Towards faster method search
through static ecosystem analysis

Boris Spasojevi¢
University of Bern
Hochschulstrasse 4
CH-3012 Bern, Switzerland
spasojev@iam.unibe.ch

ABSTRACT

Software developers are often unsure of the exact name of
the method they need to use to invoke the desired behavior
in a given context. This results in a process of searching for
the correct method name in documentation, which can be
lengthy and distracting to the developer.

We can decrease the method search time by enhancing
the documentation of a class with the most frequently used
methods. Usage frequency data for methods is gathered by
analyzing other projects from the same ecosystem — written
in the same language and sharing dependencies.

We implemented a proof of concept of the approach for
Pharo Smalltalk and Java. In Pharo Smalltalk, methods
are commonly searched for using a code browser tool called
“Nautilus”, and in Java using a web browser displaying HTML
based documentation — Javadoc. We developed plugins for
both browsers and gathered method usage data from open
source projects, in order to increase developer productivity
by reducing method search time.

A small initial evaluation has been conducted showing
promising results in improving developer productivity.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques|: Software libraries;
D.2.7 [Distribution, Maintenance, and Enhancement
]: Documentation; D.2.9 [Management]: Productivity

General Terms

Documentation

Keywords

Method search, ecosystem analysis, static analysis

1. INTRODUCTION

Libraries enable software developers to reuse implementa-
tions of common tasks and thus provide a large productivity

To appear in ECSAW August 25 - 29 2014, Vienna, Austria

Mircea Lungu
University of Bern
Hochschulstrasse 4
CH-3012 Bern, Switzerland
lungu@iam.unibe.ch

Oscar Nierstrasz
University of Bern
Hochschulstrasse 4
CH-3012 Bern, Switzerland
oscar@iam.unibe.ch

boost. The libraries expose an application program interface
(API) to the developer. Usage of APIs is one main relation-
ship between the different projects in a software ecosystem.

In object-oriented languages an API consists of a set of
classes whose instances encapsulate state and behavior pro-
vided by the library. The developer invokes methods on
these objects to trigger desired behavior. Choosing the right
method to invoke is often not a trivial task especially if the
developer is not familiar with the API [15]. We call the pro-
cess of finding the desired method “method searching”. In a
survey about developer needs in an ecosystem, Haenni et al.
have shown that an important motivation for downstream
users’ needs is API understanding [2].

The APIs are usually documented (through explicit docu-
mentation or availability of source code) in order to help the
developer understand how to use them. Looking through the
documentation is a tiresome task and this is typically made
worse by the fact that most object-oriented code is docu-
mented on a class by class basis, meaning that a method
which can be invoked on an object of a certain class might
be declared somewhere higher in the class hierarchy. Faster
method search would lead to more productive developers

We propose to improve the current process of searching for
methods by augmenting the data available to the developer
with information derived from the analysis of the ecosystem
to which the system belongs. In this paper we consider a
purely technical perspective [7] of a software ecosystem as it
has been done before [8, 4].

Our interest when approaching the ecosystem is to run
a lightweight static analysis on the source code of all the
projects that are mutually dependent or are connected through
common dependencies.

We assume that the ecosystem can function as a context
from which, by data mining the source code, we can dis-
cover patterns of usage for a given API. These patterns that
would be unobtainable from individual projects. We can
then augment documentation with information about which
methods of a particular class (including the ones declared
in the hierarchy chain) are more frequently used in other
projects. We aim to incorporate this information in a way
that does not require the developer to alter her normal de-
velopment process. This means that frequency of use data
needs to be presented to the developer via the same set of
tools she normally uses for method search.

To gather the information on method usage frequency we
propose an analysis which, for each encountered class and
across all projects, produces the number of times methods of
the class has been invoked on an instance of that class. The

more times a method has been invoked by other developers
the higher the probability that it is the goal for the developer
searching for a method.

Even though this approach does not take in to account
the context in which developer is working, our running hy-
pothesis is that we can improve the method search process
even if using only a lightweight static analysis approach.

We implement our approach as a proof of concept for two
open source ecosystems written in Pharo Smalltalk! and
Java. The two languages were selected as representatives
for dynamic and static typing respectively, as implementing
the approach is slightly different based on the type system
of the language. We analyze 109 projects written in Pharo
Smalltalk and 111 projects written in Java to generate the
frequency of use data. Method search in Pharo Smalltalk
is most commonly done using the built in system browser
called “Nautilus®”, and Java developers most commonly use
HTML based documentation (i.e., Javadoc) viewed via a
web browser.

We develop plugins for Nautilus and for the Chromium?

web browser to provide the data gathered from other projects.

Using plugins enables us to provide the desired data without
intruding on the method search process of the developer.

Figure 1 shows the architecture of our solution. A strong
distinction is made between the server side components, dis-
cussed in detail in section 2, and the client side component
discussed in section 3. The client-server architecture stems
from the need to provide the client with up to date informa-
tion, and enable different presentations of data, depending
on the method search process of the developers. The server
side components offer a service, and are unaware of the client
providing data to the developer.

Information about the small evaluation of the approach
is given section 4. Related work is discussed in section 5
and in section 6 and section 7 we focus on future work and
conclusions respectively.

Server Side

Data
Gathering
Module

Writes to Data

Reads from
] .
Provider

>~ Database [~

receives a list of method

Client names for a given class

Figure 1: Architecture of the proposed solution.

2. ECOSYSTEM ANALYSIS

In order to provide the developer with the most commonly
used methods of the class we first have to determine what
those methods are. This information can be obtained by an-
alyzing the source code of all the projects in the ecosystem.

"http://www.pharo-project.org/
2http://smalltalkhub.com/#!/~Pharo/Nautilus
3http://www.chromium.org/

© o N e o A W N e

The module in charge of this analysis is marked as “Data
gathering module” on Figure 1.

To keep the data up to date (i.e., to react to introduction
of new APIs to the ecosystem) this module should be re-run
periodically, on be able to update the information in another
way. The proof of concept does not support this at the time
or writing this.

The result of this analysis is a set of triplets

(e, m,n) (1)

stored in a database.

The triplet encodes the following information: in all an-
alyzed projects the method m was invoked* n times on an
instance of class c.

The triplets can be grouped by a given class ¢, which
means that the number n, associated with method m sum-
marizes the frequency of use of that method in the context
of class c.

The details of the implementation of this module for stat-
ically and dynamically typed languages are given in subsec-
tion 2.1 and subsection 2.2 respectively.

A summary of the results of the data gathering module for
Java (statistically typed) and Smalltalk (dynamically typed)
is given in Table 1.

We use a MongoDB?® database to store the data. Mon-
goDB stores JSON documents, and the triplets are grouped
by class before storing, resulting in documents similar to the
following example®

"_id" : Objectld("51b0df6b44b1392c8e7eelec”),
"className” : "Mutex”,
"selectors” :
{
"critical:" : 2,
"INl 1
}
}

The triples are grouped by class name which means that
each entry in the database is a different class for which fre-
quently used methods can be provided.

The data provider shown in Figure 1 is a REST server
that exposes a simple HT'TP API for clients to provide the
name of a class and receive a list of methods sorted based
on frequency of use (n from the triplets).

2.1 Statically typed languages

In statically typed languages information on types of vari-
ables is available in source code so creating the triplets for
the database consist only of parsing the source code and
counting the method invocations.

As a representative of statically typed languages we chose
Java for our proof of concept implementation. To run the
analysis we used Pangea’, a tool for running language in-
dependent analyses on corpora of object-oriented software

4We use the term “method invocation” to describe a call site
in the source code, not a run-time invocation
http://www.mongodb.org
5In Smalltalk jargon, a selector is the name of a message,
i.e.,ifNil: or critical:, used to select the method to respond to
the message.
7 . .

http://scg.unibe.ch/research/pangea

http://www.pharo-project.org/
http://smalltalkhub.com/#!/~Pharo/Nautilus
http://www.chromium.org/
http://www.mongodb.org
http://scg.unibe.ch/research/pangea

. Database
Projects -
Language analvzed entries
Y (Classes)
Java 111 101,844
Smalltalk 109 3,332

Table 1: Summary of the results for both implemen-
tations of the data gathering module

projects. The corpus used for the Java case study is Quali-
tasCorpus [16] version 20120401r which contains 112 systems
written in Java®.

We use QualitasCorpus as a snapshot of a software ecosys-
tem because all the projects in the QualitasCorpus share
dependencies towards a set of libraries, and some depend on
other projects from the QualitasCorpus.

Pangea uses the VerveineJ? exporter to extract informa-
tion from the source code of Java systems and export it as a
FAMIX [19] meta model, and Moose'® to analyze the data.
The FAMIX meta model explicitly models method invoca-
tions, so gathering invocation data in Moose is just iterating
over all invocations, exporting the class-method pairs, and
summing them to form the triplets for the database.

The result of the data gathering module for Java is 101,844
entries in the database. This means that the approach can
provide frequently used methods for 101,844 different classes.

Since the data collector gathers information from all in-
vocations this also includes classes whose scope is limited
to one project and are not visible in the ecosystem. This
means that there is a small probability that any developer
would need to search for methods of these classes. Identi-
fying these classes does not bring any significant benefit to
the approach (other than a potential performance boost due
to less data in the database) so we leave this data as part of
the database.

2.2 Dynamically typed languages

In dynamically typed languages information on types of
variables is not available in source code. Because of this,
creating the triplets for the database is slightly more com-
plicated.

To solve this problem we run a type inference engine [12]
on all instance variables of all analyzed projects, and only
store to the database when a type of a variable can be unam-
biguously inferred. This results in a much smaller database
when compared to the database built for statically typed
languages.

Smalltalk is highly reflective language [14]. This enables
the entire data gathering analysis to be implemented in
Smalltalk itself.

The corpus used is a set of 109 projects from the Pharo
Smalltalk open source ecosystem that we have already stud-
ied before [5]. The configuration browser is a tool to auto-
matically load Smalltalk project source code and dependen-
cies, similar to Maven'! for Java.

80ur analysis infrastructure could not handle one of the
systems in the corpus
“https://gforge.inria.fr/projects/verveinej/
DOhttp://www.moosetechnology.org/
Uhttp://maven.apache.org

As previously mentioned, variable type information is gath-
ered by running a type inference engine. For this we imple-
mented an existing type inference approach described by
Pluquet et al. [13]

The approach has three steps:

1. Interface type extraction. This phase reconstructs the
type of a variable of interest by using static analysis
to find all messages sent to it within the context of the
given class. The system is then searched for all classes
that implement this set of messages.

2. Assignment type extraction. This phase reconstructs
the type with respect to the assignments to the vari-
able. This is a heuristic based analysis of the right side
of assignments to the variable in question.

3. Merger. Merging the results from phases one and two
into the final type results for the variable. Several
different ways exist to do the merge [13], but we focus
on the one that gives priority to the assignment type,
and moves to interface types if an assignment type does
not exist.

We chose this approach because it is simple to understand
and implement, and is sufficient for this proof of concept
implementation.

The result of the data gathering module for Smalltalk is
3,332 entries in the database. This is, as expected, signifi-
cantly smaller than the data made available through analysis
of statically typed source code.

3. PROVIDING THE FREQUENTLY USED
METHODS TO DEVELOPERS

The client-server architecture of the solution enables dif-
ferent implementations of data presentation to the devel-
oper. This means that the need for presenting the data in
a way that is appealing to the developer can be achieved
by implementing a different view. We aim for the data pre-
sentation to be seamlessly integrated with the developers
existing method search process.

For the proof of concept we implemented two data pre-
senters, one for Java and one for Smalltalk. Both are imple-
mented as plugins for tools developer use for searching for
methods. This enables us to augment rather than replace
the existing method search process.

The general work flow of the plugins is as follows

1. Detect which class is being viewed by the developer

2. Consult the data provider module on which are the
frequently used methods of that class

3. Provide that list in a non-intrusive way.

We do not claim there is a correct way to present the data,
nor do we claim any approach is superior to others. The
question of optimal data presentation is out of the scope of
this paper. The implementations presented in this chapter
are only used as a proof of concept.

3.1 The Chromium plugin for Javadoc

Documentation for the majority of Java APIs is generated
by a tool called Javadoc. Javadoc is a tool for generating

https://gforge.inria.fr/projects/verveinej/
http://www.moosetechnology.org/
 http://maven.apache.org

API documentation in HTML format from documentation
comments in source code.

The fact that documentation is generated as a HTML doc-
ument means that developers use a web browser to view the
documentation and for method search. To augment the doc-
umentation we developed a plugin for Chromium, a popular
web browser.

The plugin is triggered when the user has opened an HTML
page generated by Javadoc. The page is identified as a
Javadoc generated page by detecting a specific HTML com-
ment in the Document Object Model (DOM) [20] of the
page. This comment is generated by the Javadoc tool for
all generated pages. Once triggered the plugin extracts the
fully qualified name of the documented class from the DOM.
Javadoc generated pages based on a pattern, so the class
name is easily extractable from the DOM, as it is always
on the same place on the page. After consulting the data
provider module, the list of frequently used methods is pre-
sented by modifying the DOM.

Overview Package f . Use Tree Deprecated Index Help

Prev Class Next Class
Summary: Nested | Field | Constr | Method

Frames No Frames All Classes
Detail: Field | Constr | Method

java.lang

Class String

java.lang.Object
java.lang.String

Frequently used methods

Modifier and Type Method and Description
equals(Object anObject)
Compares this string to the specified object.
int length()

Retumns the length of this string.

boolean

String substring(int beginIndex, int endInd

Returns a new string that is a substring of this str
boolean startsWith(String prefix)

Tests if this string starts with the specified prefix.
char charAt (int index)

Returns the char value at the specified index.
String trim()

Returns a copy of the string, with leading and trail
boolean equalsIgnoreCase(String anotherStrin

Compares this String to another String, ignor

Chvinm suhobwinalink haxinTndav)

more

All Implemented Interfaces:

Serializable, CharSequence, Comparable<String>

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence

The Strina class renresents character strinas. All strina literals in .lava nroorams.

Figure 2: The browser plugin augments the doc-
umentation for the java.lang.String class with the
“Frequently used methods” block

Our initial solution for the proof of concept implemen-
tation shows a list of frequently used methods, with the
short description given in the documentation, at the top of
the Javadoc page. The list shows a customizable number

of methods with the ability to show the entire list on user
request. Every element of the list is a HTML link to a
detailed description of the method, just like in the default
alphabetically sorted list of methods. The look and feel of
the enhancement is identical to the original documentation
generated by Javadoc. A segment of the augmented Javadoc
documentation for the class java.lang.String is shown in Fig-
ure 2.

3.2 The Nautilus plugin

Smalltalk libraries include the source code so searching
for methods is done in the source code itself. The default
tool for browsing the source code in Pharo Smalltalk is Nau-
tilus — an advanced implementation of the original Smalltalk
system browser [17].

Nautilus provides a framework for developing plugins. As
a built in feature of this framework plugins can register to be
notified of certain events by Nautilus. One of these events
is triggered when the user selects a class, and information
about that class is presented. Our plugin, triggered by this
event, consults the data provider module and presents the
frequently used methods.

Our initial solution for the way the methods are presented
within Nautilus is shown in Figure 3. Nautilus is organized
in 5 panes, 4 on top half, and one on the bottom. The 4
top panes contain, from left to right, a lists of all packages
in the system, a list of classes in a selected package, a list
of method protocols? in the selected class , and finally a
list of methods in the selected protocol. The bottom pane
is context sensitive and shows mainly the source code for a
selected class or method.

The thin line of buttons between the top and bottom
panes is provided by our plugin. Every button corresponds
to one frequently used method, and clicking the button opens
a new Nautilus window with the desired method selected,
and the source code shown. The methods are sorted by fre-
quency from left to right, so that the most popular ones
could be read first. The “view all” button opens a separate
window with all the frequently used methods shown in a list,
similar to the default list of methods in Nautilus.

4. INITIAL EVALUATION

Our initial evaluation involves observing developers com-
pleting simple programming task using the augmented doc-
umentation. Several situations in which our approach is di-
rectly helpful have been identified in the initial evaluation.
To illustrate, we present two cases.

One is the case where a popular method is, due to the al-
phabetical sorting of methods, located near the end of docu-
mentation prolonging the method search process. An exam-
ple of this is the substring methods of the java.lang.String
class. It is, according to out analysis, the third most com-
monly used method of the class, yet in documentation it is
placed on the 48th place out of 65 methods.

The second case is when a popular method of a class is
declared higher in the class hierarchy. This leads to the de-
veloper wasting time looking through the documentation of
a class that does not declare the required method. An exam-
ple of that is the method for concatenation'® of ByteStrings

12Protocols are convenient groupings of related methods.

13The selector for this method is the comma operator i.e.
Hello ’, "World!”. This is a legal Smalltalk method name.

x -0

£ Collections-Unordered A “$Bag

3 Collections-Weak DAldtlentltyBag
llectionsT. *Dictionary

ngo ec'ltlons ests IdentityDictionary

& Compiler KeyedTree

3 CompilerTests
£ Compression ® HashTableSizes

f CompressionTests KeyNotFound
1 ConfigurationCommandLineH:;¥ *® Matrix
4 >

WP

PluggableDictionary

Groups Hierarchy O Class side Comments

Dictionary>>#atifAbsent: v

- all - A associationAt: A
accessing associationAt:ifAbsent:
adding . associations
comparing at:
copyin :
ensr{\e?ating at:!fAbsent:
printing atiifAbsentPut:
@ private at:ifPresent:
removing - at:ifPresent:ifAbsent: .
R ~temaate

v

|\ﬁew AI| at:ifAbsent:]at:ifAbsentPut:Iadd:IkeysAndValuesDo:]incIudesKey:]keysIdo:]removeKey:ifAbsent:IisEmptyIremoveKey:IaddA

~((array at: (self findElementOrNil: key))
ifNil: [aBlock]
ifNotNil: [:assoc | assoc]) value.

[(;]j
o
(C)

89

Figure 3: A sample presentation of the frequently used methods in Nautilus. The plugin provides the strip
of buttons above the method source code. Each button coresponds to a frequently used method.

Pharo Smalltalk. This is, according to out analysis, the
most commonly invoked method of the class ByteString, yet
it is declared in the SequenceableCollection class, which is 4
levels higher in the class hierarchy.

5. RELATED WORK

Leveraging information from other projects to make API
usage easier for the developer is not a novel idea and much
work has already been done in this field, but to our knowl-
edge this is the first attempt to use ecosystem analysis to
help developers find the most frequently used methods of a
class faster.

A common approach to improving API usage is to pro-
vide code snippets to the developer. The snippets are most
commonly mined from open source repositories [21, 3, 6]
but other sources are also used i.e. Google code search [18].
Several approaches are used present the code snippets to
the developer. These include search engines [18], IDE aug-
mentations [21], adding code snippets to documentation [10]
and others. Providing code snippets to the developer works
on a different granularity when compared to our approach.
We aim to help the developer find the right method, while
code snippet suggestion provides a whole block of code. The
usefulness of each depends on the developers use case.

Mileva et al. mined software repositories to observe pop-
ularity of APIs, and help developers choose a popular API
rather then an unpopular one, claiming that the “wisdom of
the crowd” can be used to measure the quality of an API [9].
Our approach assumes that the API is known, and aims to
improve the usage of the API, not the selection.

Several papers [11, 1] deal with mining frequent call se-
quences from API. The goal of this is to use other projects to
predict the sequence of method calls the developer wishes to
write based on one or two initial methods. This differs from
our approach because API sequence prediction requires in-
put of one or more method invocations to predict a sequence,
and our approach aims to help the developer find individual

methods that are frequently used.

Some approaches to help developers use APIs relay on the
context in which the developer works [21, 11, 1], commonly
gathered by analyzing the source code the developer is work-
ing on. Our approach ignores this kind of context in order
to reduce complexity, as we aim to test the hypothesis that
a substantial increase in productivity can be gained with
minimum effort.

6. FUTURE WORK

The main part of future work for this approach is to do a
user evaluation. Initial evaluation with individual develop-
ers shows promising results in regards to boosting produc-
tivity, and ease of adoption, but a larger developer base is
needed to establish a solid and measurable claim.

We plan to do this evaluation by exposing developers to an
unfamiliar environment — a new API, or even a new language
— and measuring the time needed for the each developer to
solve a set of coding tasks. A different group of developers,
also with no knowledge of the environment, will be solving
the same tasks, but with the documentation augmented by
our approach.

We hope to see a measurable reduction in time developers
using the augmented documentation take to solve the tasks
when compared with the group using the standard docu-
mentation.

The proof of concept implementation can be improved in
several ways. Expanding the number of analyzed projects
would cover a larger number of APIs available in the ecosys-
tem. Using active projects and keeping the data up to date
would give a timely sample of the state of the ecosystem.

Data gathering for dynamically typed languages could
benefit from more precise type inference engines or type in-
formation being gathered through dynamic analysis. Also,
the way the data is presented could greatly benefit from user
feedback.

7. CONCLUSION

In this paper we present an approach to augment existing
method search tools with information about the most fre-
quently invoked methods on a per class basis. This is done
in order to improve the process of method search, and thus
increase developer productivity.

Frequently invoked methods are discovered by analyzing
a large set of projects — a snapshot of the ecosystem. This
results in a snapshot of the most popular APIs and the most
popular methods of those APIs.

This data is then stored, and made available for client
applications — augmentations of existing tools — to present
to the developers.

We implemented a proof of concept for Java — as repre-
sentative of statically typed languages, and Smalltalk — as a
representative of dynamically typed languages. This paper
presents the implementation details of both.

An initial evaluation, done by observing developers using
the plugins, shows promising results, supporting our hypoth-
esis that a substantial improvement in developer productiv-
ity can be achieved with minimal complexity. A larger user
case study is needed to provide a measurable and represen-
tative result.

Acknowledgment

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Assessment” (SNSF project Np. 200020-144126/1, Jan 1,
2013 -Dec. 30, 2015)

We also thank Cédric Reginster, for his contribution to
the proof of concept implementation.

8. REFERENCES

[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining api
patterns as partial orders from source code: From
usage scenarios to specifications. In Proceedings of the
the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software
Engineering, ESEC-FSE ’07, pages 25—-34, New York,
NY, USA, 2007. ACM.

[2] N. Haenni, M. Lungu, N. Schwarz, and O. Nierstrasz.
Categorizing developer information needs in software
ecosystems. In Proceedings of the 1st Workshop on
Ecosystem Architectures, pages 1-5, 2013.

[3] R. Holmes and G. C. Murphy. Using structural
context to recommend source code examples. In
Proceedings of ICSE’05, pages 1-10, 2005.

[4] M. Lungu. Reverse Engineering Software Ecosystems.
PhD thesis, University of Lugano, Nov. 2009.

[5] M. Lungu, R. Robbes, and M. Lanza. Recovering
inter-project dependencies in software ecosystems. In
ASE’10: Proceedings of the 25th IEEE/ACM
International Conference on Automated Software
Engineering. ACM Press, 2010.

[6] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman.
Jungloid mining: Helping to navigate the api jungle.
SIGPLAN Not., 40(6):48-61, June 2005.

[7] K. Manikas and K. M. Hansen. Software ecosystems -
a systematic literature review. J. Syst. Softw.,
86(5):1294-1306, May 2013.

[8] D. G. Messerschmitt and C. Szyperski. Software
Ecosystem: Understanding an Indispensable
Technology and Industry. The MIT Press, 2005.

[9] Y. M. Mileva, V. Dallmeier, and A. Zeller. Mining api
popularity. In Proceedings of the 5th International
Academic and Industrial Conference on Testing -
Practice and Research Techniques, TAIC PART’10,
pages 173-180, Berlin, Heidelberg, 2010.
Springer-Verlag.

[10] J. E. Montandon, H. Borges, D. Felix, and M. T.
Valente. Documenting apis with examples: Lessons
learned with the apiminer platform. In WCRE, pages
401-408, 2013.

[11] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M.
Al-Kofahi, and T. N. Nguyen. Graph-based mining of
multiple object usage patterns. In Proceedings of the
the 7th Joint Meeting of the Furopean Software
Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software
Engineering, ESEC/FSE '09, pages 383-392, New
York, NY, USA, 2009. ACM.

[12] J. Palsberg and M. I. Schwartzbach. Object-oriented
type inference. In Proceedings OOPSLA ’91, ACM
SIGPLAN Notices, volume 26, pages 146-161, Nov.
1991.

[13] F. Pluquet, A. Marot, and R. Wuyts. Fast type
reconstruction for dynamically typed programming
languages. In DLS ’09: Proceedings of the 5th
symposium on Dynamic languages, pages 69-78, New
York, NY, USA, 2009. ACM.

[14] F. Rivard. Smalltalk: a reflective language. In
Proceedings of REFLECTION ’96, pages 21-38, Apr.
1996.

[15] C. Scaffidi. Why are apis difficult to learn and use?
Crossroads, 12(4):4-4, Aug. 2006.

[16] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li,
M. Lumpe, H. Melton, and J. Noble. The qualitas
corpus: A curated collection of java code for empirical
studies. In Software Engineering Conference
(APSEC), 2010 17th Asia Pacific, pages 336 —345,
Dec. 2010.

[17] L. Tesler. The Smalltalk environment. Byte,
6(8):90-147, Aug. 1981.

[18] S. Thummalapenta and T. Xie. Parseweb: a
programmer assistant for reusing open source code on
the web. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated
software engineering, ASE ’07, pages 204-213, New
York, NY, USA, 2007. ACM.

[19] S. Tichelaar. Modeling Object-Oriented Software for
Reverse Engineering and Refactoring. PhD thesis,
University of Bern, Dec. 2001.

[20] L. Wood, J. Sorensen, S. Byrne, R. Sutor,

V. Apparao, S. Isaacs, G. Nicol, and M. Champion.
Document Object Model Specification DOM 1.0. World
Wide Web Consortium, 1998.

[21] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo:
Mining and recommending api usage patterns. In
S. Drossopoulou, editor, ECOOP 2009 -
Object-Oriented Programming, volume 5653 of Lecture
Notes in Computer Science, pages 318-343. Springer
Berlin Heidelberg, 2009.

	Introduction
	Ecosystem analysis
	Statically typed languages
	Dynamically typed languages

	Providing the frequently used methods to developers
	The Chromium plugin for Javadoc
	The Nautilus plugin

	Initial evaluation
	Related work
	Future work
	Conclusion
	References

