
JIT Feedback — what Experienced
Developers like about Static Analysis

Yuriy Tymchuk
Swisscom, Switzerland
http://yuriy.tymch.uk

Mohammad Ghafari
University of Bern, Switzerland

ghafari@inf.unibe.ch

Oscar Nierstrasz
University of Bern, Switzerland

oscar@inf.unibe.ch

ABSTRACT
Although software developers are usually reluctant to use static
analysis to detect issues in their source code, our automatic just-
in-time static analysis assistant was integrated into an Integrated
Development Environment, and was evaluated positively by its users.
We conducted interviews to understand the impact of the tool on
experienced developers, and how it performs in comparison with
other static analyzers.

We learned that the availability of our tool as a default IDE feature
and its automatic execution are the main reasons for its adoption.
Moreover, the fact that immediate feedback is provided directly in
the related development context is essential to keeping developers
satisfied, although in certain cases feedback delivered later was
deemed more useful. We also discovered that static analyzers can
play an educational role, especially in combination with domain-
specific rules.

CCS CONCEPTS
• Software and its engineering→ Software maintenance tools;

KEYWORDS
Static analysis, just-in-time feedback, software quality

ACM Reference Format:
Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. 2018. JIT Feed-
back — what Experienced Developers like about Static Analysis. In ICPC

’18: ICPC ’18: 26th IEEE/ACM International Confernece on Program Com-
prehension , May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3196321.3196327

1 INTRODUCTION
The assessment of internal software quality attributes mostly relies
on the human perception of source code [15]. Manual code review is
usually the main approach adopted to ensure software quality, but it
is both error-prone and time-consuming [10]. Various static analysis
tools exist to automatically find software bugs (e.g., security code
smells [17]), however, according to recent research, programmers
do not fully benefit from such tools [5, 23].

PREPRINT. Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196327

We realized that most static analysis tools targeted by recent
research are not available in commonly-used development environ-
ments, and have to be manually installed and executed. However,
many developers are too busy to run a static analyzer on a regular
basis [2], so having static analysis integrated into the development
workflow can ensure a more systematic use. For example a continu-
ous integration (CI) job can validate code before integration [5]. At
the same time, this introduces several other issues such as efforts for
setting up a CI server, as well as consensus at a management level,
etc. [28].

We developed the hypothesis that just-in-time (JIT) feedback was
an essential ingredient missing from static analysis tools, necessary
for them to gain acceptance by developers. We decided to explore
this hypothesis by enriching an existing development environment
with JIT feedback for a static analysis tool. We integrated this as a
default feature in the base distribution of the Pharo1 development
environment to immediately provide feedback about the code that a
software developer is working on. We realized that our JIT analyzer
is perceived as being useful by a large number of users [30], and,
as confirmed by recent research [12, 16], such a tool considerably
improves the performance of developers.

The goal of our study is to investigate the adoption of JIT feed-
back. To understand how developers use our tool in particular, and
to identify the pros and cons of such tools in general, we interviewed
14 Pharo developers IDE who had an average of twelve years of
experience in several programming languages, and who were also
familiar with static analysis tools in Pharo. The interviewees identi-
fied the default availability of the static analysis in their IDEs and
its automatic execution as being very important for adoption of the
tool. They found the JIT feedback to be a key feature that alerts
them immediately within the relevant development context where an
issue arises, and eases the identification of false positives. Moreover,
novice Pharo developers benefited from our tool by learning about
relevant programming patterns and idioms. Nevertheless, we identi-
fied certain cases where immediate feedback was not considered to
be useful e.g., when developers were warned about unused variables
in code that was still under development. We also received conflict-
ing feedback about our user interface design. We therefore conclude
that offering customization both for the time frame to report selected
analysis results as well as for certain user interface features may
well enhance the user experience.

This study provides important insights for communities inter-
ested in integrating automatic static analysis into their workflows. In
summary, our paper makes the following contributions:

(1) a user experience report on a JIT static analysis tool that is
integrated into an ecosystem with a previous long-lived static
analysis support;

1http://pharo.org

https://doi.org/10.1145/3196321.3196327
https://doi.org/10.1145/3196321.3196327
http://pharo.org

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

(2) a number of lessons learned about designing a JIT static
analyzer based on our findings.

In Section 2 we provide an overview of the current state of the art
in the assessment of static analysis tools. Section 3 briefly describes
the tool that we are evaluating. In Section 4 we describe the interview
setup, and we provide the obtained results and discuss findings in
Section 5. We discuss threats to validity in Section 6. Section 7
concludes our paper.

2 RELATED WORK
Johnson et al. interviewed software developers to understand why
they do or do not use static analysis tools [23]. They quantita-
tively measured their attitudes towards the following five groups of
static analysis features: (1) Tool Output, (2) Supporting Teamwork,
(3) User Input and Customizability, (4) Result Understandability,
and (5) Developer Workflows. For each group, negative feedback
exceeded positive feedback. They found that the most impactful
reasons for not using static analysis tools are the high number and
poor organization of false positives, weak support for teamwork
and customizability, and poor understandability of the tool output.
The participants of this study also expressed a need to be informed
about issues in their code as soon as they appear. While this study
summarizes the shortcomings of various static analysis tools, we
identify both positive and negative features, especially based on a
static analysis tool that has been successfully adopted by software
developers. We confirmed that users require better customizability,
and suffer from poor understandability of static analysis reports. In
contrast, we discovered that JIT feedback positively coexists with
development workflows and helps developers to comprehend the
tool output more quickly.

In a later study Christakis and Bird [9] surveyed Microsoft devel-
opers to identify the desiderata of static program analyzers. They
discovered that a high number of unwanted reports, bad descriptions,
and slow execution are the main negative aspects of static analyzers.
The authors also learned that developers are mostly interested in
static analyzers that capture security issues and violations of best
practices. While Christakis and Bird focused on diverse teams of
the same company that define their own static analysis practices we
focused on diverse individuals that use an IDE with an intrusive
static analyzer. Additionally, some of our interviewees are main-
tainers of open source projects, where code quality assurance and
knowledge distribution may be harder to achieve in comparison with
products developed by a single team. The authors identified that
many developers do not use static analyzers because they do not
meet their team’s policy. On the other hand we investigate how an
IDE can promote static analysis among its users.

Beller et al. conducted a large-scale evaluation of static analysis
usage in open source projects [5]. Their findings confirm the discov-
eries of the previous related work. The authors determined that static
analysis tools are commonly employed in open-source projects, but
only few projects actually integrate such tools into their workflows.
Beller et al. suggest that static analysis is fully beneficial only if
it is integrated into the development workflow, and they suggest to
perform integration at least at the level of a CI server. We realized
that our interviewees appreciate the integration and JIT feedback of

Figure 1: Code area of Pharo’s code editor with QualityAssistant in the
lower part.

the static analysis. Thus we see IDEs as promising tools for static
analysis distribution.

Ayewah et al. analyzed the usage of FindBugs at Google [2]. They
discovered that while the tool can detect important issues, developers
rarely use it mostly because they are overwhelmed by development
tasks. The authors discovered that only few developers use static
analysis in an automated setup and usually there are no policies in
place for using static analysis in development teams.

Do et al. introduced a JIT static taint analysis as an Eclipse plu-
gin [12]. The tool was evaluated against an equivalent tool that works
in batch mode both by performance tests and by a user study. Chee-
tah proved to work much faster than the batch-mode tool, and the
developers using it were able to cope with their tasks twice as fast.
Ganea et al. introduced a JIT static analyzer that detects code smells
and assists in their refactoring. The tool operates as an Eclipse plugin
and thus was evaluated against the capabilities of a default Eclipse
distribution. The study has shown that developers who used the JIT
static analysis managed to complete twice as many refactoring tasks
in the same amount of time, and create code of better quality. Our
interviewees also mentioned that JIT feedback increases their perfor-
mance to react to static analysis results. There exist proprietary IDEs
and their extensions such as IntelliJ IDEA, ReSharper, Xcode that
provide JIT static analysis feedback with refactoring suggestions
and can benefit from our findings about the importance of custom
static analysis rules and their adaptability.

Based on interviews with professional software developers [31]
Yamashita and Moonen discovered that many of them do not know
about code smells [14] or anti-patterns [7]. Those who do however,
care about having their code free from the bad practices. The au-
thors identified that developers use technical blogs, programmer
forums, colleagues, and industry seminars as their main sources of
information. We discovered that our interviewees learned about best
development practices directly from the JIT static analysis feedback.

3 QUALITYASSISTANT
We built QualityAssistant for Pharo [13], which supports a dynami-
cally typed object-oriented language (Smalltalk) through a dedicated
IDE. It has an active user community that rapidly adopts new re-
leases of the product. This helped us to easily distribute and ensure
the use of QualityAssistant. Pharo has a rich history of static analysis
support, and included CriticBrowser — an on-demand static ana-
lyzer — as a part of the IDE. CriticBrowser used 135 SmallLint [25]
quality rules spanning twelve categories such as potential bugs, op-
timization, code style, etc. In general CriticBrowser and SmallLint

JIT Feedback — what Experienced Developers like about Static Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

are comparable to FindBugs [1], CheckStyle2 or PMD3 — the tools
often used in related research. Usage of CriticBrowser is also similar
to those tools as half of the developers run it on monthly basis or
rarer. Based on the described similarities we believe that our discov-
eries can be generalized to other tools and programming languages
as well. To introduce as few differences as possible, QualityAssistant
operates with the same set of SmallLint rules used by CriticBrowser.

Currently QualityAssistant is completely integrated as a code edi-
tor feature of Pharo. The code editor is based on the Smalltalk system
browser design and so displays code about only one class or method
at a time [18]. Figure 1 displays the code area section of Pharo’s code
editor. At the bottom of the code editor, QualityAssistant displays a
small list of critiques (i.e., static analysis reports) that are present in
the active entity such as package, class, method, etc. Each list entry
refers to one issue detected by a quality rule. Clicking on an entry
highlights the relevant part in code. A list entry starts with an icon
that symbolizes the severity of the issue based on the corresponding
property of the SmallLint rule. The severity icon is followed by a
short description of an issue that may be prefixed by a tiny text hint
surrounded by square brackets. For example the critique of isMenu:
in the last line in Figure 1 hints at which method is not implemented.
The short description is followed by actions that can be defined by
the quality rules themselves. Three common actions for all the rules
are: view rationale, ban critique, and apply auto fix. When viewing
the rationale of a rule a developer is presented with a longer and
more detailed description of the quality violation. By banning a
critique a developer can prevent critiques resulting from the same
rule from appearing again within the scope of the method where a
critique is banned, its class or its package. About 15% of the rules
provide a possibility to automatically resolve the issue. The auto
fix can be any code transformation implementable as a composite
refactory change [26]. Before an auto fix is applied, the developer is
presented with the proposed changes. Finally, on the right hand side
of each critique entry the “thumbs up” or “thumbs down” buttons
allow users to provide feedback with an optional comment about the
usefulness of a critique.

JIT static analysis is more complicated to implement than the on-
demand batch-processing analogues. The strategies that we followed
to solve three major implementation issues are as follows:

Scoping. JIT feedback has to be related only to the current
context a developer is working on, thus one has to decide
on which scope to perform the analysis. In the Pharo code
editor a developer can browse only a single class or method
definition at a time and we used the currently browsed entity
as the scope of our static analysis. This makes it easy for
developers to analyze and consider static analysis results, but
it allows only local analyses (for example, a clone between
two entities cannot be found in our analysis).
Responsiveness. Static analysis takes time to compute. Al-
though reducing the scope significantly reduces the duration
of computation, this often is not enough to provide a live ex-
perience. Asynchronous computation with update callbacks
for detected violations may improve the responsiveness of the
system. In Pharo each class and method is recompiled upon

2http://checkstyle.sourceforge.net
3https://pmd.github.io

modification, thus the complete system is always compiled.
As a result we could always query the bytecode of any method
in case a rule requires that data. Large systems that require
rich analysis may need to use more complicated approaches
such as incremental validation [21].
Feedback Loop. After the integration of QualityAssistant
into Pharo, developers started to encounter bugs in the static
analysis rules that were present in the system for several years.
Previously, the developers simply ignored the bugs by rarely
using the on-demand static analyzer. In contrast, we were
asked to assist in bug fixing quality rules a few weeks after
the AnonymizedTool integration.

Previous research has also described approaches that one can
follow to design a JIT static analyzer [12, 16].

4 INTERVIEW SETUP
Our main goal was to identify how our JIT static analysis influences
the productivity of software developers. We followed a sequential
exploratory research design [11] and started with a quantitative sur-
vey on the usefulness of various features of QualityAssistant. Details
about the survey has been published in an earlier paper [30]. The
survey was motivated by the enthusiasm of the first QualityAssistant
adopters who contacted us by email to express gratitude, suggest
improvements, and report bugs. We invited Smalltalk developers to
participate by posting a call on relevant mailing lists and Twitter. In
the main question of the survey we asked developers to evaluate the
usefulness of the JIT static analysis through a 7-point Likert scale:
very useful, useful, sometimes useful, not influential, sometimes dis-
turbing, disturbing, or very disturbing. A total of 29 developers
responded. The responses are presented in Figure 2. More than 90%
of developers find QualityAssistant to be useful to some extent, and
almost half of all survey participants find the JIT feedback to be
very useful. To investigate the reason for such high acceptance of
QualityAssistant and to identify advantages and shortcomings of JIT
static analysis we designed an interview with open-ended questions
that are designed to answer the following research questions:

RQ1 — what are the positive and negative features of Qual-
ityAssistant? We wanted to learn to what extent each feature
can accommodate developers needs.
RQ2 — what are the good and bad quality rules? Qual-
ityAssistant motivated adding a few domain-specific rules,
and removing some rules in the original quality rule base
of Pharo. We wanted to see which rules developers like and
dislike to understand if we are moving in the right direction.
RQ3 — what is the impact of a static analysis tool like Qual-
ityAssistant on its users? We conjectured that constantly re-
acting to the analysis reports will improve developers’ coding
skills over time.

We wanted to interview developers who are experienced, work in
various organizations, and actively use Pharo and so are familiar with
QualityAssistant. We therefore conducted most of the interviews
with participants of the Pharo Days conference4 which attracts ex-
perienced Pharo users. We recorded 14 interviews of an average
duration of 14 minutes.

4https://medium.com/concerning-pharo/pharo-days-2016-c52fe4d7caf

http://checkstyle.sourceforge.net
https://pmd.github.io
https://medium.com/concerning-pharo/pharo-days-2016-c52fe4d7caf

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

Useful
Sometimes Distracting

Neutral

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Very UsefulSometimes Useful

100%55%8% 25%0%

Figure 2: Perceived usefulness of QualityAssistant according to surveyed developers.

We performed semi-structured interviews with these software
developers based on the template questions presented in Table 1. We
used a couple of test interviews to fine tune the template, however
during the interviews we dynamically added or removed some ques-
tions to obtain the most information possible. The first two groups
of questions solicit the interviewees background by assessing their
programming experience and knowledge of code quality concepts.
The remaining three groups of questions are designed to evaluate
the usefulness of QualityAssistant, the static analysis rules, and
the overall impact of the JIT feedback on the interviewees’ daily
development tasks.

Table 1: Questions for structuring the interviews.

Experience What is your name and occupation? How much
of programming experience do you have in
Pharo and other languages?

Quality What is good code? What are code smells?
Which smell-detection tools did you use?

QualityAssistant How do you use QualityAssistant? What is help-
ful? What is distracting?

Rules Which critiques are helpful and which are not?
Impact Did the way you program changed because of

QualityAssistant? Did you learn something be-
cause of QualityAssistant?

5 INTERVIEW RESULTS
A single person manually transcribed and coded the interview record-
ings, following Gordon’s guidelines by assigning codes to the tran-
scribed information [19].5 The interviews were relatively short and
the groups of interview questions served well as initial coding cate-
gories. Later we added a couple of more categories such as “improve-
ment suggestions” that emerged during the initial analysis. Then
we reviewed the data related to each code and summarized each
as a finding. The codes serve further in the paper as categories for
bar-charts. In the following, we discuss the lessons learned from the
interview responses and summarize them into a few categories.

5.1 Developers’ Background
We asked the interviewees to estimate their programming experience.
Many of the interview participants claimed to have been “program-
ming since high school” but we considered only their post-university
experience. A high proportion of participants (i.e., five out of four-
teen) have more than twenty years of programming experience, and
three participants have more than ten years of experience. Only two
interviewees have programmed for less than five years. We believe
5The study data are available online: http://scg.unibe.ch/research/QualityAssistant-study

that the high number of experienced developers is beneficial for the
interview, as they should provide more reliable feedback.

Only two participants have used Pharo for less than three years
and three interviewees were experts who used Pharo for more than
six years. The remaining nine are fairly experienced developers who
have developed in Pharo from three to six years.

Java is the most popular language with eleven interview partic-
ipants being experienced in it. Python and C++ share the second
place, each being used by four interviewees, and each of the C,
Javascript and Lisp programming languages were used by three
developers.

To identify to which extent the developers are familiar with the
concept of code quality and best development practices we asked
the interviewees what is good code in their opinion. Figure 3 sum-
marizes the most common aspects of good code according to the
answers. The criteria are not mutually exclusive because we wanted
to record the exact opinions. Over two thirds of the interview partici-
pants stated that good code is easy to read and easy to understand.
More precisely, three developers identified that good code uses good
names and abstractions and two of them said that it is modular.
According to three interviewees, another important feature of good
code is the absence of any additional complexity besides that which
is essential. Availability of good documentation is another prerequi-
site of good code according to three developers. The interviewees
also mentioned properties such as: extensible, concise, well-tested,
continuously integrated, maintainable, and clean. According to two
participants, the definition of good code is context-dependent. For
example efficient bit-shifting operations may be hard to understand
by reading the code itself, but could be well-documented.

Understandable
Readable

Respects paradigm
Good names

No extra complexity
Documented

Modular
71%7432 10

Figure 3: Top aspects of good code according to the interviewees.

We conclude that the interviewees are quite familiar with the
notion of code quality as their responses highly correlate with the
maintainability aspect of the ISO software quality standard [22].
They knew about code smells, and except for one person who had
only used QualityAssistant, others had also experienced other static
analysis tools to detect code quality issues. Such a high percentage of
developers knowing about code smells is uncommon when compared
to related research [31], and may result from the high number of
experienced engineers who participated in our interview. About

http://scg.unibe.ch/research/QualityAssistant-study

JIT Feedback — what Experienced Developers like about Static Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

JIT feedback
Keeps you alert

CI companion
Motivating

Guides reviews
852

Figure 4: Top positive feedback aspects of QualityAssistant.

half of the interviewees used CriticBrowser [30], the static analysis
tool available for the last decade in many Smalltalk environments
including Pharo. There was no other particular tool that was used
by a significant number of participants, but they mentioned using
Java tools like Checkstyle and PMD, lint tools like PyLint and
JSLint, IDEs with quality reports like IntelliJ, PHPStorm, Eclipse,
CodeBlocks and the SonarCube at an integration server.

5.2 QualityAssistant Feedback
This subsection discusses the responses of the interviewees and
highlights important lessons related to RQ1 which is about the pos-
itive and negative features of QualityAssistant. All but one of the
interview participants provided some kind of positive feedback sum-
marized in Figure 4.

According to four developers, an integrated tool that runs auto-
matically without a special setup was crucial for their static analysis
adoption.

Lesson 1. Integration and out-of-the-box functionality of static
analysis significantly improves its adoption.

Previous research identified that the lack of developer dis-

cipline and weak organization rules result in underuse of static
analyzers [2, 9]. Integration of a JIT static analysis into the
main development tool can promote its systematic use.

Three interviewees identified that QualityAssistant operates on
a limited scope, which speeds up the static analysis execution and
shortens the time between changes made to code and detection of
an issue. For example, a developer mentioned that running static
analysis on the complete project he is working on takes about ten
minutes, while QualityAssistant can provide an immediate feedback
about the code he is currently working on. The interview participants
found a scoped feedback easier to process, as it is limited to a small
part of the code that they are currently focusing on, and consequently
the number of critiques decreases proportionally to the scope.

Lesson 2. The scoped nature of a JIT static analysis comes
with execution speedups and smaller reports that a developer
can comprehend more quickly.

Previous research has identified that static analysis during

code integration yields reports that are easier to comprehend
because developers recently worked on the validated code [8].
We build on this finding and show how easy it is to process the
JIT analysis feedback.

About a quarter of the developers noted that QualityAssistant
can be used as a sidekick of a CI server. They said that sometimes
you need to wait a significant amount of time while a CI server is

validating the project, just to find out that you have made a mistake.
Then you have to fix that mistake and start the integration process
from the beginning. On the other hand QualityAssistant can point
out the same mistake just when it is introduced. Thus JIT static
analysis acts as a personal assistant that quickly highlights suspicious
parts in code, while the CI server ensures certain standards for
all contributions. We realized that this synergy is not limited to
analyzers that operate during continuous integration, but also extends
to other batch analysis tools. For example, one developer stated that
he rarely uses a standalone tool that summarizes all the issues of
interest for a whole project (or its part) to understand the overall
state of the software, but he enjoys checking QualityAssistant reports
during programming sessions.

Lesson 3. Any type of static analysis tool could be useful, but
JIT feedback occupies an independent niche. It acts as a quick
development guidance, while a CI server ensures global rule
adherence.

Previous research treats a static analyzer as a single inde-

pendent tool that is either used directly by developers [23], or is
launched by an integration server [27]. In contrast, our intervie-
wees found that besides the available validation infrastructure
on a CI server, immediate feedback has its own features that
not only are useful, but also complement the analysis done on
the CI server.

More than one third of the participants noticed that QualityAs-
sistant keeps them alert and has saved them a few times when they
made a mistake, which is hard to spot immediately, but may cause
unexpected behavior in the future. For example, bugs can occur
when the result of a boolean expression is compared with a variable
instead of being assigned to it. These developers said that while
traditional debugging could take them some time to find the error,
QualityAssistant pointed out the issue immediately. One developer
mentioned that QualityAssistant saved him time when refactoring
a core graphics framework, since an error could break the UI in-
cluding the debugger, thus disabling safe recovery. According to
two developers, QualityAssistant makes them think more about the
code and in this way motivates them to make their code better. This
applies to the warnings about missing documentation, use of low-
level and reflective APIs and use of side effects. Two developers
mentioned that sometimes critiques produced by QualityAssistant
are annoying because their impact is not immediately perceivable,
yet they adapted suggestions to deliver a higher-quality code. The
senior developers who are part of the Pharo patch review process
said that QualityAssistant guides code reviews by highlighting ques-
tionable pieces of code while allowing developers to focus on the
actual functionality changes brought by the patch. Moreover, during
code inspection developers can instantly react to certain critiques as
they are already focused on the related piece of code.

Lesson 4. JIT feedback motivates developers to write better
code and keeps them alert about the possible mistakes or high-
lights suspicious parts of code during a review.

Similar to previous research [3, 4], the interviewees con-

firmed that QualityAssistant draws their attention to suspicious

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

code during common development tasks, and they can focus
more on other important concerns during code review.

A few common points were raised regarding the negative feed-
back. These issues are presented in Figure 5. According to the in-
terviewees false positives were one of the most important problems
concerning four developers. The interview participants acknowl-
edged that false positives are common in static analysis, but they are
much more distracting in a standalone setup or CI server, where they
may need to review hundreds of reports many of which are false
positives. However in a JIT feedback setup they had to focus only
on a few reports related to their current context, which significantly
eases identification of false positives.

Lesson 5. JIT static analysis also suffers from false positive
detections. However, the small scope and related context of the
reports make it easier for developers to deal with them.

While employing advanced analysis techniques could de-

crease the number of false positives, the usual practice is to
manually inspect the code to find false positives. Our tool eases
inspection by its JIT capabilities. This finding complements
that of lesson 2.

False positives
Unclear Explanation

User Experience
Insignificant rules

29%3 4

False positives
Unclear explanation

User experience
Annoying rules

Figure 5: Top negative feedback topics.

Four interviewees complained about annoying rules. Some of the
critiques are treated as annoying because they cannot be addressed
easily. For example, if a developer has to perform a complicated
refactoring to reduce the depth of a hierarchy, the critique will be
most likely ignored. For certain rules some developers simply do
not agree with the rationale. For example, developers did not see the
significance of the rule that checked wether each class is documented.
We focus on the details of good and bad rules in the following
subsection 5.3.

We noticed that the attitude towards false positives and annoying
rules greatly depends on the experience of interviewees and their
attitudes. According to the three participants represented by expe-
rienced developers who manage teams or review contributions, it
is worth spending extra time and paying attention to static analysis
reports. Senior developers stated that it is ok if you see a critique that
you cannot act upon because it still motivates you to rethink the cur-
rent implementation. On the other hand, other three participants who
have fewer years of programming experience tend to claim that their
code is well written and they do not care about some rules especially
if they are the single developer on the project. For instance, one ac-
knowledged agreeing that excessive usage of meta-programming is
not recommended, but that he has to use it due to certain application
requirements, and gets annoyed by critiques that warn against it.

Lesson 6. Experienced developers tend to react well to static
analysis feedback more than less-experienced developers who
may be too self-confident to accept criticism.

Unclear explanation of critiques is the most severe problem for
four developers. The problem itself has two parts: the explanation
of the critique and localization of the issue in the code. The former
arises when the rationale behind a quality rule is not clear and
developers cannot understand why their code is bad. The latter
issue occurs when the critique does not provide enough information
to understand what exactly triggered the rule and how to fix it.
For example an interviewee mentioned a rule designed to detect
deprecated method invocations. However, critiques produced by that
rule reported a complete method that was invoking a deprecated
method rather than identifying the specific invocation.

Lesson 7. Critiques may fail either to explain why a detection
is a violation, or to specify which piece of code violates the
rule. A feedback loop from static analysis users to developers
of rules is very helpful in such cases.

The negative impact of unclear critique explanations is

previously discussed in the literature [6]. We use a feedback
loop, similarly to that of Tricorder [27], that allows users to
quickly notify us about such critiques. Within six months of
the integration of QualityAssistant we fixed around 20 rules.

Finally, almost one third of developers complained about user
experience. The interviewees did not like the implementation used
for banning critiques. It reuses the strategy of SmallLint where the
source code is modified with certain annotations. The developers did
not like the changes introduced into their source code just because
they do not want to see a critique again. However, this issue is an
artifact of the SmallLint engine and thus we do not discuss it further
in this paper.

QualityAssistant’s user interface was not efficient for four inter-
viewees. One of them did not like that it takes up some space from
the code editor and asked if it would be possible to simply highlight
criticized code chunks. In contrast, another developer did not like the
fact that only up to three quality critiques are visible at a time. He
stated that the initially presented critiques may not be as important
as the following ones which are hidden at the bottom in the list.
In subsection 5.5 we provide a scenario where the current design
supports quick comprehension of critiques.

5.3 Rule Usefulness
Despite the high ratio of positive feedback, most of the interview
participants struggled to identify the rules that are useful for them.
One third of them agreed that good rules are related to a specific
context, such as a certain project. One developer went into detail and
told us that the rules of Glamorous Toolkit6 were extremely useful
for him. Glamorous Toolkit is a project developed externally but
integrated and shipped with Pharo. It has its own domain-specific
language (DSL) for scripting user interfaces. It also provides Small-
Lint rules that check the DSL and suggest transformations to enable
lazy initialization and so improve the UI performance. By providing

6http://gtoolkit.org

http://gtoolkit.org

JIT Feedback — what Experienced Developers like about Static Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

its own rules the project educates unfamiliar developers about the
best way to use the UI framework.

Consider the example code snippet in Listing 1. Two lines were
intended to represent two statements, but the period character that
serves as the statement delimiter in Smalltalk is omitted from the end
of the first line. This results in a single statement where the result
of an expression is assigned to the aLink variable. Furthermore the
expression consists of a message7 chain asLink self isEmpty
ifTrue: sent to the aLinkOrObject variable. The exception will
be raised when the result of aLinkOrObject asLink receives the
self message, as that method is not implemented. However, there
is a rule that checks for messages with the self selector and warns
that they look suspicious.

1 aLink := aLinkOrObject asLink
2 self isEmpty ifTrue: [lastLink := aLink].

Listing 1: Missing statement separation

A summary of the most common rules identified as “bad” is
shown in Figure 6. We identified three groups of such rules and
each of them was mentioned by about a quarter of the interview
participants. The first category consists of rules that are based on
metrics such as classes with too many methods, methods with too
many lines of code, etc. Developers reported that most of these issues
require significant effort to resolve and usually do not make sense
in the setup of QualityAssistant, where you want to have issues that
just appear and can be quickly resolved.

Metrics-based
Not really JIT

Known idioms
29%3 4

Figure 6: Negative aspects of rules according to the interviewees

The second category contains useful rules that are not really just-
in-time friendly. In fact, these rules (e.g., check for unused variables,
uncommented classes or debugging code present in the project)
are valid but not in the JIT way of displaying issues. For example,
ideally your code should not contain debugging statements, but two
participants stated that the report was disturbing during a debugging
session. On the other hand, three developers liked such reports and
treated them as a todo list: you have created a variable, now you
have a task to use it. Therefore, we decided to add the possibility of
flagging a report as a todo in the next release.

7The term “message” originates from Smalltalk, where one “sends a message” to an
object, which then looks up a “method” for responding to it.

1 ToolDockingBarMorph new
2 hResizing: #shrinkWrap;
3 vResizing: #spaceFill;
4 adoptMenuModel: aModel;
5 yourself

Listing 2: Smalltalk cascade example

Lesson 8. Immediate feedback is just-in-time for most of the
critiques, yet certain critiques are distracting when they are
instantly reported.

We suggest not to search for the perfect time to report static

analysis results, but rather to try to identify in which contexts
do certain rules excel, or how a developer can choose in which
context she wants to see certain critiques. We hypothesize
that the critiques that some developers do not like in the JIT
feedback can still be useful to them in other contexts like
pre-commit validation.

The third group refers to known Pharo idioms. A rule found to
be especially irritating by developers detected “cascading messages”
that did not end with the yourself message. Cascades are a con-
cept specific to Smalltalk, as illustrated in Listing 2. On the first line
an instance of ToolDockingBarMorph is created. The remaining
lines separated by semicolons contain message sends to the same
object (a newly created instance). This construct is very useful for
initializing newly created objects with desired values, thus avoid-
ing the need to retype the variable each time in front of a message.
However, the result of the whole expression is equal to the value
returned by the last method evaluated by the cascade (in our case
yourself). This means that if adoptMenuModel:would be the last
message, its return value (the adopted model) will be also returned
by the whole expression, while the desired result is the instance of
ToolDockingBarMorph. To avoid this kind of problem, one of the
rules recommends to always end cascades with the yourself mes-
sage. This message simply returns the receiver i.e., the the instance
of ToolDockingBarMorph in our example. While this rule offers
a useful warning for novices who are not aware of the pitfalls of
Smalltalk cascades, it can be absolutely annoying for experienced
developers who want to use a different last message on purpose. On
the other hand, one interviewee stated that when he rewrites his code
to avoid the critique, the code becomes more understandable.

Another idiomatic rule mentioned by the interviewees detects
use of the reflective API, such as checking the type of an object.
Similarly to the previous rule this one may explain that there are
other more appropriate ways to solve general problems without the
support of reflective API, but if the developer knows what he or
she is doing, then the rule is simply distracting. We cannot draw a
definite conclusion on this rule as one of the core Pharo developers
told us that this rule is useful because it draws attention to suspicious
code during a review.

Regarding RQ2 which asks about the good and bad quality rules,
we can say that the developers like domain-specific rules, especially
if they come from other projects. Developers especially dislike rules
producing a high number of false positive or annoying critiques. In
more detail, three developers did not like the critiques that cannot

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

be easily acted upon, but we believe that they can still benefit from
those critiques if they are reported in a different context. We realised
that the developers also require a possibility to disable certain rules
for a specific domain or a project. The developers also identified
metric-based critiques that require a significant refactoring effort as
a special group of critiques that do not work well in the JIT setup.
Finally, three experienced developers did not like the critiques about
common programming idioms.

5.4 Impact on individuals
Half of the interview participants believe that their programming
habits changed because of QualityAssistant, which is an important
finding for RQ3. Some developers simply became motivated by
QualityAssistant and started to follow the suggested best program-
ming practices, like writing class comments. For those carrying out
code reviews, it detects simple issues, and in the second pass the
developers can focus on what the tool missed. In general, many
developers mentioned that their habits changed to quickly react to
issues as soon as they are reported.

Furthermore, we observed that JIT static analysis also possesses
a teaching capability which is useful for developers at any level.
Novice developers learned about optimization techniques and some
Pharo-specific idioms. For instance, one instructor stated that many
of his students write code to evaluate the equality of a boolean expres-
sion and true or false literals and such a tool could educate them
that this is a bad practice. ((b == true) is the same as b.) Senior
developers mostly learned about common style guidelines and ap-
proaches to make their code more portable across different Smalltalk
dialects. For example, a number of them learned that instead of using
expression1 & expression2 they can use expression1 and:
[expression2] so the second expression will be evaluated lazily
in case the first one returns true. Experienced Pharo developers also
learned about API changes to Pharo and other frameworks that were
used in their project. For instance, the rules in Glamorous Toolkit
suggested some developers how to use the DSL more efficiently.
Another given example was the API change of the SUnit testing
framework that provides more informative output if one uses:
self assert: actualValue equals: expectedValue

instead of:
self assert: (actualValue = expectedValue)

Lesson 9. JIT static analysis can serve as documentation of
best practices relevant to the exact context where you need
them.

The classic approach is to read the documentation or the

change log. We noticed a JIT static analysis tool can provide
domain specific knowledge which perfectly serves as live doc-
umentation that relieves developers from consulting external
resources.

5.5 Usefulness for Novices
Both the initial survey and the interviews showed that most de-
velopers find QualityAssistant playing the role of an artificial pair
programmer to be more helpful than distracting. One of the intervie-
wees stated that “We (experts) are so used to jump over things while
trying to understand code, that one or two lines of the critiques do

not impose much more distraction. I hypothesize that QualityAssis-
tant can be distracting for novice programmers, as they are not used
to quickly skimming over a large amount of information.” Moreover,
nine of the interviewees stated that when developers are presented
only with critiques about the code that they are working on, it re-
duces the information pressure. Finally, static analysis tools for Java
detect on average 40 issues for every thousand lines of code [20]
while an average Java or C++ method has ten lines of code [24].
This suggests that while working on a method a developer would
encounter on average 0.4 critiques.

An open question raised by the interviews is whether the JIT
feedback is also useful for novice developers, or whether they find
it distracting. To shed more light onto this issue, we carried out a
preliminary survey of Masters students of a Software Modeling and
Analysis course to identify whether QualityAssistant was useful to
them. For most of the students this was their first encounter with
Pharo, thus we find the selected group of participants to well rep-
resent the novice developers category. To avoid bias, we did not
offer any reward for the survey participation, the participation was
voluntary, and we allowed students to stay anonymous. Seven stu-
dents participated in the survey and only one student knew Pharo for
half a year before the course. Five of the students had an average
of 1.8 ± 1M ± S D years of industrial development experience. Two
of the students had previous experience with JIT static analyzers in
the IntelliJ IDEA and ReSharper. We asked students to evaluate the
usefulness of QualityAssistant on a 7-point Likert scale: very use-
ful, useful, sometimes useful, not influential, sometimes disturbing,
disturbing, or very disturbing.

The responses are presented in Figure 7. It is worth noticing that
all the students claimed that QualityAssistant was useful for them.
In the freeform feedback they specified that QualityAssistant taught
them about the functionality that they did not know before as well
as some programming concepts of Pharo. On the negative side a
student reported the user interface to be user-unfriendly, and found
some critique explanations hard to understand.

322
Useful Very UsefulSometimes Useful

Figure 7: Usefulness of QualityAssistant from students perspective.

6 THREATS TO VALIDITY
The semi-structured interviews were performed by the developer
of QualityAssistant, which may have biased the interviewees to
report positively about the tool. In addition, the interviewees may
be more positive because they are early adopters and because the
Pharo community is generally accepting towards new tools, and
tolerant to issues that arise in research or beta tools. The interviewer
strove not to lead or influence the interviewees. Besides, we expect
the interviewees to be honest in their responses as they are not
evaluating a random tool that they can decide not to use, but an
internal feature in their IDEs that can influence the future of their
development environment. Moreover, to minimize the effects of this
threat we tried to focus more on the stories that interviewees told
about their experience with QualityAssistant rather than qualitative

JIT Feedback — what Experienced Developers like about Static Analysis ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

feedback where they tried to assess whether something is good or
bad. Only a single person coded the interview results. It is possible
that a second person may have identified different codes.

While Pharo is similar to other IDEs for object-oriented languages
such as Java, Python or Objective-C, there are certain differences,
particularly related to its support of live programming, that may not
be generalizable. Similarly, QualityAssistant does not have many
conceptual differences to other similar tools. However, we expect
that there may be bias on the “community level.” For example the
Smalltalk community in general expects there to be a dedicated IDE
that will assist in debugging, refactoring, etc. On the other hand,
there are communities that would rather take a basic but extensi-
ble editor like EMACS [29] and add other tools on their own. We
believe that our interviewees had significantly high programming
experience, and worked with different technologies through their
career to provide reasonable feedback. On the other hand, the high
degree of interviewees’ development experience may introduce bias
when generalizing our findings to less experienced developers.

All our participants were aware of the concept of code smells.
This differs from the population considered by other research [6, 31],
which means that our findings should not be directly compared with
others.

7 CONCLUSION
In this paper we present a user experience study of a JIT static
analysis tool integrated into an IDE based on 14 interviews with
experienced developers. Our results show that JIT feedback is highly
beneficial, as it brings up possible issues at the time when a program-
mer is looking at related code, and thus reduces the time needed
to understand the context of a critique. Also, the integration and
automatic execution of the static analyzer played a crucial role in its
adoption.

Our recommendation is to integrate JIT feedback directly into
the development environment, by providing analysis results that are
directly related to the software artifact currently being manipulated
by the developer. The JIT feedback should be actionable for the
developer, and should provide explanations to justify the proposed
actions. False positives should be minimized; a feedback loop allow-
ing the developer to ban undesirable critiques and to inform the rule
designer of shortcomings can be an effective way to reduce false
positives. To maximize the value of JIT feedback, it should also be
possible to add project-specific quality rules.

We also discovered that not all developers like to be immediately
notified of all available critiques. Based on our use cases we believe
that there should be multiple reporting tools throughout the develop-
ment process that can use a unified static analysis model. This way
a developer will be able to decide in which time frame she wants
to see the critiques of a certain rule. We realized that developers
at any level can learn from JIT static analysis. Novices learn basic
programming guidelines and patterns of the programming language
while more experienced developers learn about optimization tricks
and portability guidelines.

We believe that the quality rules about third party projects are
one major feature that is lacking in the QualityAssistant, and we
plan to investigate the ways to boost the rule creation by ordinary
developers in the future. Currently we have no insights into how JIT

feedback actually impacts developer productivity or software quality.
Possible future work would include an in-depth study to assess such
impact.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss Na-
tional Science Foundation for the project “Agile Software Analysis”
(SNSF project No. 200020-162352, Jan 1, 2016 - Dec. 30, 2018).

REFERENCES
[1] N. Ayewah, D. Hovemeyer, J.D. Morgenthaler, J. Penix, and William Pugh. 2008.

Using Static Analysis to Find Bugs. Software, IEEE 25, 5 (Sept. 2008), 22–29.
https://doi.org/10.1109/MS.2008.130

[2] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Experiences Using Static Analysis to Find Bugs. IEEE
Software 25 (2008), 22–29. Special issue on software development tools, Septem-
ber/October (25:5).

[3] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs Fixit. In
Proceedings of the 19th International Symposium on Software Testing and Analysis
(ISSTA ’10). ACM, New York, NY, USA, 241–252. https://doi.org/10.1145/
1831708.1831738

[4] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-
lenges of Modern Code Review. In Proceedings of the 2013 International Con-
ference on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA,
712–721. http://dl.acm.org/citation.cfm?id=2486788.2486882

[5] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman. 2016. Analyzing the
State of Static Analysis: A Large-Scale Evaluation in Open Source Software. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. 470–481. https://doi.org/10.1109/SANER.2016.
105

[6] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to find bugs in the real world. Commun.
ACM 53, 2 (Feb. 2010), 66–75. https://doi.org/10.1145/1646353.1646374

[7] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J.
Mowbray. 1998. AntiPatterns: Refactoring Software, Architectures, and Projects
in Crisis. John Wiley Press.

[8] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick,
and Dulma Rodriguez. 2015. Moving Fast with Software Verification. Springer
International Publishing, 3–11. https://doi.org/10.1007/978-3-319-17524-9_1

[9] Maria Christakis and Christian Bird. 2016. What Developers Want and Need from
Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016). ACM,
New York, NY, USA, 332–343. https://doi.org/10.1145/2970276.2970347

[10] Jason Cohen, Eric Brown, Brandon DuRette, and Steven Teleki. 2006. Best kept
secrets of peer code review. Smart Bear.

[11] John W. Creswell and Vicki. 2006. Designing and Conducting Mixed Methods Re-
search (1 ed.). Sage Publications, Inc. http://www.worldcat.org/isbn/1412927927

[12] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith,
and Emerson Murphy-Hill. 2017. Just-in-time Static Analysis. In Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2017). ACM, 307–317. https://doi.org/10.1145/3092703.3092705

[13] Stéphane Ducasse, Dmitri Zagidulin, Nicolai Hess, and Dimitris Chloupis. 2017.
Pharo by Example 5.0. Square Bracket Associates. http://files.pharo.org/books/
updated-pharo-by-example/

[14] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.
Refactoring: Improving the Design of Existing Code. Addison Wesley.

[15] Steve Freeman and Nat Pryce. 2009. Growing Object-Oriented Software, Guided
by Tests (1st ed.). Addison-Wesley Professional.

[16] George Ganea, Ioana Verebi, and Radu Marinescu. 2017. Continuous quality
assessment with inCode. Science of Computer Programming 134 (2017), 19–36.
https://doi.org/10.1016/j.scico.2015.02.007

[17] Mohammad Ghafari, Pascal Gadient, and Oscar Nierstrasz. 2017. Security Smells
in Android. In 17th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM). 121–130. https://doi.org/10.1109/SCAM.
2017.24

[18] Adele Goldberg and David Robson. 1983. Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading, Mass., Chapter 17. The Program-
ming Interface, 291–328. http://stephane.ducasse.free.fr/FreeBooks/BlueBook/
Bluebook.pdf

[19] R.L. Gorden. 1998. Basic Interviewing Skills. Waveland PressInc.
[20] Sarah Heckman and Laurie Williams. 2008. On Establishing a Benchmark for

Evaluating Static Analysis Alert Prioritization and Classification Techniques. In

https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/1831708.1831738
http://dl.acm.org/citation.cfm?id=2486788.2486882
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1109/SANER.2016.105
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2970276.2970347
http://www.worldcat.org/isbn/1412927927
https://doi.org/10.1145/3092703.3092705
http://files.pharo.org/books/updated-pharo-by-example/
http://files.pharo.org/books/updated-pharo-by-example/
https://doi.org/10.1016/j.scico.2015.02.007
https://doi.org/10.1109/SCAM.2017.24
https://doi.org/10.1109/SCAM.2017.24
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz

Proceedings of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM ’08). ACM, New York, NY, USA,
41–50. https://doi.org/10.1145/1414004.1414013

[21] Lars Heinemann, Benjamin Hummel, and Daniela Steidl. 2014. Teamscale:
Software Quality Control in Real-time. In Companion Proceedings of the 36th In-
ternational Conference on Software Engineering (ICSE Companion 2014). ACM,
New York, NY, USA, 592–595. https://doi.org/10.1145/2591062.2591068

[22] ISO/IEC. 2010. ISO/IEC 25010 — Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) — System and
software quality models. (2010).

[23] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?. In
Proceedings of the 2013 International Conference on Software Engineering (ICSE
’13). IEEE Press, 672–681. http://dl.acm.org/citation.cfm?id=2486788.2486877

[24] Michele Lanza and Radu Marinescu. 2006. Object-Oriented Metrics in Practice.
Springer-Verlag. http://www.springer.com/de/book/9783540244295

[25] Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke. 1996. An Automated
Refactoring Tool. In Proceedings of ICAST ’96, Chicago, IL.

[26] Donald Bradley Roberts. 1999. Practical Analysis for Refactoring. Ph.D.
Dissertation. University of Illinois. http://historical.ncstrl.org/tr/pdf/uiuc_cs/
UIUCDCS-R-99-2092.pdf

[27] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1 (ICSE

’15). IEEE Press, Piscataway, NJ, USA, 598–608. http://dl.acm.org/citation.cfm?
id=2818754.2818828

[28] Flash Sheridan. 2012. Deploying Static Analysis. Dr. Dobb’s Journal (Aug. 2012),
8–14. http://www.rahul.net/flash/Deploying_Static_Analysis.pdf

[29] Richard M. Stallman. 1981. EMACS the Extensible, Customizable Self-
documenting Display Editor. ACM SIGOA Newsletter 2, 1-2 (April 1981), 147–
156. https://doi.org/10.1145/1159890.806466

[30] Yuriy Tymchuk. 2015. What if Clippy Would Criticize Your Code?. In
BENEVOL’15: Proceedings of the 14th edition of the Belgian-Netherlands soft-
ware evoLution seminar. http://yuriy.tymch.uk/papers/benevol15.pdf

[31] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. WCRE’13 (2013), 242–251. https://doi.org/10.1109/
WCRE.2013.6671299

https://doi.org/10.1145/1414004.1414013
https://doi.org/10.1145/2591062.2591068
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://www.springer.com/de/book/9783540244295
http://historical.ncstrl.org/tr/pdf/uiuc_cs/UIUCDCS-R-99-2092.pdf
http://historical.ncstrl.org/tr/pdf/uiuc_cs/UIUCDCS-R-99-2092.pdf
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://www.rahul.net/flash/Deploying_Static_Analysis.pdf
https://doi.org/10.1145/1159890.806466
http://yuriy.tymch.uk/papers/benevol15.pdf
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1109/WCRE.2013.6671299

	Abstract
	1 Introduction
	2 Related Work
	3 QualityAssistant
	4 Interview Setup
	5 Interview Results
	5.1 Developers' Background
	5.2 QualityAssistant Feedback
	5.3 Rule Usefulness
	5.4 Impact on individuals
	5.5 Usefulness for Novices

	6 Threats to Validity
	7 Conclusion
	References

