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ABSTRACT

The distributed nature of a typical web application combined
with the rapid evolution of underlying platforms demands
for a plug-in component architecture. Nevertheless, code for
controlling distributed activities is usually spread over mul-
tiple subsystems, which makes it hard to dynamically recon-
figure coordination services. This paper investigates
coordination componentsas a way to encapsulate the coordi-
nation of a distributed system into a separate, pluggable enti-
ty. In an object-oriented context we introduce two design
guidelines (namely, “turn contracts into objects” and “turn
configuration into a factory object”) that help developers to
separate coordination from computation and to develop re-
usable and flexible solutions for coordination in distributed
systems.

1 INTRODUCTION

With the coming of the world-wide web, more and more soft-
ware systems must be adapted to incorporate facilities for in-
ter- and intra-nets. Large portions of the software industry
have tried to tackle this market with component technology:
desktop publishing software provide components that gener-
ate HTML and PDF; database vendors sell components that
translate “search and query applications” into HTML forms;
Java component environments provide support for building
attractive user interfaces using native widgets. And this list
continues to grow.

One of the main reasons why web applications embrace
component technology is the ability for dynamic reconfigu-
ration by means ofplug-in components[16]. Indeed, since
web applications operate in heterogeneous contexts, they
need to encapsulate all platform dependent behaviour into
separate components. And since there is no way to freeze the
internet while reconfiguring, web applications must plug-in
new functionality at run-time.

Despite the increasing maturity of middle-ware standards
like CORBA and Microsoft’s ActiveX, component technol-
ogy has not been applied to one of the most critical aspects of
web-applications, namely the coordination of the distributed
activities [13]. The reason for this is twofold: first, coordina-
tion is difficult to shrink-wrap into an off-the-shelf compo-
nent [23], implying that application developers will not
easily be able to buy “coordination components” like they
buy GUI-components. Second, code for coordinating dis-
tributed activities is typically spread over all subsystems that
make up the web-application, implying that dynamic recon-
figuration of coordination policies is usually impossible.

Since dynamic reconfiguration of coordination policies
is often necessary (e.g., for load-balancing) and since it is un-
likely that one will be able to buy off-the-shelf solutions, ap-
plication developers are obliged to implement their own
coordination components. Yet, implementing your own so-
lution has considerable drawbacks and must —among other
things— be guided by solid design guidelines. This paper
presents two design guidelines in object-oriented framework
technology (i.e.,turn contracts into objectsandturn config-
uration into a factory object), which provide support for en-
capsulating coordination into special-purpose plug-in
components that can be dynamically exchanged. The paper
introduces the design guidelines by means of an example (a
web-application for managing bank accounts), gradually
adding requirements to show how the resulting coordination
component allows for dynamic system reconfiguration.

2 AN EXAMPLE: INTERNET
BANKING

Consider the example of a bank that provides its customers
with internet banking services. Customers use a web browser
to consult the balance on their accounts and may transfer
money from one account to another. The requirements we
impose on our example application are:

• Fundamental Requirements
1. Security.Only authorised users should have ac-

cess to an account.
2. Reliability. Any operation must leave the system

in a consistent state, i.e. while seeing the balance
of an account, or while transferring money from
one account to another, no money may disappear.
Thus, the sum of the balances of all accounts re-
mains constant over time.



• Additional requirements for a dynamic environment
3. Performance Tuning. For optimal throughput, the

system should be able to switch policies, for instance
between an optimistic or pessimistic locking proto-
col [17].

4. Replication. To be able to handle lots of requests in
parallel, it should be possible to replicate the web
server on different machines.

5. Dynamic Reconfiguration.In the above two cases all
reconfiguration of the web server should be dynamic.
Thus, switching between policies and adding extra
servers, should be possible without terminating the
system.

This set of requirements has the following implications: firstly,
to provide reliability for multiple concurrent clients coordina-
tion of actions is needed. Secondly, the additional requirements
demand for a way to easily exchange solutions to this coordina-
tion problem.

We start with an initial design and implementation that fulfils
the two fundamental requirements (section 2.1 and section 2.2).

This elementary version doesn’t, however, satisfy the additional
requirements for a dynamic environment. To resolve that we ap-
ply two design guidelines (section 2.3) including the additional
technology we need to be able to apply them (section 2.4).

2.1 An Initial Design

An initial design for our banking system is shown in Figure 1,
where we see that acustomer owns a number ofaccounts
within abank , and that a customer may request the bank tosee
the balance of an account and totransfer money from one
account to another. When the bank object is answering such re-
quests, it guarantees the “security” and “reliability” require-
ments, phrased in the “account access contract”1 on the class
Bank . That contract states (i) as invariant that the sum of the bal-
ances of all accounts remains equal; (ii) as precondition for both
the transfer andseeBalance operation that the request-
ing customer is authorised to issue the request; (iii) as postcon-
dition for the transfer operation that the balances of the
involved accounts have been updated accordingly.

2.2 Naive Implementation
To satisfy the “Reliability” requirement the internet banking

system must incorporate concurrency control facilities, thus a
per-account locking mechanism. A naive implementation —i.e.
one that does not have to deal with the “Dynamic Reconfigura-
tion” requirement— might achieve this via some additional
locking code on the classAccount and some transaction man-
agement code on the classBank . Typical code —adapted from
[17]— is shown in Figure 2. To meet the “Security” requirement
the callisAuthorised is added.

A first observation to be made at this point is that concurren-
cy control adjusts the public interface of the domain objects. In
particular, thegetBalance andsetBalance operations re-
quire an extra parameter (the transaction identifier), and the
classAccount contains additional operations (lock , com-
mit , abort ). A second observation is that we are forced to
wrap a considerable amount of code around the domain specific
functionality to meet the non-functional requirements (i.e., the
greyed-out code in Figure 2). Finally, this design does not cope
well with the “Dynamic Reconfiguration” requirement. Adding
extra servers requires a new implementation of theAccount
class that is impossible to load at run-time without halting the

system. And once the replicated servers are running, dynamic
switching of the locking policy is impossible, because it requires
loading new versions of theBank andAccount classes on all
replicas simultaneously.

The diagnosis of the problem —as should not come as a sur-
prise— is an incorrect separation of concerns: functional as well
as non-functional behaviour is mixed into the same class. To
remedy this situation, we must factor out the state and behaviour
for the transaction from the domain-specific code. In section 2.3
through section 2.6 we show how a redesign leads to coordina-
tion components that encapsulate non-functional behaviour and
allow for dynamic reconfiguration.

2.3 Design Guidelines
To tackle the problem of dynamic reconfigurability we apply --
similar to what is proposed in [10] -- two design guidelines,
namely“turn contracts into objects”and“turn configuration
into a factory object”. The guidelines provide a step-by-step
recipe to introduce components that encapsulate coordination,
as proposed in [8]. Applying the guidelines to coordination is
not trivial as we need to deal with concurrent interdependent ac-
cesses to the domain objects (namely, the different transactions

1. In this paper, we use the notion of contracts as explained in “Design by Contract”[19].

Figure 1 Initial design for an internet banking system, including the account access contract
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accessing the accounts). Therefore, in addition to what is pro-
posed in [10], we need to wrap the domain objects individually
to (1) control the access to these domain objects and (2) control
the state of the domain objects in the presence of multiple trans-
actions.

Following the first guideline, we introduce an explicit repre-
sentation of the “Account Access” contract (see Figure 3). This

explicit contract object checks the pre- and postconditions of the
contract with thepre andpost operations. Following the sec-
ond guideline, we introduce an explicit factory object (cf. the
“Abstract Factory” design pattern [12]) that is responsible for
supplying an appropriate set of domain objects according to the
system configuration.

The interaction diagram in Figure 3 illustrates the effect of
introducing an explicit contract and a configuration object on the
transfer operation. Basically, whenever a bank receives a re-
quest (transfer or seeBalance ), it first asks the global
factory to supply the necessary objects (usingretrieveCon-
tract andretrieveAccount ). Next, it registers the par-

ticipating objects on the contract (usingregister ); requests
the contract object to check the precondition (usingpre ); then
does whatever is required to satisfy the actual request (a se-
quence of getBalance and setBalance ) and finally
checks the postcondition (usingpost ).

if (not locked)
lockedBy = id;
copyBalance = balance;

else fail;

if this.lockedBy(id)
return balance;

else fail;

Bank
isAuthorised(customer);
id = transactionMgr.newTransaction();
// transfer amount from acc1 to acc2
acc1.lock(id);
acc2.lock(id);
balance = acc1.getBalance(id);
acc1.setBalance(id,balance-amount);
balance = acc2.getBalance(id);
acc2.setBalance(id,balance+amount);
transactionMgr.commitTransaction (id)

Account

getBalance(id)
setBalance(id, amount)

accountNr: AccountNr
balance: Amount

lock(id)

if this.lockedBy(id)
balance = newBalance;

else fail;

Figure 2 Naive implementation violating the “separation of concerns” principle.
Grey regions denote non-functional code.

copyBalance: Amount
lockedBy: TransactionID

commit(id)
abort(id)

seeBalance(Customer,
AccountNr): Amount

transfer(Customer, Amount,
AccountNr, AccountNr)

Figure 3 Sequence diagram for “transfer” operation using explicit contract and factory objects.
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An important property of theturn contracts into objectsand
turn configuration into a factory objectdesign guidelines is that
these objects never introduce any behaviour outside the domain.
However, they do introduce a number of hook methods (i.e.,
retrieveContract , retrieveAccount , pre and
post ) that enable us (i) to separate transactional state from do-
main specific state and (ii) to wrap additional transactional be-
haviour around the domain specific operations. In the next
sections we show how to make use of these hook methods to deal
with the additional requirements for a dynamic environment.

2.4 Wrapping the Domain
Objects

To address the three requirements for a dynamic environment,
we encapsulate the per-account locking mechanism into a set of
collaborating wrapper objects. The transaction mechanism re-
quires additional behaviour onpre andpost (to initialize and
terminate the transaction) and ongetBalance andsetBal-
ance (to check the lock before performing the actual get- or set
operation). This behaviour is added by wrapping the contract
object and the account objects. Wrapping allows us to leave the
protocol inside the existing transfer operation untouched. Fig-
ure 4 shows the details: the greyed code shows the wrappers call-

Figure 4 Sequence diagram with wrapped objects implementing per-account locking.
The grey areas correspond to added details with respect to Figure 3: wrappers calling each other to pro-

vide coordination of the wrapped objects.
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ing each other (to provide the coordination) or the action they
wrap. The details are explained in the following list:

1. The retrieveContract operation wraps the
original contract object to patch thepre andpost
operations.

2. The retrieveAccount operation returns
wrapped account objects with the originalgetBal-
ance  andsetBalance  operations patched.

3. The patchedpre operation initializes the transaction
by issuingnewTransaction on a global transac-
tion manager and locking the accounts. Finally, it
forwards the call to the wrapped contract object, to
check the original preconditions as well.

4. The patchedgetBalance andsetBalance op-
erations participate in the transaction by checking the
lock and forwarding to the wrapped account object.

5. The patchedpost operation forwards to the
wrapped contract objects and then issues the final
commitTransaction .

Finally, a note on how a transaction may abort. This may happen
after thelock or commitTransaction requests because
the transaction system could not satisfy the request because of
collisions with other transactions. Aborts may also happen just

after the forwardedpre orpost operations return, because the
contract object decides that the pre or post conditions are not sat-
isfied. In all these cases, an exception is raised which handler
gracefully cleans up all resources and terminates the transaction,
leaving all the domain objects in their original state.

2.5 Reconfiguration of Locking
Protocol

Once we have introduced the per-account locking mechanism
using the protocol in Figure 4, it is possible to switch from opti-
mistic to pessimistic locking transparently. Indeed, the only dif-
ference lies in the implementation of thelock operation:
optimistic locking aborts immediately when it can not acquire a
lock; pessimistic locking waits until the lock comes available
[17]. Consequently, it suffices that the globalFactory instantiates
the appropriate wrapper class --eitherOptimisticLockAc-
count or PessimisticLockAccount (see Figure 5)-- to
make the accounts lockable. The contract wrapper then provides
all transaction related state needed by the lockable accounts
(namely the transaction id). Figure 5 shows a possible class hier-
archy to implement such locking functionality, similar to what is
described in [24].

Note that the wrappers around the domain objects expand the
basic interaction protocol, as they interact with each other to
provide the coordination service. Therefore, they are not inde-
pendent and can only be used as a group. Consequently, we have
but one global factory object (globalFactory ) which is re-
sponsible for instantiating the appropriate set of wrappers.

2.6 Replication of Services
With the per-account locking protocol from Figure 4, it is possi-
ble to replicate the individual account objects within several
servers. To achieve this, all replicated account objects are
wrapped into oneCompositeLockAccount using a variant
of the “Composite” design pattern [12] (see Figure 6). On re-
ceiving alock orsetBalance operation, the composite for-
wards to all contained accounts, while thegetBalance
operation is forwarded to a single account object only. Again, by

instantiating the appropriate wrapping objects into the factory
object, the replicated services of our system can be dynamically
reconfigured.

3 DISCUSSION

To achieve the goal of dynamic reconfigurability of non-func-
tional behaviour we have introduced explicit contracts and con-
figuration objects as a way to encapsulate coordination
behaviour into a special-purpose component. The example of
the internet banking illustrates the typical steps involved in de-
signing coordination components:

1. Start with an initial design for the domain, including
contracts that state the obligations of the participat-
ing classes. Define the contracts according to “De-

Figure 5 Class hierarchy for reconfigurable locking protocols
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sign by Contract” principle [19], i.e. using pre- and
postconditions.

2. Apply the design guideline “turn contracts into ob-
jects”. Thus, define a separate object per contract,
providing pre and post operations for checking
the contractual obligations. Also, have the domain
objects invoke thesepre  andpost  operations.

3. Apply the design guideline “turn configuration into
a factory object”. Thus, introduce an object that
knows which wrappers and domain objects to create
for a certain configuration.

4. Add non-functional behaviour by providing wrap-
pers around the original domain objects. The wrap-
pers instrument the domain-specific operations with
the non-functional coordination behaviour. A partic-
ular configuration of wrapper objects is then acoor-
dination component.

The fact that the explicit representations of the contracts provide
the necessary hooks for coping with non-functional require-
ments isnotcoincidence. Indeed, a contract object forces the de-
signer to make the important sequence of domain operations
explicit, thus providing the ideal place to factor out non-func-
tional state and wrap non-functional behaviour.

We call a configuration of wrapper objects containing a par-
ticular locking or replication policy acoordination component.
According to the definition “components are static abstractions
with plugs” ([20], p.5), this corresponds indeed to a component.
The configuration is (a) static because it can be stored inside a
component-base to be reused across different applications; it’s
an (b) abstraction because it encapsulates well-defined coordi-
nation behaviour and it has (c) plugs by means of the wrapped
operations.

Although the solution provides for dynamic reconfiguration
of coordination aspects of a system, it also makes the system in-
herently more complex. Instead of only having the domain ob-
jects altered with some coordination code, the management of
coordination is delegated to a set of specialized objects which
can be exchanged at run-time. This implies that the design steps
should only be applied when dynamic reconfiguration is a re-
quirement.

Finally, dynamically exchanging coordination protocols
may be eased by reflection support in the underlying program-
ming language. In languages such as CLOS [3] or Smalltalk
[11], domain specific operations can be explicitly manipulated

to wrap additional state and behaviour. We have used the wrap-
pers together with the factory object as a kind of “poor men’s re-
flection”, to achieve the necessary method instrumentation in
mainstream object-oriented languages such as C++ and Java.

Past, Present and Future
The initial ideas on coordination components appeared in [25],
later summarized in [8]. On the other hand, the role of explicit
contract and configuration objects in framework design has been
explored in [9], later refined in [10]. In the paper you are reading
now, both the ideas on pluggable coordination policies and the
explicit objects have been combined into a series of design steps
that lead to coordination components.

A prototype with the presented design has been successfully
built. Indeed, switching the banking system from a non-transac-
tional system to a transactional system requires only to make the
factory provide the right set of wrappers. Similarly, switching
between transaction policies is done by making the factory pro-
vide a different set of transactional wrappers.

Future work includes extending the framework to use COR-
BA’s and COM’s transactional systems and test the applicability
of the approach in a real-world context. In particular, more work
needs to be done on examining the effects of dynamically
changing the policies. Future work also includes a survey of
contracts as the basis for the development of a coordination
framework. Special emphasis within this framework is on coor-
dination contracts as the means for governing the collaborations
between objects or components in a software system. A coordi-
nation contract makes explicit what the minimal and sufficient
conditions are for the different parts to work together.

4 RELATED WORK

This work is located in the area between coordination and ob-
ject-oriented framework technology. Therefore, we discuss re-
lated work out of both these areas. Note that we build upon
established ideas from well-known concurrent systems technol-
ogy as well, but we do not refer to these.

Coordination languages
Coordination languages, such as Gamma [4] and all kinds of
Linda-flavours [7], typically provide a single paradigm to sepa-
rate the coordination part of an application from the computa-

Figure 6 Class hierarchy for replicated services
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tional part. For instance, Gamma supports a chemical reaction
model for the definition of programs without artificial sequenti-
ality, while Linda provides tuple-spaces for generative commu-
nication with some basic synchronization.

The idea of coordination components is not new, as illustrat-
ed by work such as Manifold [1]. This language coordinates the
global behaviour of a number of black box components by con-
necting their respective communication ports. Systems can be
reconfigured by dynamically rewiring its constituting compo-
nents.

The TOOLBUS coordination architecture [6] provides a
communication bus to connect components in a distributed en-
vironment. The communication bus is controlled by process-
oriented scripts, which formalize the interaction between the
components. The approach provide a clean separation of con-
cerns, as the components only compute and the scripts describe
the interaction.

Like promoted by coordination languages, our approach
provides explicit separation of coordination and computation.
However, we do not investigate a particular paradigm or formal-
ization of coordination. We focus on wrapping technology in
mainstream object-oriented languages. Consequently, our de-
sign guidelines are directly applicable in object-oriented appli-
cations that need dynamic reconfiguration of coordination
policies.

What we don’t address in this paper is the coordination prob-
lem of inter-activity coordination as for instance known in work-
flow systems. Examples of coordination research in this area are
CLF [2] and Sonia [4].

Object-Oriented Framework
Technology
Today, a few commercial frameworks deal with coordination is-
sues, most notably CORBA implementations and Microsoft’s
ActiveX. These frameworks provide basic services for coordi-
nating distributed communication, e.g. the CORBA transaction
service. Our approach iscomplementaryto these, in the sense
that --like promoted by coordination languages-- we advocate
for a separation of coordination from computation. As such, the
guidelines help to encapsulate the dependencies on such com-
mercial services, so that we for instance would be able switch
transparently and dynamically between a CORBA and DCOM
implementation.

The ADAPTIVE Communication Environment (ACE) [22]
of Doug Schmidt implements a set of design patterns for concur-
rent event-driven communication software. It simplifies the de-
velopment, configuration and reconfiguration of distributed
applications and services that use interprocess communication,
event demultiplexing, explicit dynamic linking and concurren-
cy.

In [24], a transaction framework is presented that provides
ways to dynamically adapt the transaction semantics of a system
for optimal transactional behaviour at all times. This work
shows the feasibility of dynamic exchange of transaction poli-
cies.

Coda [14] has been used to open up the implementation of
Smalltalk message passing and is able to add meta-level infra-

structure to Smalltalk objects, so that additional behaviour such
as concurrency or distribution can be added. The Coda experi-
ment is especially important as it shows that a meta-level is “just
another application” and that traditional software design tech-
niques such as abstraction and decomposition remain valuable.

Implementational Reflection and
Aspect Oriented Programming
A major source of inspiration for our work, calledimplementa-
tional reflection,is presented in [21]. It is an approach that
“opens up” implementations by exposing their meta-level. On
one hand a system has a base-level interface which is the com-
mon interface for such a system, where on the other hand the
system has a meta-level interface that reveals how some aspects
of the system are implemented. The meta-level interface pro-
vides the possibility to change the default base-level behaviour
to behaviour that differs in semantics and/or performance. In
[21] the approach is illustrated by a windowing system. In the
context of this approach our work can be viewed as providing a
meta-level for coordination where coordination policies can be
switched.

In Aspect Oriented Programming [15],[18], systems are
viewed as a set of components and aspects. Components are
properties of systems that are easily encapsulated in a generic
way, and aspects are properties that effect many other compo-
nents and therefore cannot be cleanly encapsulated. Both these
kinds of properties will cross-cut each other in a system’s imple-
mentation. The solution they propose is to describe the compo-
nents and the aspects in their own languages, thereby ensuring
separation of concerns, and then mix the properties using a spe-
cial language processor. Although the solution provides a clean
separation of concerns, it doesn’t support the coordination of
off-the-shelf components. Aspects and components are mixed at
compile time, leaving out the possibility to plug-in other compo-
nents afterwards.

5 CONCLUSION

The very nature of web-like environments --with its rapid evolu-
tion of standards and protocols-- demands for dynamic reconfig-
uration. Component technology as a means to dynamically plug
in new functionality is becoming increasingly important. Yet,
truly distributed web systems are scarce, partly because compo-
nent technology has not yet been able to deliver reusable coordi-
nation abstractions.

In this paper we have shown that it is possible to provide re-
usable coordination solutions as dynamically pluggable compo-
nents. Explicit contract and factory objects form the key to the
solution: they provide the right set of hooks to wrap additional
non-functional coordination behaviour. This in turn gives rise to
what we call a coordination component. The explicit contract
and factory objects follow naturally from applying two frame-
work design guidelines: “turn contracts into objects” and “turn
configuration into a factory object”.
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