
Hot Clones, Maintaining a Link Between Software Clones
Across Repositories

Nikolaus E. Schwarz
Software Composition Group

University of Bern, Switzerland

Erwann Wernli
Software Composition Group

University of Bern, Switzerland

Adrian Kuhn
Software Composition Group

University of Bern, Switzerland

ABSTRACT
Code duplication is common in current programming-practice:
programmers search for snippets of code, incorporate them
into their projects and then modify them to their needs.
In today’s practice, no automated scheme is in place to in-
form both parties of any distant changes of the code. As
code snippets continues to evolve both on the side of the
user and on the side of the author, both may wish to ben-
efit from remote bug fixes or refinements—authors may be
interested in the actual usage of their code snippets, and
researchers could gather information on clone usage. We
propose maintaining a link between software clones across
repositories and outline how the links can be created and
maintained.

1. INTRODUCTION
Since the rise of internet-scale code search engines, search-

ing for reusable source code has quickly become a funda-
mental activity for developers (e.g. [4, 10]). Developers use
search engines to find and reuse software. The promise of
search-driven development is that developers will save time
and resources by using search results. However, there are
perils: the current practice of manually integrating code
search results in a local code base leads to proliferation of
untracked code clones. As an effect, in the authors’ experi-
ence, bugs fixed in one clone typically do not traverse their
new environment anymore, and the same holds true for ex-
tensions and code cleanups.

Even if they appear in the same project, software clones
often cannot be eliminated [7]. But oversights in applying
changes to clones consistently may introduce bugs into the
system [3]. Therefore, tools have been proposed to maintain
links between software clones [5, 3, 11], but they fail to link
clones that are beyond project boundaries. Codebook by
Begel et al. [1], is a social network in which people can be-
friend both other people and their work artifacts. Codebook
is intended to maintain links between clones, it is however
unclear how these links come into being. Begel et al. only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC ’10, May 8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-980-0/10/05 ...$10.00.

vaguely propose how that should be done: edges are to be
added between a definition and its likely clones.

In this paper we propose a scheme to initially create and
then maintain that link. A code search engine assists the de-
veloper by integrating its results into the source code. The
IDE then remembers the origin of the code snippet and in-
forms the repository that a clone was created, thus creating
a link between original and copy. We will refer to clones
creates in this way as hot clones. Whenever a hot clone
changes, the linked clones’ developers are informed and of-
fered the option to update their instance. Also, whenever
a method is inspected, its clones can be inspected too, pro-
viding valuable information. The connections between clone
instances are thus proactive and bidirectional.

In the terminology of Koschke [8], we provide compen-
sative clone management, i.e. we limit the negative impact
of existing clones, but we also give developers benefits from
the software duplication introduced by clones by providing
developers with information on how their code is used and
modified.

2. GOALS
The idea of hot clones scratches two itches. The first is to

let developers benefit from code cloning, and the second is to
provide researchers with more information on how cloning
is used.

We believe that hot clones can ease backporting changes
that occur in a linked clone. We believe that during devel-
opment, hot clones will provide important feedback to de-
velopers. Contrasting ones own code with modified clones
will give hints to bugs in related code, usage patterns, and
plain examples of usage.

There has been research on the nature of clones within a
single software project (e.g. [6]), but the evolution of code
snippets copied from searches in software projects has not
been studied. A prototypical implementation of hot clones
would provide this opportunity. Being able to track the fur-
ther evolution of code snippets after they are copied out of
a search engine may give us great insight into the evolution
of code, beyond the classes provided by Kapser and God-
frey [6]. If used by only a few developers, hot clones can
provide insights from both a larger set of data than before,
and from a wider range of uses. We plan to provide a pro-
totype of hot clones.

3. SCOPE
In this section, we will discuss which tasks hot clones can

assume and how this suits our goals. Software clones are

Source Code Repository
(www.squeaksource.com)

Clone
Repository

Code Search
Engine

Client
Method

with Clone ID

Creates clone
from search result

Hook triggers upon
commit of methods

with a clone ID

Subscribes
to RSS feed

some other
Code Repository

Figure 1: Proposed architecture of the “hot clone”
prototype. It extends Monticello, a distributed ver-
sion control system for Smalltalk, with two compo-
nents: a code search engine and a clone repository.

not typically exact copies of each other, but rather they
start as exact copies and then evolve in different ways, for a
number of reasons in accordance with the specific needs in
their respective environments [7, 6].

To cope with the changes that search-driven development
introduces between clone instances, the connections between
clone instances should be aware of the semantics of their dif-
ferences. To retain an active connection between instances
of a hot clone, it is paramount that the clones are not only
aware of the lexical but also the semantic changes between
their instances [9]. For example, a renamed method call in
two different instances may be due to adherence to coding
conventions, but may also be due to a deliberate change
in one of the instances. So when owners of clones are in-
formed about an incoming change, the semantics of the
change should be taken into account. We propose capturing
each change in a Changebox [2] annotated with the intent
of a change.

Whenever an incoming change is presented to the devel-
oper, the semantic change history of all involved clones has
to be taken into account. To consider an example, if the
code search engine initially renamed all variable names from
camel case to underscore (in order to fit the search result to
the local naming convention) when the clone was created,
this adaption should be applied to any incoming change as
well.

Search results need to be adapted in order to fit into the
target code. Integrating code search results into a local code
base is, by its nature, unanticipated code reuse and will thus
naturally require adaptions to the external search results
such that they fit into the local code base. Search-driven
development refers to this as suitability of search results [10].

4. TECHNICAL FEASIBILITY
In this section, we discuss how hot clones can be recorded

upon creation and how they should be presented to the user.
A key challenge is tracking code snippets while they evolve
to become evermore distinct. The versioning system can be
informed of the original cloning and henceforth try to keep
track of the clone automatically, even if it is not marked in
the source code.

Figure 1 illustrates a sketch of the proposed prototype.

We plan to extend Monticello, a distributed version con-
trol system for Smalltalk code, with two components: a code
search engine and a clone repository.

The code search engine provides access to the full content
of the http://www.squeaksource.com installation of Monti-
cello, some 7.5 GB of Smalltalk source code1. On the client
side, the search engine allows the developers to create se-
mantically transformed clones that suit the local code base.
Each method that belongs to the clone is tagged with the
unique identifier of the clone.

The clone repository adds a commit hook to the Mon-
ticello version control system that is triggered whenever
someone commits a new version of a method that has (or
previously had) a clone id. The hook adds the client to the
list of linked clones (if not already present) and informs all
linked clones of the update through an RSS feed. Clients
that are subscribed to the RSS feed can present their devel-
opers with an option to update their instances of the clone in
question. Also, the Pharo IDE can be extended to show all
clones of a method from the context menu of that method.

Acknowledgments.
We gratefully acknowledge the financial support of the

Swiss National Science Foundation for the project “Bringing
Models Closer to Code” (SNF Project No. 200020-121594,
Oct. 2008 - Sept. 2010). We thank Edouard Tavinor for his
ideas and corrections.

5. REFERENCES
[1] A. Begel and R. DeLine. Codebook: Social networking over

code. In ICSE Companion, pages 263–266, 2009.

[2] M. Denker, T. Gı̂rba, A. Lienhard, O. Nierstrasz,
L. Renggli, and P. Zumkehr. Encapsulating and exploiting
change with changeboxes. In ICDL ’07, pages 25–49, New
York, NY, USA, 2007. ACM.

[3] E. D. Ekoko and M. P. Robillard. Clonetracker: tool
support for code clone management. In ICSE ’08, pages
843–846, New York, NY, USA, 2008. ACM.

[4] R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme: finding
and leveraging implicit references in a web search interface
for programmers. In UIST ’07, pages 13–22, New York,
NY, USA, 2007. ACM.

[5] D. Hou, P. Jablonski, and F. Jacob. Cnp: Towards an
environment for the proactive management of
copy-and-paste programming. In 2009 IEEE 17th ICPC,
pages 238–242. IEEE, May 2009.

[6] C. Kapser and M. W. Godfrey. ”cloning considered
harmful” considered harmful. WCRE ’06, 0:19–28, 2006.

[7] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. SIGSOFT Softw.
Eng. Notes, 30(5):187–196, September 2005.

[8] R. Koschke. Identifying and removing software clones. In
Software Evolution, chapter 2, pages 15–36. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[9] G. Muller, Y. Padioleau, J. L. Lawall, and R. R. Hansen.
Semantic patches considered helpful. SIGOPS Oper. Syst.
Rev., 40(3):90–92, 2006.

[10] S. P. Reiss. Semantics-based code search. In ICSE
Companion, volume 0, pages 243–253, Los Alamitos, CA,
USA, 2009. IEEE Computer Society.

[11] M. Toomim, A. Begel, and S. L. Graham. Managing
duplicated code with linked editing. In VLHCC ’04, pages
173–180, Washington, DC, USA, 2004. IEEE.

1From a tweet by Lukas Renggli, project lead of Squeak-
source: “http://www.squeaksource.com hosts 7.5 GB of
Monticello versions,” posted on Jan 7, 2010, http://
twitter.com/renggli/status/7473119028

http://www.squeaksource.com
http://twitter.com/renggli/status/7473119028
http://twitter.com/renggli/status/7473119028

	Introduction
	Goals
	Scope
	Technical feasibility
	References

