
The False False Positives of Static Analysis

Yuriy Tymchuk

SCG @ Institute of Informatics - University of Bern, Switzerland

Abstract

Static analysis tools may produce false positive re-
sults, which negatively impact the overall usabil-
ity of these tools. However, even a correct static
analysis report is sometimes classified as a false
positive if a developer does not understand it or
does not agree with it. Lately developers’ classi-
fication of false positives is treated on a par with
the actual static analysis performance which may
distort the knowledge about the real state of static
analysis.

In this paper we discuss various use cases where
a false positive report is not false and the issue is
caused by another aspects of static analysis. We
provide an in-depth explanation of the issue for
each use case followed by recommendations on
how to solve it, and thus exemplify the importance
of careful false positive classification.

1 Introduction
Static code analysis can aid software developers to detect
bugs by analyzing source code without executing it [1].
Static analysis tools have diverse detection algorithms also
known as rules, that can detect certain known anomalies
in a software project. Because of the lack of information
these algorithms may produce incorrect detections (false
positives). In case of a high false positive ratio, a devel-
oper who inspects static analysis results may spend signif-
icant amount of time trying to address the incorrect detec-
tions. Thus a high number of false positives can decrease
the overall usefulness of a static analysis tool.

False positives are a critical issue for static analysis
users. Bessey et al. suggest to keep the ratio of false posi-
tives under 20-30% to make a tool acceptable by users [2].

Copyright c© by the paper’s authors. Copying permitted for private and
academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and Tools for
Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

Google went even further and built their static analysis en-
vironment in a way that it automatically suppresses every
rule that has more than 10% of false positive reports based
on the user feedback [3]. However, the definition of false
positives in static analysis quite often diverges from the
common sense. According to the Merriam-Webster dictio-
nary1 a false positive is “a result that shows something is
present when it really is not”. On the other hand, some
users of static analysis classify reports as false positives
if they do not understand the rationale behind the reports,
or simply do not think that the reports are important for
them [2]. No one can forbid people to express their opinion
that true positives are false, and such cases should not be
ignored. But we believe that the community around static
analysis should not confuse the false positives identified by
users with the real ones. First of all this will distort the
false positive ratio and secondly this will mask real issues,
such as poor understandability of a report. The reality is
quite the opposite, for example Sadowski et al. state that
for their study “developers will decide what a false positive
is” [3]. In other words: when a person sick with tuber-
culosis says that his tuberculosis test is false positive, this
neither cures the tuberculosis, nor makes the test incorrect.
However, if a software developer identifies a static analysis
report as a false positive, then the anti-patterns in her code
are not anti-patterns any more, and the false positive ratio
of the detection rule suddenly increases.

Originally static analysis was deployed as a part of the
development process with a strictly specified workflow that
consisted of running static analysis on the whole system,
triaging the reports to identify false positives, and resolu-
tion of the true positive results. This workflow was de-
scribed by Flash Sheridan a few years ago while discussing
the benefits and challenges of static analysis deployment in
software companies [4]. Sheridan also mentions false false
positives (FFPs) — correct violations falsely discarded by
novice programmers which may cause a loss of important
information. From this perspective, incorrectly identified
false positives appear as a threat for companies who use
static analysis, while at the same time they are responsible
for the incorrect identification.

1https://www.merriam-webster.com/dictionary/false%

20positive

1

https://www.merriam-webster.com/dictionary/false%20positive
https://www.merriam-webster.com/dictionary/false%20positive

In this paper we are focusing on lightweight static anal-
ysis and the impact of FFPs on the current body of knowl-
edge. According to Muske and Serebrenik, lightweight
static analysis tools focus on the common mistakes of soft-
ware developers, can efficiently validate large codebases,
and are not guaranteed to detect all the defects present
in the project under validation [5]. Nowadays more and
more research that studies the effectiveness of static analy-
sis focuses on lightweight tools [6, 7, 8]. According to the
Soundiness Manifesto, some programming languages fea-
tures and the scale of common programs make the creation
of a sound static analysis extremely complicated, and thus
the most commonly used static analyzers nowadays are un-
sound [9]. In contrast to the old static analysis approach
where every report had to be examined and addressed, cur-
rently lightweight reports often serve as guidelines. Our
experience comes from QualityAssistant [10] — an exten-
sible live feedback system that ideally should act as an arti-
ficial pair programmer. One of QualityAssistant’s rules de-
tects whether there is a temporary variable that is declared,
but never read nor written. The rule cannot produce false
results, as all the information about temporary variables is
available in method definitions. We believe that in a similar
manner a pair programmer would point out the fact that a
temporary variable is declared but never used. We are also
aware about developers who do not like to see the infor-
mation about unused variables. For example, a developer
may want to suppress an information about unused vari-
ables on a piece of code under development, because he has
not written statements that use newly defined variables yet.
Although a developer can identify the reports described in
this example as false positives, the static analysis commu-
nity has to focus on the problem with the tool output or its
timing, and not with false positives.

We developed QualityAssistant and the static analysis
around it for 3 years in Pharo [11] — an object-oriented
language inspired by Smalltalk. During that time we ob-
tained multiple issue reports and plenty of mailing list dis-
cussions, and we conducted a series of interviews to learn
how developers are using our static analysis support. In this
paper we provide a few examples of the use cases in which
a developer could identify an issue as a false positive but it
is not so. We explain how falsely identified false positives
mask real issues with tool design, communication between
developers, and unclear design guidelines.

2 The True False Positives
First of all, we want to specify what we treat as the true
false positives. As a false positive of a critique2 we iden-
tify a rule violation report that does not conform to the
rationale of the rule. For example there was a new rule
introduced into Pharo which suggested to assert test re-
sults with self assert: value equals: expected instead of

2a single violation of a certain static analysis rule

self assert: (value = expected) . The former expression
provides a more descriptive output. However, the assert:
method is defined on the top level of the class hierarchy and
it is a common practice to make assertions in your code to
express contracts (i.e., preconditions, invariants and post-
conditions). For example one can have the following asser-
tion in an algorithm:
self assert: (aCollection size = 1)

The rule also detected assertions outside of the test
classes and such critiques were false positives as the
assert:equals: method is defined only for tests and can-

not be applied outside of the testing framework. This false
positive is caused by a bug in the detection rule. The rule
can easily check if the assertion is performed in a test class
and eliminate previously discussed false positives.

Another more classic example of a true false positive is
caused by a lack of information. One useful newly intro-
duced rule detects issues related to the use of the Roas-
sal [12] framework. When building a graph with this
framework you are expected to specify nodes of the graph
before defining edges. Thus the rule checks if an edges

message3 is preceded by a nodes: message. However
Pharo is dynamically typed and the rule has no way to make
sure that the receiver of the checked messages is a graph
builder. This ambiguity will result in false positives as soon
as there is another interface with nodes: and edges meth-
ods. This issue cannot be solved easily, but there are strate-
gies that the rule may follow, to reduce the false positive
ratio. For example the detection algorithm can use type
inference [13] or dynamic analysis [14] to obtain the type
of the messages receiver. Alternatively the rule can detect
only the cases where a instance of the graph builder is cre-
ated and immediately initialized. This will greatly lower
the recall of this rule because it will miss all the cases where
the graph builder is passed as an argument to a method or
returned by another object. On the other hand, such change
will increase the precision, as the rule will be sure about
the type.

In both cases false positives were caused by the issues
in the algorithm. They can be simple bugs or more compli-
cated limitations of the environment where the algorithm is
executed. In case of the true false positives it is the respon-
sibility of the rule designer to act in that situation.

3 The False False Positives
While analyzing developers’ preferences about quality
rules, we discovered that there are rules that are not favored
by some developers although they detect exactly what they
intend to. Some of these rules are general best practices
like a warning about a declared but unused variable, un-
commented class, or a debugging statements left in source

3the term “message” originates from Smalltalk, where one “sends a
message” to an object, which then looks up a “method” for responding to
it.

2

1 background ifNil: [ˆ true].

2 (background isColor and: [background isTranslucentButNotTransparent]) ifTrue: [ˆ true].

3 (border isColor and: [border isTranslucentButNotTransparent]) ifTrue: [ˆ true].

4 ˆ false

Listing 1: The “quick return” approach

1 ˆ background isNil or: [

2 (background isColor and: [background isTranslucentButNotTransparent]) or: [

3 border isColor and: [border isTranslucentButNotTransparent]]]

Listing 2: The compound boolean logic

code. All these critiques are indeed bad practices which
should not be present in a final version of an application
and will not be integrated in the Pharo code base. Never-
theless, some developers do not want to be bothered with
such critiques while they develop, and would rather focus
on them when they are about to commit the final version.
This suggest that such rules should be applied in a pre-
commit phase and not continuously while a developer is
programming. This reasoning can be done only if we ac-
knowledge that there is an issue which is not a false posi-
tive, because it cannot be solved by updating the rule, but
can only be solved by rethinking the static analysis tooling.

One more complicated rule was checking if there are
multiple if-statements that were returning a boolean lit-
eral from a method and suggested to replace them with a
compound conditional expression. For example in List-
ing 1 the conditional expressions on the first three lines
check if some conditions are met and then return true
from the method. In case the execution does not trigger the
conditional expressions, the rest of the method is executed
i.e., false is returned.

The rule suggests to use the implementation demon-
strated in Listing 2. This way all the conditions are incor-
porated into a single compound boolean expression. Ac-
cording to one of the developers this is a bad rule as it
suggest a less readable code. A more detailed mailing list
discussion revealed that most of the developers also find
the implementation in Listing 1 easier to comprehend than
the one in Listing 2. Moreover, no one from the Pharo
community knows who implemented the rule, and many
developers suggest to remove it completely. The rule can-
not be improved in any way, as this is not a false positive,
although it does not help developers. Blind removal of the
rule based on the developer requests will eliminate its use-
less critiques, but will not answer the question of why the
rule was created. We believe that in this case the commu-
nity has to discuss the design guidelines and maybe replace
the rule with an antipodal one that will detect constructs
similar to Listing 2 and suggest to implement them as in
Listing 1.

Another FFP use case comes from an analysis of the
QualityAssistant’s impact. The integration of QualityAs-
sistant into Pharo caused certain changes to the static anal-

ysis rules themselves [15]. Developers started to see cri-
tiques more often and this motivated them to fix incorrect
rules or remove the ones that they found absolutely use-
less. When analyzing the rules that were removed from the
Pharo ecosystem, we discovered a rule which was accused
of having too many false positives. A more detailed investi-
gation revealed that the critiques reported as false positives
are not clearly false. In Smalltalk branching of a control
flow is implemented in a functional style with the help of
lexical closures. Listing 3 contains an example of a con-
ditional expression. The expression denominator = 0 will
be evaluated to a boolean object, and depending on the ob-
ject itself either the true block4 or the false block will be
evaluated.

1 (denominator = 0)

2 ifTrue: [Float infinity]

3 ifFalse: [numerator / denominator]

Listing 3: Smalltalk conditional expression

1 size = 1 ifTrue: ’:’ ifFalse: ’s:’

Listing 4: Conditional expression without blocks

The rule detected whether the conditional messages
have a block as their argument. This rule is especially
useful for novices, as they can forget to wrap their con-
ditional expression in the square brackets, of confuse them
with parentheses that create an ordinary expression instead
of a block. In most of the cases the overall expression will
still work, because any other object evaluated as a block
will return itself. However this is not recommended, as
the expressions will be instantly evaluated which will slow
down execution, may change the state of the program or
even result in an exceptional situation. For example if
the snippet in Listing 3 did not have square brackets, both
expressions Float infinity and numerator / denominator
will evaluate on each execution, including the one where
denominator is zero, which will cause a zero division ex-

ception. On the other hand, in certain cases developers pre-
fer to omit blocks if they contain only a single literal as
demonstrated in Listing 4. Further analysis showed that the

4Block is the Smalltalk term for closure expression. Block definition
is surrounded by square brackets.

3

reports about false positives came from experienced devel-
opers who are familiar with the implementation of the con-
ditional expression and do not want to see warnings when
they omit blocks. The precision of the rule could be im-
proved to ignore the cases where literals are used as the
arguments of conditional expressions. Nevertheless, we ar-
gue that the rule in its current state brings more value than
the burden caused by the false positive critiques. First of
all, novices can learn about the design of the conditional
expressions and fix their code as soon as they forget to
wrap parameters of the conditional expression with blocks.
On the other hand it is not hard for experienced develop-
ers to simply ignore the critiques if they omit blocks be-
cause such hacks are not common. Furthermore, originally
in Smalltalk other objects were not polymorphic with the
evaluation protocol of the block class, which means that
a conditional expression without blocks will not run in all
Smalltalk dialects.

Another especially irritating rule that developers did not
like was detecting “cascading messages” that did not end
with the yourself message. Cascades are a concept spe-
cific to Smalltalk and a real example of a message cascade
from Pharo is presented in Listing 5. On the first line an
instance of ToolDockingBarMorph is created. The rest of
the lines separated by semicolons contain message sends
to the same object (a newly created instance). This con-
struct is very useful for initializing newly created objects
with desired values and not having to retype the variable
each time in front of a message. However, the result of the
whole expression is equal to the value returned by the last
method evaluated by the cascade (in our case yourself).
This means that if adoptMenuModel: would be the last
message and would return and adopted model the whole
expression would return it, while the desired result is the
instance of ToolDockingBarMorph. To avoid this kind of
problem, one of the rules suggested to end cascades with
the yourself message as shown in the example. This
message simply returns the receiver i.e., the the instance
of ToolDockingBarMorph in our example. This rule is a
good suggestion for novices who are not aware about the
pitfalls of Smalltalk cascades, it can be absolutely annoy-
ing for experienced developers who want a different last
message on purpose. While this rule is most often men-
tioned when developers list false positives or bad rules it
cannot be clearly labeled with a negative tag. One of the
interviewed developers admitted that maybe the rule is not
that bad after all because when he rewrites his code to avoid
such critiques, the code becomes more understandable.

1 ˆ ToolDockingBarMorph new

2 hResizing: #shrinkWrap;

3 vResizing: #spaceFill;

4 adoptMenuModel: aModel;

5 yourself

Listing 5: Smalltalk cascade example

The use case with the “missing yourself” rule shows one
more situation where a rule that was removed could help
novices to learn how the programming language works.
Additionally, there is a small evidence that the rule many
suggest a better coding style. While we cannot claim the
importance of the rule with respect to design guidelines, we
can definitely conclude that instead of discussing the read-
ability aspect that this rule promotes, the rule was simply
deleted due to a false positives claim.

The final use case that we want to discuss is related to
a warning against bad practices. Some developers do not
like the rule that detects the usage of a reflective API, such
as checking the type of an object. Similarly to the previous
cases this rule may explain that there are other more appro-
priate ways to solve general problems without the support
of reflectivity, but if the developer knows what she is do-
ing, the rule is identified as distracting. On the other hand,
senior developers think that the rule is always useful as it
suggests not to use the reflective API during a program-
ming session, and highlights questionable pieces of code
during a code review. Once again this rule can be a candi-
date for removal due to a reasonable number of false pos-
itive claims from certain developers, but there are is also a
evidence of the rule being useful for another group of de-
velopers. This means that either the rule should be applied
on a personal basis or the should be a better communication
to explain the importance of the rule.

The critiques mentioned in this section perform poorly
to some extent. The main issues on these use cases are not
caused by false positives but rather by vague design guide-
lines or poor tool design. In certain cases false positive are
also present and the static analysis rules can be updated to
eliminate some of the incorrect detections, or to provide a
more detailed feedback. Nonetheless, to resolve the main
issue a static analysis developer has to approach it from the
non-false positive perspective.

4 Conclusion
False positive reports are one of the main issues of static
analysis tools. However, sometimes even correct static
analysis detections are classified as false positives. This
not only skews the statistics of static analysis rules, but also
masks the real problems. In this paper we provide exam-
ples where a static analysis report is not useful, but it is also
not a false positive. Together with the examples we show
the real issues that should be investigated. Static analysis
community risks to miss such issues when labeling every-
thing as a false positive when a developer does not like it.

The FFPs described in this paper fall into 3 categories:

Bad timing or tool deficiency: rules in this category usu-
ally have 100% precision but some developers do not
want to see their reports at the certain moment of time.
Most likely these rules can benefit from integration in

4

other tools that are used during a different develop-
ment timeframe. Improving the user interface of the
current tool may also improve the acceptance of the
reports. A wide range of rules can suffer from the tim-
ing issues, they can be completely not related to func-
tionality like the “missing class comment rule” or can
target issues that affect the execution like “debugging
code left in methods”.

Rules for novices: usually blamed by experienced devel-
opers who already know about the caveats that the
rules are warning about. These rules may be useful
for everyone, but are essential for newcomers who do
not know language or project paradigms. Rules for
novices usually check for calls to certain classes or
for specific code constructs that are often a sign of a
badly designed code.

Lack of consensus: some rules suggest certain style
guides that are not agreed among all developers. Fre-
quently this happens when developers do not under-
stand the rationale behind the rule. Rules in this cat-
egory are mostly related to style or to certain patterns
in the source code.

The line between the false and the true false positives
is very thin. For every true false positive one can add a
“Possibly” prefix to the repot description and turn it into a
FFP. This way the critique stating “Possibly you should use
assert:equals: instead of assert: and = ” will never be

false. But instead of playing with words we want to em-
phasize that there are issues with static analysis not related
to false positives, and they have to be acknowledged sepa-
rately. We suggest to identify false positives as the issues
where critique cannot be easily identified because of cer-
tain limitations. We also believe that there are cases where
a rule suffers from both false positives and issues of a dif-
ferent kind.

At the moment there is much evidence that false pos-
itives have a negative impact on the acceptance of static
analysis tools. It is complicated to improve a false positive
ratio, as usually it is caused by the lack of information in
the source code. On the other hand we showed that some of
the reported false positives are not really false detections,
but rather issues of the understandability of quality rules,
static analysis tool design, or inconsistency in guidelines.
These issues can be easier to tackle and thus static analysis
developers may improve the acceptance of their tools, by
addressing the non-false positive issues first.

Acknowledgments
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Analysis” (SNSF project No. 200020-162352,
Jan 1, 2016 - Dec. 30, 2018).

Post Proceedings Updates

Changed the introduction to better explain the king of
static analysis we are focusing on. Updated conclusion to
summarize false false positives into categories and explain
which kind of rules falls into each cattegory.

Two reviewers expressed the following concerns:

REVIEW 2

1. The title of the paper is a fun pun, but I find the false
false positives to be simply convoluting the text.
Changed the occurrences of “false false positive” to
FFP.

2. I would recommend to rethink the article from the
point of view of: ”What can we learn from the rec-
ommendations that developers do not need”.
Groups in conclusion provide a better summary. We
don’t have enough information for more general con-
clusions.

REVIEW 3

1. I would argue that the author should make a more
clear-cut distinction between different kinds of static
analysis tools:

(a) rules that are trying to check or enforce cod-
ing guidelines such as multiple if-statements de-
scribed in Section 3. For those rules one can ar-
gue whether they are useful or not, and for what
target group.

(b) bug detectors, such as null pointer dereferences;
while here one can argue whether the warning
possible null pointer dereference is true or not,
if it is true, then it is definitely a bug.

Added details about rule kinds in conclusion.

2. The problem of false false positives in this particular
context has been discussed by Sheridan in 2012 [1].
Moreover, numerous techniques have been proposed
to either reduce the number of false alarms or to sup-
port the manual inspection of those warnings [2].
[1] Sheridan Deploying Static Analysis, cover story of
Dr Dobbs Journal, July 2012
[2] Muske, Serebrenik Survey of Approaches for Han-
dling Static Analysis Alarms SCAM 2016
Added related literature in the introduction

5

References
[1] P. Louridas, “Static code analysis,” IEEE Softw.,

vol. 23, no. 4, pp. 58–61, Jul. 2006. [Online].
Available: http://dx.doi.org/10.1109/MS.2006.114

[2] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak,
and D. Engler, “A few billion lines of code
later: using static analysis to find bugs in the
real world,” Commun. ACM, vol. 53, no. 2,
pp. 66–75, Feb. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1646353.1646374

[3] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg,
and C. Winter, “Tricorder: Building a program
analysis ecosystem,” in Proceedings of the 37th
International Conference on Software Engineering -
Volume 1, ser. ICSE ’15. Piscataway, NJ, USA:
IEEE Press, 2015, pp. 598–608. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818828

[4] F. Sheridan, “Deploying static analysis,” Dr. Dobbs
Journal, pp. 8–14, Aug. 2012. [Online]. Avail-
able: http://www.rahul.net/flash/Deploying Static
Analysis.pdf

[5] T. Muske and A. Serebrenik, “Survey of approaches
for handling static analysis alarms,” in 2016 IEEE
16th International Working Conference on Source
Code Analysis and Manipulation (SCAM), Oct. 2016,
pp. 157–166.

[6] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge, “Why don’t software developers
use static analysis tools to find bugs?” in
Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. IEEE
Press, 2013, pp. 672–681. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486877

[7] M. Beller, R. Bholanath, S. McIntosh, and A. Zaid-
man, “Analyzing the state of static analysis: A large-
scale evaluation in open source software,” in 2016
IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER),
vol. 1, Mar. 2016, pp. 470–481.

[8] T. Buckers, C. Cao, M. Doesburg, B. Gong, S. Wang,
M. Beller, and A. Zaidman, “UAV: Warnings from
multiple automated static analysis tools at a glance,”
in 2017 IEEE 24th International Conference on
Software Analysis, Evolution, and Reengineering
(SANER), 2017, pp. 472–476.

[9] B. Livshits, M. Sridharan, Y. Smaragdakis,
O. Lhoták, J. N. Amaral, B.-Y. E. Chang, S. Z.
Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,

“In defense of soundiness: A manifesto,” Commun.
ACM, vol. 58, no. 2, pp. 44–46, Jan. 2015. [Online].
Available: http://doi.acm.org/10.1145/2644805

[10] Y. Tymchuk, “What if clippy would criticize your
code?” in BENEVOL’15: Proceedings of the
14th edition of the Belgian-Netherlands software
evoLution seminar, Dec. 2015. [Online]. Available:
http://yuriy.tymch.uk/papers/benevol15.pdf

[11] S. Ducasse, D. Zagidulin, N. Hess, and D. Chloupis,
Pharo by Example 5.0. Square Bracket Associates,
2017. [Online]. Available: http://files.pharo.org/

books/updated-pharo-by-example/

[12] A. Bergel, Agile Visualization. LULU Press, 2016.
[Online]. Available: https://books.google.ch/books?
id=lEk7vgAACAAJ

[13] J. Palsberg and M. I. Schwartzbach, “Object-oriented
type inference,” in Proceedings OOPSLA ’91, ACM
SIGPLAN Notices, vol. 26, Nov. 1991, pp. 146–
161. [Online]. Available: http://www.cs.purdue.edu/

homes/palsberg/publications.html

[14] T. Ball, “The concept of dynamic analysis,” in Pro-
ceedings of the European Software Engineering Con-
ference and ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (ES-
EC/FSC’99), ser. LNCS, no. 1687. Heidelberg:
Springer Verlag, sep 1999, pp. 216–234.

[15] Y. Tymchuk, M. Ghafari, and O. Nierstrasz,
“When QualityAssistant meets pharo: Enforced code
critiques motivate more valuable rules,” in IWST ’16:
Proceedings of International Workshop on Smalltalk
Technologies, 2016, pp. 5:1–5:6. [Online]. Available:
http://scg.unibe.ch/archive/papers/Tymc16b.pdf

6

http://dx.doi.org/10.1109/MS.2006.114
http://doi.acm.org/10.1145/1646353.1646374
http://doi.acm.org/10.1145/1646353.1646374
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://www.rahul.net/flash/Deploying_Static_Analysis.pdf
http://www.rahul.net/flash/Deploying_Static_Analysis.pdf
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://doi.acm.org/10.1145/2644805
http://yuriy.tymch.uk/papers/benevol15.pdf
http://files.pharo.org/books/updated-pharo-by-example/
http://files.pharo.org/books/updated-pharo-by-example/
https://books.google.ch/books?id=lEk7vgAACAAJ
https://books.google.ch/books?id=lEk7vgAACAAJ
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://www.cs.purdue.edu/homes/palsberg/publications.html
http://scg.unibe.ch/archive/papers/Tymc16b.pdf

	Introduction
	The True False Positives
	The False False Positives
	Conclusion

