzis, editors,Object-Oriented Software
Composition, pages 3–28. Prentice Hall, 1995.

[24] Object Management Group.The Common Object Request Broker: Architecture
and Specification, July 1996.

[25] John K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[26] John K. Ousterhout. Scripting: Higher Level Programming for the 21st Century.
IEEE Computer, 31(3):23–30, March 1998.

[27] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software
Architecture.ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October
1992.

[28] Trygve Reenskaug.Working with Objects: the OOram Software Engineering
Method. Manning Publications, 1996.

[29] Johannes Sametinger. Software Engineering with Reusable Components.
Springer, 1997.

12

[30] Mary Shaw and David Garlan.Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall, April 1996.

[31] Sun Microsystems.JavaBeans Specification, July 1997.

[32] Dennis Tsichritzis. Object-Oriented Development for Open Systems. InProceed-
ings IFIP ’89, pages 1033–1040. North-Holland, August 1989.

[33] Larry Wall, Tom Christiansen, and Randal L. Schwartz.Programming Perl.
O’Reilly & Associates, 2nd edition, September 1996.

13

