Design Guidelines for Coordination
Components

Sander Tichelaar, Juan Carlos Cruz and Serge Demeyer
Institut fur Informatik (IAM), Universitat Bern, Neubriickstrasse 10, CH-3012 Berne, Switzerland.
E-mail: {tichel,cruz,demeyer}@iam.unibe.ctWWW:http://www.iam.unibe.ch/~ség

Keywords: coordination component, object-orientation, Despite the increasing maturity of middle-ware standards

contracts, transactions, design guidelines like CORBA and Microsoft's ActiveX, component technol-
ogy has not been applied to one of the most critical aspects of
ABSTRACT web-applications, namely the coordination of the distributed

activities [13]. The reason for this is twofold: first, coordina-
The distributed nature of a typical web application combinedtion is difficult to shrink-wrap into an off-the-shelf compo-
with the rapid evolution of underlying platforms demands nent [23], implying that application developers will not
for a plug-in component architecture. Nevertheless, code foeasily be able to buy “coordination components” like they
controlling distributed activities is usually spread over mul- buy GUI-components. Second, code for coordinating dis-
tiple subsystems, which makes it hard to dynamically recon-tributed activities is typically spread over all subsystems that
figure coordination services. This paper investigatesmake up the web-application, implying that dynamic recon-
coordination componentss away to encapsulate the coordi- figuration of coordination policies is usually impossible.
nation of a distributed system into a separate, pluggable enti- - gince dynamic reconfiguration of coordination policies
ty._ln an object-oriented context we |ntr9duce two designis often necessary (e.g., forload-balancing) and since itis un-
guidelines (namely,tirn contracts into objectsand “turn jjkely that one will be able to buy off-the-shelf solutions, ap-
configuration into a factory objetithat help developersto pjication developers are obliged to implement their own

separate coordination from computation and to develop rexqgordination components. Yet, implementing your own so-
usable and flexible solutions for coordination in distributed |tjon has considerable drawbacks and must —among other

systems. things— be guided by solid design guidelines. This paper
presents two design guidelines in object-oriented framework
1 INTRODUCTION technology (i.e.turn contracts into objectandturn config-

) .) uration into a factory objegt which provide support for en-
With the coming of the world-wide web, more and more soft- capsulating coordination into special-purpose plug-in

ware systems must be adapted to incorporate facilities for in'components that can be dynamically exchanged. The paper

ter- a“?' intra-nets. Lgrge portior_ls of the software irIdUStryintroduces the design guidelines by means of an example (a
have tried to tackle this market with component teChnc’Iogy:web-application for managing bank accounts), gradually

desktop publishing software provide components that genera 4ing requirements to show how the resulting coordination

ate HTML and PDF; database vendors sell components thgl,myonent allows for dynamic system reconfiguration.
translate “search and query applications” into HTML forms;

Java component environments provide support for buildingo AN EXAMPLE: INTERNET
attractive user interfaces using native widgets. And this list ’
continues to grow. BANKING

One of the main reasons why web applications embraceConsider the example of a bank that provides its customers
component technology is the ability for dynamic reconfigu- with internet banking services. Customers use aweb browser
ration by means oflug-in componentgl6]. Indeed, since to consult the balance on their accounts and may transfer

web applications operate in heterogeneous contexts, thejoney from one account to another. The requirements we
need to encapsulate all platform dependent behaviour intgmpose on our example application are:

separate components. And since there is no way to freeze the .
internet while reconfiguring, web applications must plug-in
new functionality at run-time.

Fundamental Requirements
Security.Only authorised users should have ac-
cess to an account.

2. Reliability. Any operation must leave the system
in a consistent state, i.e. while seeing the balance
of an account, or while transferring money from
one account to another, no money may disappear.
Thus, the sum of the balances of all accounts re-
mains constant over time.

» Additional requirements for a dynamic environment This elementary version doesn’t, however, satisfy the additional

3. Performance TuningFor optimal throughput, the requirements for adynamic environment. To resolve that we ap-
system should be able to switch policies, for instanceply two design guidelines (section 2.3) including the additional
between an optimistic or pessimistic locking proto- technology we need to be able to apply them (section 2.4).
col [17].

4. Replication To be able to handle lots of requests in
parallel, it should be possible to replicate the web
server on different machines.

5. Dynamic Reconfiguratiorin the above two cases all
reconfiguration of the web server should be dynamic.
Thus, switching between policies and adding extra
servers, should be possible without terminating the
system.

2.1 An Initial Design

An initial design for our banking system is shown in Figure 1,

where we see that@aistomer owns a number aiccounts

within abank , and that a customer may request the barsieto

the balance of an account andttansfer ~ money from one

account to another. When the bank object is answering such re-

quests, it guarantees the “security” and “reliability” require-

This set of requirements has the following implications: firstly, ments, phrased in the “account access conttami’the class

to provide reliability for multiple concurrent clients coordina- gank . Thatcontract states (i) as invariant that the sum of the bal-

tion of actions is needed. Secondly, the additional requirements e of a1l accounts remains equal: (ii) as precondition for both

Qemand for away to easily exchange solutions to this coordinagatransfer ~ andseeBalance operation that the request-

tion problem. ing customer is authorised to issue the request; (iii) as postcon-
We start with an initial design and implementation that fulfils dition for thetransfer ~ operation that the balances of the

the two fundamental requirements (section 2.1 and section 2.2)nvolved accounts have been updated accordingly.

Customer * Account
T

accountNr: AccountNr
! balance: Amount
Bank

customerNr: CustomerNr

getBalance()
setBalance(amount)
account seeBalance(Customer,
access . — A AccountNr): Amount
contract transfer(Customer, Amount,

AccountNr, AccountNr)

Figure 1 Initial design for an internet banking system, including the account access contract

2.2 Naive Im p lementation system. And once the replicated servers are running, dynamic
switching of the locking policy isimpossible, because itrequires
To satisfy the “Reliability” requirement the internet banking loading new versions of thBank andAccount classes on all
system must incorporate concurrency control facilities, thus &eplicas simultaneously.
per-account locking mechanism. A naive implementation —i.e.) .
one that does not have to deal with the “Dynamic Reconfigura- 1 he diagnosis of the problem —as should not come as a sur-
tion” requirement— might achieve this via some additional PriSe—isan incorrect separation of concerns: functional as well

locking code on the clagsccount and some transaction man- 85 non-functional behaviour is mixed into the same class. To
agement code on the claBank . Typical code —adapted from remedy this situation, we must factor out the state and behaviour
[17]— is shown in Figure 2. To meet the “Security” requirement for the transaction from the domain-specific code. In section 2.3

the callisAuthorised is added. through section 2.6 we show how a redesign leads to coordina-

)) S tion components that encapsulate non-functional behaviour and
A first observation to be made at this point is that concurren-gjjow for dynamic reconfiguration.

cy control adjusts the public interface of the domain objects. In
partlcular, theetBalance andsetBaIan(_:e _ opera_ltlons re- 23 Desi gn Guidelines
quire an extra parameter (the transaction identifier), and thé

classAccount contains additional operationk¢k , com- To tackle the problem of dynamic reconfigurability we apply --
mit , abort). A second observation is that we are forced to similar to what is proposed in [10] -- two design guidelines,
wrap a considerable amount of code around the domain specifisgamely“turn contracts into objects”and“turn configuration
functionality to meet the non-functional requirements (i.e., theinto a factory object’ The guidelines provide a step-by-step
greyed-out code in Figure 2). Finally, this design does not copeecipe to introduce components that encapsulate coordination,
well with the “Dynamic Reconfiguration” requirement. Adding as proposed in [8]. Applying the guidelines to coordination is
extra servers requires a new implementation ofAbeount not trivial as we need to deal with concurrent interdependent ac-
class that is impossible to load at run-time without halting thecesses to the domain objects (namely, the different transactions

1. In this paper, we use the notion of contracts as explained in “Design by Contract”[19].

Bank

seeBalance(Customer,
AccountNr): Amount

AccountNr, Accountir)

transfer(Customer, Amount, 7

isAuthorised(customer);

id = transactionMgr.newTransaction();
/I transfer amount from acc1l to acc2
accl.lock(id);

acc2.lock(id);

balance = accl.getBalance(id);
accl.setBalance(id,balance-amount);
balance = acc2.getBalance(id);
acc2.setBalance(id,balance+amount);
transactionMgr.commitTransaction (id)

Account

if this.lockedBy(id)

accountNr: AccountNr
balance: Amount
copyBalance: Amount .~

return balance;
| else fall;

—

—

—

if this.lockedBy(id)
balance = newBalance;

—

—

else fail;

lockedBy: TransactjorfiD
getBalance(id) - P -
setBalance(id, amount) _— + — if (not locked)

; lockedBy = id;
lock(d} — — — — — + — — — — - L)
commit(id) copyBalance = balance;

abort(id) else fail;

Figure 2 Naive implementation violating the “separation of concerns” principle.
Grey regions denote non-functional code.

accessing the accounts). Therefore, in addition to what is proexplicit contract object checks the pre- and postconditions of the
posed in [10], we need to wrap the domain objects individuallycontract with theore andpost operations. Following the sec-

to (1) control the access to these domain objects and (2) contrand guideline, we introduce an explicit factory object (cf. the
the state of the domain objects in the presence of multiple trans‘Abstract Factory” design pattern [12]) that is responsible for
actions. supplying an appropriate set of domain objects according to the

Following the first guideline, we introduce an explicit repre- system configuration.

sentation of the “Account Access” contract (see Figure 3). This

transfer (accll:ir, acc2Nr, amount)

| globalFactory |

retrieveContract (“transfer”) |
>

retrieveAccount (acc1Nr, “transfe»r’l)

ol '
retrieveAccount (acc2Nr, “transfe»r"B
I

| anAccountAccessContract ’4
T

| register (accl),
| register (acc2)

>

| pre()

>

setBalance (getBaIAnce() -amo

|
|
|
|
anb

| setBalance (getBaI@nce() + amour]t)

| post()

Figure 3 Sequence diagram for “transfer” operation using explicit contract and factory objects.

The interaction diagram in Figure 3 illustrates the effect of ticipating objects on the contract (usirggister
introducing an explicit contract and a configuration object on thethe contract object to check the precondition (uging); then
operation. Basically, whenever abank receives are-does whatever is required to satisfy the actual request (a se-
or seeBalance), it first asks the global

transfer
quest fransfer

>

|

factory to supply the necessary objects (usatgeveCon-

tract andretrieveAccount

). Next, it registers the par-

quence ofgetBalance

I
I
I
I
|
I

checks the postcondition (usipgst).

and setBalance) and finally

An important property of theurn contracts into objectand 2 .4 Wrapp in g the Domain

turn configuration into a factory objedesign guidelines is that 9] bj ects

these objects never introduce any behaviour outside the domain.

However, they do introduce a number of hook methods (i.e.,To address the three requirements for a dynamic environment,

retrieveContract , retrieveAccount , pre and we encapsulate the per-accountlocking mechanism into a set of

post) that enable us (i) to separate transactional state from doeollaborating wrapper objects. The transaction mechanism re-

main specific state and (ii) to wrap additional transactional be-quires additional behaviour gore andpost (to initialize and

haviour around the domain specific operations. In the nexterminate the transaction) andgetBalance andsetBal-

sections we show how to make use of these hook methods to deahce (to check the lock before performing the actual get- or set

with the additional requirements for a dynamic environment. operation). This behaviour is added by wrapping the contract
object and the account objects. Wrapping allows us to leave the
protocol inside the existing transfer operation untouched. Fig-
ure 4 shows the details: the greyed code shows the wrappers call-

aBank lobalFactor

aTransactionalContractWrapper |- i
T retrieveAccount (acc1Nr, “tansfer")
|

T
transfjar (acclNr, acc2Nr, amount)
retrieveContract (“transfer”)

accWrapperl (<&

: |
retrieveAccount (acc2Nr, “transfer”)

register (accl);
register (acc2)

accWrapper? |«g——I
T |

I | N

I [D if (IobkgdBl(id))
|

ﬂ————————l ———————— | NN

Forwards to wrapped ﬁ

»|
pre() »: | | TransactionM r|
[T
lhewTransaction
| | | 0l
	lock(id) - I	
	lock(id)	-
{:J wrappedContract.pre()		
I - |
balance := getBalanc R |

| g 0 »l . |
|

wrapbe\lAccount.getBaIance(l)

|

domain object

I ’ .
if (lockedBy(id)) |

’

wrappedAccount,.setBaIance(bzl\Iance

- v

l - -V _ | ., +anhount)
-1 -l Pl //I,’, A
$etBalance (getBalance() +<a1moun0 << A <<
> > > > >
" post() g g ’ -

.
.
| .
.

i L I '
I , |

[:J wrappedContract.post()-” | - |

| | | comrqltTransactlon(ld)

I

>

I I I I
Figure 4 Sequence diagram with wrapped objects implementing per-account locking.

The grey areas correspond to added details with respect to Figure 3: wrappers calling each other to pro-
vide coordination of the wrapped objects.

ing each other (to provide the coordination) or the action theyafter the forwarde@re orpost operations return, because the
wrap. The details are explained in the following list: contract object decides that the pre or post conditions are not sat-
isfied. In all these cases, an exception is raised which handler
gracefully cleans up all resources and terminates the transaction,
leaving all the domain objects in their original state.

1. The retrieveContract operation wraps the
original contract object to patch thre andpost

operations.
2. The retrieveAccount operation returns
wrapped account objects with the originggtBal- 2.5 Reconfiguration of Locking

ance andsetBalance operations patched.

3. The patchegre operation initializes the transaction
by issuingnewTransaction on a global transac-
tion manager and locking the accounts. Finally, it
forwards the call to the wrapped contract object, to
check the original preconditions as well.

4. The patchedetBalance andsetBalance op-
erations participate in the transaction by checking the

Protocol

Once we have introduced the per-account locking mechanism
using the protocol in Figure 4, it is possible to switch from opti-
mistic to pessimistic locking transparently. Indeed, the only dif-
ference lies in the implementation of theck operation:
optimistic locking aborts immediately when it can not acquire a
. . lock; pessimistic locking waits until the lock comes available

lock and forwarding to the wrapped account object. X ' . .

) [17]. Consequently, it suffices that the globalFactory instantiates
5. The patchedpost operation forwards to the o5 0r00rate wrapper class --eitftimisticLockAc-

wrapped contract objects and then issues the final,, ¢ * or pessimisticLockAccount (see Figure 5)-- to

commitTransaction make the accounts lockable. The contract wrapper then provides
Finally, a note on how a transaction may abort. This may happemll transaction related state needed by the lockable accounts
after thelock or commitTransaction requests because (namelythe transactionid). Figure 5 shows a possible class hier-
the transaction system could not satisfy the request because afchy to implement such locking functionality, similar to whatis
collisions with other transactions. Aborts may also happen justlescribed in [24].

Contract Lockable
pre() lock(id: TransactionID)
post()
register(Object) A
[|
Z% OptimisticLockable PessimisticLockable
LockingContract lock(id: TransactionID) lock(id: TransactionID)
wrappedContract: Contract 4X 4X
id: '{)ransactlonID OptimisticLockAccount PessimisticLockAccount
pre
post() wrappedAccount:Account wrappedAccount:Account

getBalance()
setBalance()

getBalance()
setBalance()

Figure 5 Class hierarchy for reconfigurable locking protocols

Note that the wrappers around the domain objects expand thimstantiating the appropriate wrapping objects into the factory

basic interaction protocol, as they interact with each other toobject, the replicated services of our system can be dynamically
provide the coordination service. Therefore, they are not indereconfigured.

pendent and can only be used as a group. Consequently, we have
but one global factory objecglobalFactory) which is re- 3

sponsible for instantiating the appropriate set of wrappers.

DISCUSSION

2.6 Rep lication of Services 'I_'o achieve t_he goal of dy_namic reconfigl_Jr_abiIity of non-func-
tional behaviour we have introduced explicit contracts and con-

With the per-account locking protocol from Figure 4, itis possi- figuration objects as a way to encapsulate coordination

ble to replicate the individual account objects within severalpehaviour into a special-purpose component. The example of

servers. To achieve this, all replicated account objects arghe internet banking illustrates the typical steps involved in de-

wrapped into on€ompositeLockAccount usingavariant signing coordination components:

of the “Composite” design pattern [12] (see Figure 6). On re-

ceiving alock orsetBalance operation, the composite for- 1.

wards to all contained accounts, while tigetBalance

operation is forwarded to a single account object only. Again, by

Start with an initial design for the domain, including
contracts that state the obligations of the participat-
ing classes. Define the contracts according to “De-

LockableAccount

lock(id: TransactionID)

getBalance()
T N

setBalance()
CompositeLockAccount __ - Forward to 1 wrapped object

wrapped:[0..n] LockableAccount T~

getBalance() - —
setBalance() - — — — — — 7T __—™— = 7| Forward to all wrapped objects
lock(id: TransactionID) - —

Figure 6 Class hierarchy for replicated services

sign by Contract” principle [19], i.e. using pre- and to wrap additional state and behaviour. We have used the wrap-
postconditions. pers together with the factory object as a kind of “poor men’s re-

2. Apply the design guidelinettirn contracts into ob- flection”, to achieve the necessary method instrumentation in
jects. Thus, define a separate object per contract, mainstream object-oriented languages such as C++ and Java.
providing pre and post operations for checking
the contractual obligations. Also, have the domainPgst, Present and Future
objects invoke thesgre andpost operations.

3. Apply the design guidelinettirn configuration into The initial ideas on coordination components appeared in [_25_>],
a factory object Thus, introduce an object that later summarlzeo! in [8]_. On the ot_her hand, the rolg of explicit
knows which wrappers and domain objects to createcontractand configuration objects in framework design has been
for a certain configuration. exploredin [9], later refined in [10]. In the paper you are reading

4. Add non-functional behaviour by providing wrap- now, poth .the ideas on pluggab!e coprdinatiop policies.and the
pers around the original domain objects. The wrap- explicit objects hgve peen combined into a series of design steps
pers instrument the domain-specific operations with that lead to coordination components.
the non-functional coordination behaviour. A partic- A prototype with the presented design has been successfully
ular configuration of wrapper objects is thec@or- built. Indeed, switching the banking system from a non-transac-
dination component tional system to a transactional system requires only to make the

The fact that the explicit representations of the contracts providdactory provide the right set of wrappers. Similarly, switching
the necessary hooks for coping with non-functional require-P€fween transaction policies is done by making the factory pro-
ments isiotcoincidence. Indeed, a contract object forces the deYide a different set of transactional wrappers.

signer to make the important sequence of domain operations Future work includes extending the framework to use COR-
explicit, thus providing the ideal place to factor out non-func- BA's and COM’s transactional systems and test the applicability
tional state and wrap non-functional behaviour. of the approach in areal-world context. In particular, more work

We call a configuration of wrapper objects containing a par-"€€ds to be done on examining the effects of dynamically
ticular locking or replication policy aoordination component ~ changing the policies. Future work also includes a survey of
According to the definition “components are static abstractionscontracts as the basis for the development of a coordination
with plugs” ([20], p.5), this corresponds indeed to a component.framework- Special emphasis within this framework is on coor-
The configuration is (a) static because it can be stored inside dination contracts as the means for governing the collaborations
component-base to be reused across different applications; it@étween objects or components in a software system. A coordi-
an (b) abstraction because it encapsulates well-defined coordiation contract makes explicit what the minimal and sufficient
nation behaviour and it has (c) plugs by means of the Wrappegonditions are for the different parts to work together.

operations.
Although the solution provides for dynamic reconfiguration 4 RELATED WORK

of coordination aspects of a system, it also makes the system inI"his work is located in the area between coordination and ob-

herently more complex. Instead of only having the domain Ob"Fct-oriented framework technology. Therefore, we discuss re-

jects altered with some coordination code, the management :
L A . . lated work out of both these areas. Note that we build upon
coordination is delegated to a set of specialized objects which . :
. L . established ideas from well-known concurrent systems technol-
can be exchanged at run-time. This implies that the design steps
. .) S ogy as well, but we do not refer to these.
should only be applied when dynamic reconfiguration is a re-

quirement.

Finally, dynamically exchanging coordination protocols Coordination lan guages

may be eased by reflection support in the underlying programCoordination languages, such as Gamma [4] and all kinds of
ming language. In languages such as CLOS [3] or Smalltalk_inda-flavours [7], typically provide a single paradigm to sepa-
[11], domain specific operations can be explicitly manipulatedrate the coordination part of an application from the computa-

tional part. For instance, Gamma supports a chemical reactiostructure to Smalltalk objects, so that additional behaviour such
model for the definition of programs without artificial sequenti- as concurrency or distribution can be added. The Coda experi-
ality, while Linda provides tuple-spaces for generative commu-ment is especially important as it shows that a meta-level is “just
nication with some basic synchronization. another application” and that traditional software design tech-

The idea of coordination components is not new, as illustrar.Niaues such as abstraction and decomposition remain valuable.

ed by work such as Manifold [1]. This language coordinates the i i
global behaviour of a number of black box components by con-lmplementational Reflection and

necting their respective communication ports. Systems can b¢\spect Oriented P rogramm i ng
reconfigured by dynamically rewiring its constituting compo-

nents. A major source of inspiration for our work, callédplementa-

o)) tional reflection,is presented in [21]. It is an approach that
The TOOLBUS coordination architecture [6] provides a “opens up” implementations by exposing their meta-level. On
communication bus to connect components in a distributed eng,e hand a system has a base-level interface which is the com-
vironment. The communication bus is controlled by processy,,qp interface for such a system, where on the other hand the
oriented scripts, which formalize the interaction between thegystem has a meta-level interface that reveals how some aspects
components. The approach provide a clean separation of const the system are implemented. The meta-level interface pro-
cerns, as the components only compute and the scripts describgjes the possibility to change the default base-level behaviour

the interaction. to behaviour that differs in semantics and/or performance. In

Like promoted by coordination languages, our approach[21] the approach is illustrated by a windowing system. In the
provides explicit separation of coordination and computation.context of this approach our work can be viewed as providing a
However, we do not investigate a particular paradigm or formal-meta-level for coordination where coordination policies can be
ization of coordination. We focus on wrapping technology in Switched.
njainstr‘eam object-o.riented Ianguage;. anseqqently, our Qe- In Aspect Oriented Programming [15],[18], systems are
sign guidelines are dlrectly'appllcablle in opject-orlenteq appl"viewed as a set of components and aspects. Components are
cations that need dynamic reconfiguration of coordination, onerties of systems that are easily encapsulated in a generic
policies. way, and aspects are properties that effect many other compo-

What we don’t address in this paper is the coordination prob-nents and therefore cannot be cleanly encapsulated. Both these
lem of inter-activity coordination as for instance known in work- kinds of properties will cross-cut each other in a system’s imple-
flow systems. Examples of coordination research in this area aréientation. The solution they propose is to describe the compo-
CLF[2] and Sonia [4]. nents and the aspects in their own languages, thereby ensuring

separation of concerns, and then mix the properties using a spe-

: - cial language processor. Although the solution provides a clean

o bj ect-Oriented Framework separation of concerns, it doesn’t support the coordination of
Technol ogy off-the-shelf components. Aspects and components are mixed at

Today, a few commercial frameworks deal with coordination is- COMPile time, leaving out the possibility to plug-in other compo-

sues, most notably CORBA implementations and MicrosoftsNents afterwards.

ActiveX. These frameworks provide basic services for coordi-

nating distributed communication, e.g. the CORBA transaction5 CONCLUSION

service. Our approach omplementaryo these, in the sense

that --like promoted by coordination languages-- we advocatel he very nature of web-like environments --with its rapid evolu-
for a separation of coordination from computation. As such, thetion of standards and protocols-- demands for dynamic reconfig-
guidelines help to encapsulate the dependencies on such corftation. Component technology as a means to dynamically plug
mercial services, so that we for instance would be able switcHn new functionality is becoming increasingly important. Yet,

transparently and dynamically between a CORBA and DCOMtruly distributed web systems are scarce, partly because compo-
implementation. nenttechnology has not yet been able to deliver reusable coordi-

—) nation abstractions.
The ADAPTIVE Communication Environment (ACE) [22]

of Doug Schmidtimplements a set of design patterns for concur- In this paper we have shown that it is possible to provide re-
rent event-driven communication software. It simplifies the de-usable coordination solutions as dynamically pluggable compo-
velopment, configuration and reconfiguration of distributed nNents. Explicit contract and factory objects form the key to the
applications and services that use interprocess communicatiog0lution: they provide the right set of hooks to wrap additional
event demultiplexing, explicit dynamic linking and concurren- non-functional coordination behaviour. This in turn gives rise to
cy. what we call a coordination component. The explicit contract

and factory objects follow naturally from applying two frame-

In [24], a transaction framework is presented that provides, oy design guidelinesttirn contracts into objectsand “turn
ways to dynamically adapt the transaction semantics of a SySte%nfiguration into a factory objett

for optimal transactional behaviour at all times. This work
shows the feasibility of dynamic exchange of transaction poIi-AC KNOWLEGDEMENTS
cies.
Coda [14] has been used to open up the implementation of We would like to thank all members of the SCG who have
Smalltalk message passing and is able to add meta-level infrazarefully reviewed earlier drafts of this paper. Furthermore, this

work has been funded by the Swiss Government under ProjediL2]
no. NFS-2000-46947.96 and BBW-96.0015 as well as by the
European Union under the ESPRIT programme Project no.

21975.
(13]

REFERENCES

[1] Arbad, A., “The IWIM Model for Coordination of
Concurrent Activities,’Proceedings of COORDINA-
TION'96, Ciancarini, P. and Hankin, C. (Eds), LNCS
1061, Springer Verlag, April 1996.

[2] Andreoli, J.-M., Freeman, S. and Pareschi, R., “The
Coordination Language Facility: Coordination of ~ [15]
Distributed Objects,” TAPOS, vol. 2, no. 2, 1996,
pp. 635-667.

[3] Attardi, G., Bonini, C., Boscotrecase, M. R., Flagel-
la, T. and Gaspari, M., “Metalevel Programming in [16]
CLOS,” Proceedings ECOOP’8%. Cook (Ed.),
Cambridge University Press, Nottingham, July 10-
14, 1989, pp. 243-256.

(14]

(17]

[4] Banétre, J.-P. and Le Métayer, D., “Gamma and the
Chemical Reaction ModelProceedings of the Co-
ordination’95 WorkshoplC Press, London, 1995.

[5] Banville, M., “Sonia: an Adaptation of Linda for Co- [18]

ordination of Activities in Organizations,” Proceed-

ings of COOORDINATION’96, Ciancarini, P. and
Hankin, C. (Eds), LNCS 1061, Springer-Verlag,
Cesena, Italy, April 1996, pp. 57-74. [19]

[6] Bergstra, J. A. and Klint, P., “The ToolBus Coordi-
nation Architecture,”Proceedings of COORDINA-
TION'96, Ciancarini, P. and Hankin, C. (Eds), LNCS
1061, Springer-Verlag, Cesena, Italy, 1996, pp. 75-
88. [21]

(20]

[7] Carriero, N. and Gelernter, D., “Linda in Context,”
Communications of the AGMol. 32, no. 4, April
1989, pp. 444-458.

8] Cruz, J. C. and Tichelaar, S., “Managing Evolution [22]
Of Coordination Aspects In Open Systemaliith
International Workshop On Database And Expert
Systems Application®vagner, R. R. (Ed.), IEEE
Computer Press, Vienna, Austria, August 1998, pp.
578-582.

[9] Demeyer, S.ZYPHER Tailorability as a link from
Object-Oriented Software Engineering to Open Hy-
permedia Ph.D. Thesis, Vrije Universiteit Brussel,
Brussels, Belgium, July, 1996.

(23]

24
[10] Demeyer, S., Meijler, T. D., Nierstrasz, O. and Stey- [24]

aert, P., “Design Guidelines for Tailorable Frame-
works,” Communications of the ACMol. 40, no.
10, October 1997, pp. 60-64.

[11] Ducasse, S., “Evaluating Message Passing Control
Techniques in Smalltalk,Journal of Object-Orient- [25]
ed Programming (JOORYol. 12, no. 6, SIGS Press,

June 1999.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.,
Design PatternsAddison- Wesley, Reading, MA,
1995.

Guerraoui, R. and Fayad, M. E., “Object-Oriented
Abstractions for Distributed Programming;bom-
munications of the ACM/ol. 42, no. 8, August 1999,
pp. 125-127.

McAffer, J., “Meta-level Programming with Co-
dA,” Proceedings ECOOP’'9®Ithoff, W. (Ed.),
LNCS 952, Springer-Verlag, Aarhus, Denmark, Au-
gust 1995, pp. 190-214.

Kiczales, G. etal., “Aspect-Oriented Programming,”
Proceedings ECOOP’Q7Aksit, M. and Matsuoka,

S. (Eds), LNCS 1241, Springer-Verlag, Jyvaskyla,
June 1997, pp. 220-242.

Laddaga, R. and Veitch, J., “Dynamic Object Tech-
nology,” Communications of the AGMol. 40, no.
5, ACM Press, May 1997, pp. 36-38.

Lea, D.,Concurrent Programming in Java -- Design
principles and PatternsThe Java Series, Addison-
Wesley, 1996.

Lopes, C., “Aspect Oriented Programmin@bject-
Oriented Technology (ECOOP’98 Workshop Read-
er), Demeyer, S. and Bosch, J. (Eds), LNCS 1543,
Springer-Verlag, July 1998, pp. 394-443.

Meyer, B.,Object-Oriented Software Constructjon
Prentice Hall, 1997, second edition.

Nierstrasz, O. and Tsichritzis, BDpject-Oriented
Software CompositigrPrentice Hall, 1995.

Rao, R., “Implementational Reflection in Silica,”
Proceedings ECOOP’9JAmerica, P. (Ed.), LNCS
512, Springer-Verlag, Geneva, Switzerland, July
1991, pp. 251-267.

Schmidt, D. C., “The ADAPTIVE Communication
Environment: An O.0. Network Programming
Toolkit for developing Communication Software,”
Technical Report, Department of Computer Science,
Washington University, 1994.

Schmidt, D. C., and Fayad, M. E., “Lessons Learned
Building Reusable OO Frameworks for Distributed
Software,"Communications of the ACMol. 40, no.

10, October 1997pp. 85-87.

Tekinerdogan, B., “An Application Framework for
Building Dynamically Configurable Transaction
Systems,” OOPSLA'96, Development of Object-
Oriented Frameworks Workshop, San Jose, USA,
1996.

Tichelaar, S.A Coordination Component Frame-
work for Open Distributed Systemdaster’s Thesis,
University of Groningen, May 1997.

