
Seuss: Better Class Responsibilities Through
Language-based Dependency Injection?

Niko Schwarz, Mircea Lungu, Oscar Nierstrasz

University of Bern

Abstract. Unit testing is often made more difficult by the heavy use of
classes as namespaces and the proliferation of static methods to encapsu-
late configuration code. We have analyzed the use of 120 static methods
from 96 projects by categorizing them according to their responsibilities.
We find that most static methods support a hodgepodge of mixed re-
sponsibilities, held together only by their common need to be globally
visible. Tight coupling between instances and their classes breaks en-
capsulation, and, together with the global visibility of static methods,
complicates testing. By making dependency injection a feature of the
programming language, we can get rid of static methods altogether. We
employ the following semantic changes: (1) Replace every occurrence of a
global with an access to an instance variable; (2) Let that instance vari-
able be automatically injected into the object when it is instantiated.
We present Seuss, a prototype that implements this change of seman-
tics in Smalltalk. We show how Seuss eliminates the need to use class
methods for non-reflective purposes, reduces the need for creational de-
sign patterns such as Abstract Factory and simplifies configuration code,
particularly for unit tests.

1 Introduction

Class methods, which are statically associated to classes rather than instances,
are a popular mechanism in object-oriented design. Java and C#, for example,
provide static methods, and Smalltalk provides “class-side” methods, methods
understood by classes, rather than their instances. 9 of the 10 most popular
programming languages listed by TIOBE provide some form of static methods.1
In most of these languages, classes offer the key mechanism for defining names-
paces. For this reason, static methods offer a convenient mechanism for defining
globally visible services, such as instance creation methods. As a consequence,
static methods end up being used in practice wherever globally visible services
are needed.
? In Objects, Models, Components, Patterns, 49th International Conference, TOOLS

2011, Zurich, Switzerland, June 28-30, 2011. LNCS 6705, pp. 276–289, 2011.
doi:10.1007/978-3-642-21952-8_20

1 TIOBE Programming Community Index for January 2011, http://www.tiobe.com.
Those 10 languages are Java, C, C++, PHP, Python, C#, (Visual) Basic, Objective-
C, Perl, Ruby. The outlier is C, which does not have a class system.

http://dx.doi.org/10.1007/978-3-642-21952-8_20
http://www.tiobe.com

2 N. Schwarz, M. Lungu, O. Nierstrasz

Unfortunately this common practice leads callers of static methods to im-
plicitly depend on the classes that provide these static methods. The implicit
dependency on static methods complicates testing. That is because many tests
require that application behavior be simulated by a fixed script representing a
predefined scenario. Such scripted behavior can hardly be plugged in from the
outside when static methods are accessed by global names, and thus hard-wired
into code. We therefore need to better understand the need for static methods
in the first place.

Classes are known to have both meta-level and base-level responsibilities [2].
To see what those are, we examined 120 static methods, chosen at random from
SqueakSource, a public repository of open source Smalltalk projects. We found
that while nearly all static methods inherited from the system are reflective in
nature, only few of the user-supplied methods are. Users never use static methods
to define reflective functionality.

Dependency injection is a design pattern that shifts the responsibility of
resolving dependencies to a dedicated dependency injector that knows which
dependent objects to inject into application code [6,11]. Dependency injection
offers a partial solution to our problem, by offering an elegant way to plug in
either the new objects taking over the responsibilities of static methods, or others
required for testing purposes. Dependency injection however introduces syntactic
clutter that can make code harder to understand and maintain.

We propose to regain program modularity while maintaining code readability
by introducing dependency injection as a language feature. Seuss is a prototype
of our approach, implemented by adapting the semantics of the host language.
Seuss eliminates the need to abuse static methods by offering dependency injec-
tion as an alternative to using classes as namespaces for static services. Seuss
integrates dependency injection into an object-oriented language by introducing
the following two semantic changes:

1. Replace every occurrence of a global with an access to an instance variable;
2. Let that instance variable be automatically injected into the object at in-

stantiation time.

Seuss cleans up class responsibilities by reserving the use of static meth-
ods for reflective purposes. Furthermore, Seuss simplifies code responsible for
configuration tasks. In particular, code that is hard to test (due to implicit de-
pendencies) becomes testable. Design patterns related to configuration, such as
the Abstract Factory pattern, which has been demonstrated to be detrimental
to API usability [5], become unnecessary.

Structure of the article. In section 2 we analyze the responsibilities of static
methods and establish the challenges for reassigning them to suitable objects. In
section 3 we demonstrate how Seuss leads to cleaner allocation of responsibilities
of static methods, while better supporting the development of tests. In section 4
we show how some creational design patterns in general and the Abstract Fac-
tory design in particular are better implemented using Seuss. In section 5 we go
into more details regarding the implementation of Seuss. In section 6 we discuss

Seuss: Language-based Dependency Injection 3

the challenges for statically-typed languages, and we summarize issues of per-
formance and human factors. In section 7 we summarize the related work and
we conclude in section 8.

2 Understanding class responsibilities

Static methods, by being associated to globally visible class names, hard-wire
services to application code in ways that interfere with the ability to write tests.
To determine whether these responsibilities can be shifted to objects, thus en-
abling their substitution at run-time, in subsection 2.1 we first analyze the re-
sponsibilities static methods bear in practice. Then in subsection 2.2 we pose
the challenges facing us for a better approach.

2.1 Identifying responsibilities

We follow Wirfs-Brock and Wilkerson’s [4] suggestion and ask what the current
responsibilities of static methods are, for that will tell us what the new classes
should be.

We determine the responsibilities following a study design by Ko et al. [8].
Their study identifies six learning impediments by categorizing insurmountable
barriers encountered by test subjects. The authors of the paper independently
categorize the impediments and attain 94% agreement.

We examined 120 static methods and classified their responsibilities from a
user’s point of view. For example, a static method that provides access to a
tool bar icon would be categorized as providing access to a resource, regardless
of how it produced or obtained that image. We chose 95 projects uniformly at
random from SqueakSource2, the largest open source repository for Smalltalk
projects. We then selected uniformly at random one static method from the
latest version of each of these projects. To avoid biasing our analysis against
framework code, we then added 25 static methods selected uniformly at random
from the standard library of Pharo Smalltalk3, as shipped in the development
environment for developers.

Of the 120 methods selected, two were empty. We randomly chose another
two methods from SqueakSource to replace them. Two subjects then categorized
the 120 methods independently into the categories, achieving 83% agreement.
We then reviewed the methods that were not agreed upon. Most were due to
lack of knowledge of the exact inner workings of the API they were taken from.
After further review, we placed them into the most appropriate subcategory.

We identified the following three umbrella categories: Instance creation, Ser-
vice and Reflection, each further subdivided into subcategories. Whenever a
method did not fit into any of the subcategories, we marked it as “other”.

2 http://www.squeaksource.com/
3 http://pharo-project.org

http://www.squeaksource.com/
http://pharo-project.org

4 N. Schwarz, M. Lungu, O. Nierstrasz

Instance creation (28 of 120) Instance creation methods create new instances
of their own class. They are subdivided as follows.

Singleton. (4 of 28) These methods implement the singleton pattern [7] to
ensure that the instance is created only once.

Other. (24 of 28) Some methods provided default parameters, some simply
relayed the method parameters into setters of the newly created instance.
Only 3 methods did anything more than setting a default value or relaying
parameters. These three methods each performed simple computations on
the input parameters, such as converting from minutes to seconds, each no
longer than a single line of code.

Services (86 of 120) Service methods provide globally available functionality.
They often serve as entry points to an API. We have identified the following
sub-categories.

Install/uninstall a resource. (6 of 86) By resource, we mean a widely used
object that other parts of the system need to function. Examples of instal-
lable resources that we encountered are: packages of code; fonts; entries to
menus in the user interface.

Access a resource or setting (41 of 86) These methods grant access to a
resource or a specific setting in a configuration. Complex settings resemble
resources, hence one cannot easily distinguish between the two. Examples
include: a status object for an application; the packet size of headers in
network traffic; default CSS classes for widgets; a sample XML file needed
to test a parser; the default lifetime of a connection; the color of a GUI
widget.

Display to/prompt user (4 of 86) Examples: showing the recent changes in
a versioning system; opening a graphical editor.

Access network (2 of 86) These methods grant access to the network. Exam-
ples: sending an HTTP put request; sending a DAV delete request.

System initialization (11 of 86) These methods set the system status to be
ready for future interactions. Examples: setting operation codes; setting the
positions for figures; asking other system parts to commence initialization.

Class indirection (5 of 86) These return a class, or a group of classes, to
provide some indirection for which class or classes to use.

Other (17 of 86) Other responsibilities included: converting objects from one
class to another; taking a screenshot; sorting an array; granting access to
files; starting a process; mapping roles to privileges; signaling failure and
mailing all packages in a database.

Reflection (6 of 120) Unlike methods that offer services, reflective methods on
a class are by their nature tightly coupled to instances of the class. We have
found the following sub-categories.

Seuss: Language-based Dependency Injection 5

Class Annotations. (5 of 6) Class annotations specify the semantics of fields
of their class. All the examples we examined were annotations interpreted
by Magritte [12], a framework for adapting an applications model and meta-
model at run-time.

Other. (1 of 6) One method provided an example on how to use the API.

2.2 Challenges

Out of the 120 static methods we have analyzed, only 6 belonged naturally
and directly to the instances of that class, namely the reflective ones. All other
responsibilities can be implemented in instance methods of objects tailored to
these responsibilities.

We conclude that static methods are defined in application code purely as a
matter of convenience to exploit the fact that class names are globally known.
Nothing prevents us from shifting the responsibilities of non-reflective static
methods to regular application objects, aside from the loss of this syntactic
convenience. In summary the challenges facing us are:

– to shift static methods to be instance responsibilities,
– while avoiding additional syntactic clutter, and
– enabling easy substitution of these new instances to support testing.

In the following we show how Seuss, our dependency injection framework
allows us to address these challenges.

3 Seuss: moving services to the instance side

We would like to turn misplaced static methods into regular instance methods,
while avoiding the syntactic clutter of creating, initializing and passing around
these instances. Dependency injection turns out to be a useful design pattern to
solve this problem, but introduces some syntactic clutter of its own. We therefore
propose to support dependency injection as a language feature, thus maintaining
the superficial simplicity of global variables but without the disadvantages. De-
pendency injection furthermore shifts the responsibility of injecting dependent
variables to a dedicated injector, thus enabling the injection of objects needed
for testing purposes. Let us illustrate dependency injection in an example.

In the active record design pattern [6, p. 160 ff], objects know how to store
themselves into the database. In the SandstoneDB implementation of active
record for Smalltalk [9] a Person object can save itself into the database as in
Figure 1.

The code of the save method is illustrated in Figure 2. (The actual method
is slightly more complicated due to the need to handle further special cases.)

The save method returns the result of evaluating a block of code in a critical
section (self critical: [...]). It first evaluates some “before” code, then either stores
or updates the state of the object in the database, depending on whether it has
previously been saved or not. Finally it evaluates the “after” code.

6 N. Schwarz, M. Lungu, O. Nierstrasz

user := Person firstName: 'Ramon' lastName: 'Leon'.
user save.

Fig. 1. Using the active record pattern in SandstoneDB

save
↑ self critical: [

self onBeforeSave.
isFirstSave

ifTrue: [Store storeObject: self]
ifFalse: [Store updateObject: self].

self onAfterSave.
]

Fig. 2. The save method in SandstoneDB, without dependency injection.

In the save method, the database must somehow be referenced. If the database
were an ordinary instance variable that has to be passed during instance creation,
the code for creating Person objects would become cluttered. The conventional
workaround is to introduce static methods storeObject: and updateObject: to en-
capsulate the responsibility of connecting to the database, thus exploiting the
global nature of the Store class name, while abusing the mechanism of static
methods for non-reflective purposes.

Unfortunately, testing the save method now becomes problematic because
the database to be used is hard-wired in static methods of the Store class. There
is no easy way to plug in a mock object [10] that simulates the behavior of the
database for testing purposes.

The dependency injection design pattern offers a way out by turning globals
into instance variables that are automatically assigned at the point of instan-
tiation. We add a method to Person that declares that Person is interested to
receive a Store as an instance variable during instance creation by the runtime
environment, rather than by the caller, as seen in Figure 3. Afterwards, instead
of accessing the global Store (in upper case), save is re-written to access instance
variable store (in lower case; see Figure 4).

store: anObject
<inject: #Store>
store := anObject

Fig. 3. Person declares that a Store should be injected upon creation.

In the example in Figure 4, we also see that Person does not ask specifically for
an instance of a class Store. It only declares that it wants something injected that

Seuss: Language-based Dependency Injection 7

save
↑ self critical: [

self onBeforeSave.
isFirstSave

ifTrue: [store storeObject: self]
ifFalse: [store updateObject: self].

self onAfterSave.
]

Fig. 4. The save method from SandstoneDB rewritten to use dependency injec-
tion does not access the globally visible class name Store.

is labelled #Store. This indirection is beneficial for testing. Method storeObject:
may pollute the database if called on a real database object. Provided that there
is a mock class TestStore, we can now inject instances of that class rather than
real database objects in the context of unit tests.

Avoiding cluttered code by language alteration. The dependency injection pat-
tern introduces a certain amount of clutter itself, since it requires classes to be
written in an idiomatic way to support injection. This clutter manifests itself in
terms of special constructors to accept injected objects, and factories responsi-
ble for creating the injected objects. Seuss avoids this clutter by incorporating
dependency injection as a language feature. As a consequence, the application
developer may actually write the code as it is shown in Figure 2. The seman-
tics of the host language are altered so that the code is interpreted as shown in
Figure 4.

In Seuss, what is injected is defined in configuration objects, which are created
in code, rather than in external configuration files. Therefore, we can cheaply
provide configurations tailored for specific unit tests. Figure 5 illustrates how
a unit test can now test the save method without causing side effects. The
code implies that the storeObject: and updateObject: methods are defined on the
instance side of the TestStore class.

testing := Configuration bind: [:conf | conf bind: #Store to: TestStore new].
user := (Injector forConfiguration: testing get: #User).

user firstName: 'Ramon' lastName: 'Leon'.
user save.

Fig. 5. Unit test using dependency injection. The injector interprets the config-
uration, and fills all dependencies into user, including the TestStore.

Typically, a developer using dependency injection has to explicitly call only
one injector per unit test, and only one for the rest of the application, even

8 N. Schwarz, M. Lungu, O. Nierstrasz

though the injector is active during every object instantiation. Section 5 details
how the injector is implicitly made available.

4 Cleaning up instance creation

The design patterns by Gamma et al. are often ways of addressing language lim-
itations. It is not surprising that by introducing a language change as powerful
as dependency injection some of the design patterns will become obsolete. A
special class of design patterns that we care about in this section are the cre-
ational ones, since we have seen in subsection 2.1 that a considerable percentage
of static methods are responsible for instance creation.

The abstract factory pattern has been shown to frequently dumbfound users
of APIs that make use of it [5]. Gamma defines the intent of the abstract factory
pattern as to “provide an interface for creating families of related or dependent
objects without specifying their concrete classes” [7]. Gamma gives the example
of a user interface toolkit that supports multiple look and feel standards. The
abstract factory pattern then enables code to be written that creates a user
interface agnostic to the precise toolkit in use.

Let us suppose the existence of two frameworks A and B, each with imple-
mentations of an abstract class Window, named AWindow and BWindow, and
the same for buttons. Following the abstract factory pattern, this is how we
could create a window with a button that prints “World!” when pressed:

createWindow: aFactory
window := (aFactory make: #Window) size: 100 @ 50.
button := (aFactory make: #Button) title: 'Hello'.
button onClick: [Transcript show: 'World’]. window add: button.

Fig. 6. Object creation with Abstract Factory

Ellis et al. [5] show that using this pattern dumbfounds users. When presented
with the challenge of instantiating an instance that is provided by a factory, they
do not find the required factory. In Seuss, the following code snippet may gen-
erate a window either using framework A or B, depending on the configuration,
with no need to find (or even write) a factory:

createWindow
window := Window size: 100 @ 50.
button := Button title: 'Hello'.
button onClick: [Transcript show: 'World’].window add: button.

Fig. 7. Replacing object creation with Dependency Injection

Seuss: Language-based Dependency Injection 9

Seuss allows writing natural code that still bears all the flexibility needed to
exchange the underlying framework. It can be used even on code that was not
written with the intention of allowing the change of the user interface framework.

5 Dependency injection as a language feature

Normally, using dependency injection frameworks requires intrusively modifying
the way code is written. The developer needs to make the following modifications
to the code:

– Add the definition of an instance variable.
– Specify through an annotation which instance variable gets injected (the

inject annotation from Figure 3).
– Provide a method through which the dependency injection framework can

set the instance variable to the value of the injected object. This is a setter
method in Smalltalk (Figure 3) or a dedicated constructor in Java.

To improve usability, in Seuss we completely remove the requirement of mod-
ifying the code in any of the previously mentioned ways. As a result, the code in
in Figure 2 is interpreted just as if the code in Figure 4 and Figure 3 had been
written.

The feature that allows us to use dependency injection without the invasive
modification of source code is a slight change to the Smalltalk language: for
every global being accessed, the access is redirected to an instance variable. This
instance variable is annotated for injection, made accessible through setters, and
then is set by the framework when the object is created.

It is not enough to store an object representing the original class in an in-
stance variable. That is because the class usually is not aware of Seuss and thus
does not inject dependencies into objects it newly creates.

Store

/basicNew()
Store class

class

Metaclass
class

Overwrite

Anonymous

basicNew()
injector

C

Fig. 8. Instances of C mimic Store, but use the injector when creating instances.

10 N. Schwarz, M. Lungu, O. Nierstrasz

Instead, we inject an object that knows the injector and calls it during in-
stance creation. We achieve this by injecting an instantiator object. The class
of the instantiator is an anonymous subclass of the metaclass of the original
method’s class. For example, in Figure 3 the object that is injected into instance
variable store in is an instance of an anonymous metaclass C. As illustrated in
Figure 8, C overwrites method basicNew which is inherited from Store class4. It
changes basicNew so that it first invokes the injector, asking it to inject all de-
pendencies into the newly created object, and then resets the class of the newly
created object to be Store.

In order to change the semantics of a standard Pharo as described above, we
use Helvetia [13], a language workbench for Smalltalk. Helvetia lets us intercept
the compilation of every individual method. Helvetia requires us to specify our
language change as a Rule, which is really a transformation from one method
AST to another. When changing methods, we also modify the containing class
when needed. During the transformation, we also create and update a default
configuration, which lets the code run as before, if used. It can also be overridden
by the user in unit tests. Algorithm 1 details the transformation.

Algorithm 1 Transforming ordinary code into dependency injected
code.

1. Replace every occurrence of a global with an access to an instance variable. Add
that instance variable if necessary.

2. Generate a setter method for that variable and annotate it so that the dependency
injection framework can inject into that variable.

3. If the injected global is a class, act as follows. Generate an anonymous metaclass C
as described above, and make its instance known to the default configuration. As
described above, the instance should behave just like the original class, but should
additionally inject all dependencies into newly created instances of class C.

4. Make the default configuration aware of the referred to global.

Introducing dependency injection as a language feature brings two advan-
tages:

1. Backwards compatibility. Dependency injection can be used for code that
was not written with dependency injection in mind. We were able to use the
unit test from Figure 5 without having to modify the SandstoneDB project,
which does not use dependency injection.

2. Less Effort. Other frameworks require that all dependencies be explicitly
declared through some boilerplate code for each dependency. In our case, by

4 basicNew is a primitive that allocates memory for the new object. It is normally not
overridden.

Seuss: Language-based Dependency Injection 11

automatically injecting needed dependencies where possible, the amount of
code to write was reduced.

6 Discussion

We briefly explore the challenges for implementing Seuss in statically-typed lan-
guages like Java, and we summarize issues of performance and human factors.

6.1 Challenges for statically typed languages.

In a language where classes are reified as first-class objects, such as Smalltalk,
classes can simply be injected as objects. In other languages, such as Java, a
proxy must be used.

Seuss works by replacing access to globals by access to instance variables.
In a statically typed language, the question arises what type injected instance
variables ought to be. To see if our small language change would be feasible in a
typed language, we ported part of Seuss to Java. In the following transformation
by JSeuss, our Java version of Seuss, the access to the global Store is replaced
by an instance variable store (note the lower case initial letter) of type ICStore.

class Before {
void save() {

Store.storeObject(this);
}

}

is transformed into

class After {
@Inject
ICStore store;
void save() {

store.storeObject(this);
}

}

The interface ICStore is a generated interface. Our Java transformation generates
two interfaces for every class, one for all static methods, and one for all instance
methods. The interfaces carry the same name as the class, except for the prefixed
upper-case letters IC, or I, respectively. During class load time, all occurrences of
type Store are then replaced by type ICStore, and so with all classes. All new calls
on Store return instances of type IStore. On the other hand, existing interfaces
are not touched.

The object of type ICStore serves as a proxy for the class ICStore. This is
necessary since classes are not first class in Java, and thus cannot be injected
directly. To avoid expensive recompilation, we use Javassist to modify all code
at the bytecode level, during class load time.

12 N. Schwarz, M. Lungu, O. Nierstrasz

The current implementation of JSeuss enables unit testing of the save method
above, but is otherwise incomplete, thus currently prohibits meaningful bench-
marking. We nevertheless learned from the experience that while Seuss for Java
is complicated by the static type system of Java, it is still feasible.

6.2 Performance and human factors

Seuss impedes the performance of applications exclusively during object instan-
tiation when there is some performance penalty for injecting all dependencies.
In all other cases, a pointer to a global is replaced by a pointer to an instance
variable, which is not slower than accessing a global in many languages, although
it can prohibit inlining. Since every access to a global requires a new instance
variable to be added, the memory footprint can grow considerably. However,
space penalties can be ameliorated by introducing nested classes to a language,
as demonstrated in Newspeak [3]. This should also improve performance during
instantiation time, as dependencies can be moved to outer classes and thus need
to be injected fewer times.

One might also argue that the new level of indirection may lead to confusion
as to which object is being referred to, when an injected variable is referenced.
However, we believe that proper tool support can bring sufficient clarity. An
IDE should be able to gather all configurations and use them to display which
literals are bound to what.

6.3 Using Seuss to sandbox code

If Object’s reflective methods are removed, then all objects can only find other
classes through their dependencies or method parameters. Thus, any piece of
code from within a configuration that does not include access to the File class
prevents that code from reading or writing files. This concept of security by
unreachability was described by Bracha [3].

7 Related work

Dependency injection [6,11] is a design pattern that decouples highly depen-
dent objects. Using it involves avoiding built-in methods for object construction,
handing it off to framework code instead. It enables testing of components that
would ordinarily be hard to test due to side-effects that would be intolerable
in unit tests. There are other frameworks that support dependency injection
like Google Guice [14] and Spring, after which Seuss’s dependency injection ca-
pabilities are modeled. In contrast to Google Guice and Spring, Seuss turns
dependency injection into a language feature that works even on code that was
not written with dependency injection in mind. By superficially allowing the
use of standard language constructs for object creation while using dependency
injection under the hood, Seuss programs look in large parts like conventional
source code.

Seuss: Language-based Dependency Injection 13

Achermann and Nierstrasz [1] note that inflexible namespaces can lead to
name clashes and inflexibilities. They propose making namespaces an explicit
feature of the language and present a language named Piccola. Piccola does not
get rid of using global namespace, but makes it a first-class entity. First-class
namespaces in Piccola enable a fine degree of control over the binding of names
to services, and in particular make it easy to run code within a sandbox. While
Seuss sets the namespace of an object at that object’s instantiation time, Piccola
allows it to be manipulated in the scope of an execution (dynamically) as well
as statically. Similarly, some mocking frameworks, such as PowerMock5, allow
re-writing of all accesses to global namespace to access a mock object. Piccola
and PowerMock do not attempt to clean up static method responsibilities, but
rather add flexibility to their lookup.

Bracha presents the Newspeak programming language [3], which sets the
namespace of an object at that object’s instantiation time, just like Seuss. How-
ever, while Seuss provides a framework that automatically injects individual de-
pendencies into the dependent object during instantiation time, Newspeak leaves
this to the developer. Bracha shows that by restricting a module to accessing the
set of objects that were passed in during instantiation time, untrusted software
can be sandboxed reliably by not passing in the dependencies that it would need
to be harmful, such as file system access modules. The same argument holds for
Seuss so long as reflection is disabled. While the rewiring of dependencies is a
strong suit of dependency injection, and while Newspeak makes it technically
possible, the system’s design makes it costly in lines of code to run a unit test
in a new configuration. By manually searching for a module instantiation that
happens in a unit test, we could not find a single unit test in Newspeak that
makes use of Newspeak’s capabilities to change namespaces.

8 Conclusion

Static methods pose obstacles to the development of tests by hardwiring instance
creation. A study of 120 static methods in open-source Smalltalk code shows that
out of the 120 static methods, only 6 could not equally well be implemented as
instance methods, but were not, thus burdening their caller with the implicit
dependency on these static methods.

Dependency injection offers a partial solution to separating the responsibility
of instantiating application objects or test objects, but still entails tedious rewrit-
ing of application code and the use of boilerplate code to fulfill the dependency
injection design pattern. We have shown how introducing dependency injection
as a language feature can drastically simplify the task of migrating class respon-
sibilities to instance methods, while maintaining code readability and enabling
the development of tests. Moreover, a language with dependency injection as a
feature becomes more powerful and renders certain design patterns obsolete.

We have demonstrated the feasibility of the approach by presenting Seuss,
an implementation of dependency injection as a language feature in Smalltalk.
5 http://code.google.com/p/powermock/

http://code.google.com/p/powermock/

14 N. Schwarz, M. Lungu, O. Nierstrasz

We have furthermore demonstrated the feasibility of our approach for statically-
typed languages by presenting JSeuss, a partial port of Seuss to Java.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Synchronizing Models and Code” (SNF Project No.
200020-131827, Oct. 2010 - Sept. 2012). We also thank CHOOSE, the special
interest group for Object-Oriented Systems and Environments of the Swiss In-
formatics Society, for its financial contribution to the presentation of this paper.
We thank Simon Vogt and Ahmed S. Mostafa for their help in implementing
JSeuss. We thank Toon Verwaest and Erwann Wernli for their input.

References

1. Franz Achermann and Oscar Nierstrasz. Explicit Namespaces. In Jürg Gutknecht
and Wolfgang Weck, editors, Modular Programming Languages, volume 1897 of
Lecture Notes in Computer Science, chapter 8, pages 77–89. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2000.

2. Gilad Bracha and David Ungar. Mirrors: design principles for meta-level facilities of
object-oriented programming languages. SIGPLAN Not., 39(10):331–344, October
2004.

3. Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox,
and Eliot Miranda. Modules as objects in Newspeak. In Proceedings of the 24th
European conference on Object-oriented programming, ECOOP’10, pages 405–428,
Berlin, Heidelberg, 2010. Springer-Verlag.

4. R. Wirfs Brock and B. Wilkerson. Object-oriented design: a responsibility-driven
approach. SIGPLAN Not., 24:71–75, September 1989.

5. Brian Ellis, Jeffrey Stylos, and Brad Myers. The Factory Pattern in API Design:
A Usability Evaluation. In 29th International Conference on Software Engineering
(ICSE’07), pages 302–312, Washington, DC, USA, May 2007. IEEE.

6. Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, November 2002.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1 edition, November 1994.

8. Andrew J. Ko, Brad A. Myers, and Htet H. Aung. Six Learning Barriers in End-
User Programming Systems. In Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, VLHCC ’04, pages 199–206, Washington,
DC, USA, 2004. IEEE Computer Society.

9. Ramon Leon. SandstoneDb, simple ActiveRecord style persistence in Squeak,
http://www.squeaksource.com/SandstoneDb.html.

10. Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-testing: Unit testing with
mock objects, chapter 17, pages 287–301. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

11. Dhanji Prasanna. Dependency Injection. Manning Publications, pap/pas edition,
August 2009.

Seuss: Language-based Dependency Injection 15

12. Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn. Magritte — a meta-driven
approach to empower developers and end users. In Gregor Engels, Bill Opdyke,
Douglas C. Schmidt, and Frank Weil, editors, Model Driven Engineering Languages
and Systems, volume 4735 of LNCS, pages 106–120. Springer, September 2007.

13. Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz. Embedding languages without
breaking tools. In Theo D’Hondt, editor, ECOOP’10: Proceedings of the 24th
European Conference on Object-Oriented Programming, volume 6183 of LNCS,
pages 380–404. Springer-Verlag, 2010.

14. Robbie Vanbrabant. Google Guice: Agile Lightweight Dependency Injection Frame-
work. Apress, April 2008.

	Seuss: Better Class Responsibilities Through Language-based Dependency Injection
	Niko Schwarz, Mircea Lungu, Oscar Nierstrasz

