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Abstract

Software metrics offer us the promise of distilling useful
information from vast amounts of software in order to track
development progress, to gain insights into the nature of the
software, and to identify potential problems. Unfortunately,
however, many software metrics exhibit highly skewed, non-
Gaussian distributions. As a consequence, usual ways of
interpreting these metrics — for example, in terms of “av-
erage” values — can be highly misleading. Many metrics,
it turns out, are distributed like wealth — with high concen-
trations of values in selected locations. We propose to an-
alyze software metrics using the Gini coefficient, a higher-
order statistic widely used in economics to study the dis-
tribution of wealth. Our approach allows us not only to
observe changes in software systems efficiently, but also to
assess project risks and monitor the development process it-
self. We apply the Gini coefficient to numerous metrics over
a range of software projects, and we show that many met-
rics not only display remarkably high Gini values, but that
these values are remarkably consistent as a project evolves
over time.

1. Introduction

What is the inherent nature of software? Do software
systems form “perfect” societies with an equal distribution
of responsibilities, or are they polarized, where some parts
have to shoulder most of the load and others are just simple
service providers? These are questions of more than passing
interest. By understanding what typical and successful soft-
ware evolution looks like, we can identify anomalous situ-
ations and perhaps take action earlier than might otherwise
be possible. However, we are only beginning to understand
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how change and distribution of functionality affect evolving
software systems [23, 29, 30].

A standard technique [8, 15, 16] to answer these ques-
tions is to identify a number of characterizing properties,
collect corresponding software metrics, and render the ob-
tained data into meaningful information that can assist both
developers and project managers in their decision making
[13, 27]. Unfortunately, software metrics data are, in gen-
eral, heavily skewed [7, 12, 30], which makes precise inter-
pretation with standard descriptive statistical analysis diffi-
cult. Summary measures like “average” or “mean” assume
a Gaussian distribution to capture the central tendency in a
given data set. However, when applied to non-Gaussian dis-
tributions, central tendency measures become increasingly
more unreliable the greater the distance is between a given
distribution and a normal distribution.

The shortcomings of central tendency measures are am-
plified when we wish to compare skewed distributions. Any
meaningful comparison requires additional effort to fit the
distributions in question to a specially-designed third model
distribution [1, 26]. This transformation is not only cum-
bersome but also expensive and may not yield the desired
result. Moreover, additional problems may arise due to
changes in both the degree of concentration of individual
values and and the total value of a distribution. Consider, for
example, the high-performance text search engine library
Lucene. The median of the heavily-skewed distribution for
cyclomatic complexity [19] at class level increased from 5
to 8 as new classes were added to the system. The change in
the median suggests that the overall cyclomatic complexity
of Lucene increased significantly. But this interpretation is
incorrect. The newly added classes had actually the oppo-
site effect. What made the median increase was the growing
population size (i.e., the number of classes in the system),
which resulted in a new middle value for cyclomatic com-
plexity.

Interestingly, an approach to cope with and meaning-
fully interpret unevenly-distributed data sets has already
been widely adopted in the field of economics. In 1912,



the Italian statistician Corrado Gini proposed the so-called
Gini coefficient, a single numeric value between 0 and 1,
to measure the inequality in the distribution of income or
wealth in a given population (cf. [9, 24]). A low Gini co-
efficient indicates a relatively equal wealth distribution in a
given population, with 0 denoting a perfectly equal wealth
distribution (i.e., everybody has the same wealth). A high
Gini coefficient, on the other hand, signifies a very uneven
distribution of wealth, with a value of 1 signaling perfect in-
equality in which one individual possesses all of the wealth
in a given population. Today, the Gini coefficient is a widely
used social and economic indicator to ascertain an individ-
ual’s ability to meet financial obligations or to correlate and
compare per-capita GDPs [28].

We can adopt this technique and consider software met-
rics data as income or wealth distributions. Each metric that
we collect for a given property, say the number of methods
defined by all classes in an object-oriented system, is sum-
marized as a Gini coefficient, whose value informs us about
the degree of concentration of functionality within a given
system. Moreover, since the Gini coefficient is both popu-
lation size independent and bounded, we obtain a tool for
comparative analysis for any two software systems, an as-
pect of particular interest for the study of evolving systems.

To test and refine our technique, we conducted an ex-
ploratory study in which we applied the Gini coefficient to
more than fifty object-oriented software systems developed
with Java and C#. We observed the following:

• Gini coefficients across multiple software systems are all
strongly bounded. The typical overall range of Gini co-
efficients (for multiple software metrics) is between 0.45
and 0.75, which suggests that developers favor solutions
in which a few large and complex abstractions do the
bulk of the work, whereas the rest of the system acts as
service or data providers.

• Selected software metrics exhibited Gini coefficients
greater than 0.85. Such a high value is a strong indicator
for the presence of machine-generated code or code that
is structured like machine-generated code. Inspection of
the system being analyzed always confirmed this.

• Gini coefficients change little between adjacent releases,
with the exception of occasional spikes that revealed sig-
nificant changes like architectural shifts or the introduc-
tion of machine-generated code. Once developers com-
mit to a specific solution approach, it seems they seldom
tamper with it afterwards.

This last observation also supports the appropriateness
of the laws “Conservation of Organizational Stability” and
“Conservation of Familiarity” of software evolution as for-
mulated by M. M. Lehman [14]. Consequently, we should

be able to use this inherent property of change to help im-
prove the risk management practices as any substantial vari-
ation in Gini coefficients can be used as a trigger for a more
thorough investigation and retrospection.

The rest of the paper is organized as follows: in Section 2
we motivate our work with a brief overview of related work.
We proceed by developing an economic metaphor and how
it can assist us to overcome the statistical challenges for
comparative software analysis. Section 3 presents the ex-
perimental method for the investigation of our technique.
In Section 4 we discuss possible interpretations and conse-
quences of our observations. We conclude in Section 5 with
a summary of the expressive power of the Gini coefficent
for comparative software analysis and some remarks about
future work.

2. Towards an Economic Metaphor

Software metrics typically exhibit highly skewed distri-
butions, which makes the use of usual analysis tools that as-
sume Gaussian or other regular distributions inappropriate.
In this section we review background and related work, and
we motivate our proposal to adopt the wealth-based Gini
coefficient to analyze software metrics.

2.1 Typical Metric Data Distributions

Real-world software systems typically contain hundreds
of abstractions (e.g., classes in object-oriented systems).
The sheer volume of data available can make it difficult to
understand the nature of these systems and how they have
evolved [5]. A common approach [8] to reducing the com-
plexity of the data is to apply some form of some simple
summarization such as the mean, median, or standard de-
viation. Unfortunately, these simple statistics provide little
useful information about the distribution of the data, par-
ticularly if it is skewed, as is common with many software
metrics.

Additional statistics such as the skew, measuring the
asymmetry of the data, and kurtosis, measuring the peaked-
ness of the data, may be useful, but cannot easily be used
to compare systems with different population sizes. Also,
these measures are unbounded [22], making relative com-
parisons difficult. There is a need for a more general sta-
tistical measure that provides a way of comparing systems
with quite different first order statistics, yet still manages to
capture the nature of the software metrics.

Software systems tend to exhibit asymmetrically-shaped
metrics data distribution profiles. Typically [29, 30] soft-
ware systems follow a simple pattern: a few software en-
tities contain much of the complexity and functionality,



Figure 1. Positively skewed metrics data.

whereas the others define simple data abstractions and utili-
ties. Most metrics are skewed, but skewed in different ways,
making comparisons based on average and standard devia-
tion largely meaningless. For example Figure 1 shows the
distributions, in percent, for the metrics Number of Methods
and Fan-Out Count for release 2.5.3 of the Spring frame-
work (a popular Java/J2EE light-weight application con-
tainer). In both cases the distributions, although signifi-
cantly skewed, are quite different. We would like a sim-
ple statistic that provides a synthesis of the skew, kurtosis,
mean, and variance statistics of the data.

Others have proposed fitting the metric data to simple
skewed distributions such as the Lognormal, Exponential,
or other power laws [1, 26]. Unfortunately, there is no
widely-accepted distribution that captures consistently and
reliably software metric data. Certainly the two metrics de-
scribed in Figure 1 do not appear to map easily to well-
known skewed distributions without additional effort. But
more importantly, we are not required to fit a given soft-
ware metric to particular distributions in order to interpret
it. We are interested in simple measures that can be used to
characterize a particular property.

Given this situation, it is not surprising that metrics use
in industry is rare. Simple statistics, such as median and
variance are likely to be misleading. Comparison of differ-
ent distributions may provide some insight, but require skill
to interpret, particularly given the huge number of metrics
that might be used and the different population sizes that
might be encountered. Consequently, we have investigated
simple higher-order statistics [20] that capture key aspects
of the data, that are bounded, and that effectively summarize
the metrics. We argue the Gini coefficient has great poten-
tial to be a useful, simple measure to monitor the stability
of software properties over time.

2.2 Lorenz Curve and Gini Coefficient

One of the key pieces of information we wish to ob-
tain from software metrics is the allocation of functionality
within the system. Understanding whether the system has a

few classes that implement most of the functions or whether
functions are widely distributed gives us an insight into how
the system has been constructed, and how to maintain it [3].
Allocation of some attribute within a population has been
studied comprehensively by economists who are interested
in the distribution of wealth [31]. Key to this analysis is the
Lorenz curve [17], an example of which is shown in Fig-
ure 2. A Lorenz curve plots on the y-axis the proportion of
the distribution assumed by the bottom x% of the popula-
tion. The Lorenz curve gives a measure of inequality within
the population. A diagonal line represents perfect equality.
A line that is zero for all values of x < 1 and 1 for x = 1 is
a curve of perfect inequality.

Figure 2. Lorenz curve for Fan-Out Count in
Spring framework in release 2.5.3.

For a probability density function f (x ) and cumulative
density function F (x ), the Lorenz curve L(F (x )) is defined
as:

L(F (x )) =

∫ x

−∞ t f (t) dt∫∞
−∞ t f (t) dt

(1)

The Lorenz curve can be used to measure the distribution
of functionality within a system. Figure 2 is a Lorenz curve
for the Fan-Out Count metric in the Spring framework re-
lease 2.5.3. Although the Lorenz curve does capture the na-
ture of distribution, it can be more effectively summarized
by means of the Gini coefficient. The Gini coefficient is de-
fined as a ratio of the areas on the Lorenz curve diagram.
If the area between the line of perfect equality and Lorenz
curve is A, and the area under the Lorenz curve is B, then
the Gini coefficient is A/(A + B) [31].

More formally, if the Lorenz curve is L(Y ), then

G = 1 − 2
∫ 1

0

L(Y ) dY (2)

The Gini coefficient is a higher order statistic as it is
derived from the Lorenz curve, which itself is a summary
measure computed over a cumulative probability distribu-
tion function. The Gini coefficient has a number of useful



Name Rationale Description
Load Instruction Count Responsibility Number of read instructions per class
Store Instruction Count Responsibility Number of write instructions per class
Weighted Method Count Complexity Degree of algorithmic branching
In-Degree Count Popularity Number of classes class X depends upon
Out-Degree Count Delegation Number of classes depending on class X
Number of Methods Decomposition Breadth of functional decomposition
Public Method Count Interface Size Exposure of responsibility
Number of Attributes Information Storage Density of information stored in class
Fan-Out Count Delegation Degree of reliance on others
Type Construction Count Composition Number of object instantiations

Table 1. Collected class-level measures for Gini analysis.

properties in that it is bounded between 0 and 1, makes no
assumptions as to the distribution of the statistic under in-
vestigation, and can be compared between differently sized
populations. These properties makes it an ideal statistic for
comparing the distribution of metrics between software sys-
tems. Moreover, the Gini coefficient provides a simple and
intuitive means for qualitative analysis of observed software
properties. In the next sections we determine the Gini co-
efficients for a large selection of software metrics across a
range of systems and provide a discussion on the interpre-
tation of specific Gini values.

3. Wealth-based Software Analysis

How useful is the Gini coefficient in analyzing software
systems? Does it enable useful comparisons to be made
between systems? Can it provide us with any insights as
to how developers construct systems? In this section we
report on our study of freely available, open-source, object-
oriented Java and C# systems.

3.1 The Setup

Our analysis method does not rely on the availability of
source code. Both, Java and C# programs are translated
to a platform-independent representation consisting of two
components: virtual machine instructions, called bytecode,
and embedded type information, called metadata. We can
exploit the metadata information to extract software met-
rics. Together with bytecode inspection, this approach can
reveal almost as much about a system as its original source
code.

Using this knowledge, we have been developing JSeat
[10], a software analysis and visualization framework for
Java. JSeat consists of a set of tools that can be individually
tailored to meet specific metrics extraction and exploration
criteria. All metrics data retrieved with JSeat can be ex-
ported to a simple, text-based representation allowing for
further statistical analysis with third-party products.

We used JSeat to produce the raw data for the longitu-
dinal analysis [4, 11] of Java software systems. We ran the
JSeat metrics extraction on 1,200 unique releases originat-
ing from 46 suitable Java candidate systems. To ensure that
all studied systems are non-trivial we applied the following
selection criteria to identify suitable candidates:
• A selected system must comprise no less than 100 classes

throughout its lifetime.

• A selected system must have undergone active develop-
ment for at least 18 months.

• At least 15 unique releases must be available for each
selected system.
For each release we distilled ten size and complexity

measures (see Table 1). We opted for direct metrics only
(i.e., metrics that measure just one attribute) as they can be
considered wealth distributions immediately.

In order to assess assigned responsibilities we use the
two metrics Load Instruction Count and Store Instruction
Count. Both metrics provide a measure for the frequency of
state changes in data containers within a system. Weighted
Method Count, on the other hand, records all branch in-
structions and is used to measure the cyclomatic complex-
ity [19] at class level. The remaining two dynamic measures
are Fan-Out Count and Type Construction Count. The for-
mer offers a means to document the degree of delegation,
whereas the latter can be used to count the frequency of ob-
ject instantiations.

The remaining metrics provide structural size and com-
plexity measures. In-Degree Count and Out-Degree Count
reveal the coupling of classes within a system. These mea-
sures are extracted from the type dependency graph [29]
that we construct for each analyzed system. The vertices in
this graph are classes, whereas the edges are directed links
between classes. We associate popularity (i.e., the num-
ber of incoming links) with In-Degree Count and usage or
delegation (i.e., the number of outgoing links) with Out-
Degree Count. Number of Methods, Public Method Count,
and Number of Attributes define typical object-oriented size



measures and provide insights into the extent of data and
functionality encapsulation.

But do these measures all represent independent charac-
terizing properties? We need to examine, therefore, all se-
lected metrics more closely and check whether there exists
a linear relationship between any of them. If we discover a
relationship linking two measures, we may be able to elimi-
nate one metric when it does not provide additional insights.
We computed the Pearson’s correlation coefficients for all
measures and systems (see Table 2 summarizing our find-
ings for JasperReports 0.3.0, an embeddable Java reporting
library) and observed the following:

• There exits a strong positive correlation (i.e., > 0.8 [25])
between some different measures consistently across our
entire data set.

• The strength of the relationship varies across systems
and versions. For example, the measures Load Instruc-
tion Count and Fan-Out Count are strongly correlated in
JasperReports 0.3.0, but this relationship is not as strong
in other systems and versions.

• Across all systems, the measure In-Degree Count is only
weakly correlated to other metrics if at all. This implies
that the popularity of a class is not a function of its size
or complexity.

• Load Instruction Count and Store Instruction Count are
consistently strongly correlated. This signifies that data
containers require a pairwise read and write.

We decided therefore that none of our selected measures,
except Load Instruction Count and Store Instruction Count,
qualify for potential exclusion from our analysis. Even if
two metrics are correlated at one point, the strength of this
relationship is not necessarily maintained at the same level
while the system under investigation evolves. Moreover, we
found repeatedly that the Gini coefficients for metrics that
may be considered correlated, diverge independently of the
underlying correlation.

Though Load Instruction Count and Store Instruction
Count are strongly correlated, we need to analyze them sep-
arately also. We observed in some instances (e.g., Check-
Style 3.0 to 3.1 Load Instruction Count Gini coefficient
changes from 0.87 to 0.80 while Store Instruction Count
remains stable) that the Load Instruction Count Gini coeffi-
cients changed independently of the Store Instruction Count
Gini value. As a consequence, all selected measures have to
be considered significant as they can reveal different, some-
times surprising, dimensions of the software system, which
may be lost by eliminating certain metrics.

3.2 Gini Coefficients in Java Software

After extracting the desired metrics raw data with JSeat,
we computed the Gini coefficients for our measures. Much
to our surprise, the computed Gini coefficients for all mea-
sures were distributed over a very narrow range between
0.45 and 0.75 (see Figure 3). Moreover, individual mea-
sures showed a remarkable stability between versions with
a typical delta of less than 0.01. This fluctuation decreased
even further as systems were maturing.

There were, however, some noticeable exceptions in
eight systems: Checkstyle, Hibernate (version 3.0b1 and
higher), PMD, Groovy, ProGuard, FreeMarker, JabRef (ver-
sion 1.4.0 and higher), and JasperReports. In these sys-
tems we observed persistent occurrences of Gini values for
Weighted Method Count greater than 0.8, surpassing the
value 0.91 in CheckStyle version 2.1.0. We discovered,
upon further inspection, that all systems contained machine-
generated code, which yields an extremely uneven function-
ality distribution.

The only systems that produced rather puzzling val-
ues were Xerces2 and Xalan. In both the Gini coeffi-
cient for Weighted Method Count is between 0.75 and 0.82.
These high values result from hand-written parsers that pro-
duce functionality distribution profiles similar to machine-
generated code. These were the only instances in which
we observed such high values for Weighted Method Count
without the presence of machine-generated code.

3.3 Gini Coefficients in C# and .NET

Does the programming language or the execution plat-
form impact metric distribution profiles? In July 2000, C#
[6], a new managed language for the .NET platform, was
announced. Like in Java, C# programs are compiled into
a machine-independent, language-appropriate representa-
tion defined by the Common Language Infrastructure [21].
Moreover, C# and Java are very closely related and we
therefore asked ourselves whether programs written in C#
exhibit distribution profiles similar to the ones we observed
in Java. Unfortunately, the number of freely-available,
open-source systems developed in C# framework that met
our selection criteria is rather limited. So, we began our
study with systems that were originally written in Java and
had been ported to the .NET platform in order to take ad-
vantage from the knowledge gained in the analysis of their
respective Java counterparts.

For the .NET metrics extraction, we used CLI [18], an
assembly reader library that provides access to both the
metadata and byte code. We added a small wrapper for the
computation of the Gini coefficients and stored the resulting
data in a text file for further processing with JSeat.

We collected metrics data from four .NET systems:



Load Instruction Count (LIC) –
Store Instruction Count (SIC) 0.93 –
Weighted Method Count (WMC) 0.80 0.81 –
In-Degree Count (IDC) 0.18 0.24 0.15 –
Out-Degree Count (ODC) 0.86 0.82 0.77 0.08 –
Number of Methods (NOM) 0.71 0.66 0.44 0.26 0.63 –
Public Method Count (PMC) 0.21 0.20 0.09 0.27 0.18 0.75 –
Number of Attributes (NOA) 0.70 0.79 0.48 0.23 0.50 0.53 0.16 –
Fan-Out Count (FOC) 0.96 0.87 0.80 0.09 0.85 0.62 0.16 0.67 –
Type Construction Count (TCC) 0.78 0.78 0.53 0.11 0.68 0.56 0.16 0.82 0.84 –
Metric LIC SIC WMC IDC ODC NOM PMC NOA FOC TCC

Table 2. Pearson’s correlation coefficients – JasperReports 0.3.0.

Figure 3. Box plot of Gini coefficients across all analyzed systems.

iTextSharp, NHibernate, SharpDevelop, and NAnt. The
analysis of our 10 measures produced Gini coefficients
equivalent to the ones determined for Java systems. How-
ever, there were also exceptions. We observed a shift ex-
ceeding 0.4 (i.e., individual Gini coefficients doubled in
value) for almost all measures in NAnt version 0.8.3-rc1.
The Gini coefficients stayed high until version 0.84-rc1,
where they assumed “normal” values again. An inspection
of the developer logs provided an explanation: in version
0.8.3-rc1, the NAntContrib project was integrated into the
NAnt distribution. This project defines a number of utili-
ties whose metrics exhibit very uneven distribution profiles
caused by a centralization of event handling in a few classes.
In version 0.84-rc1, the developers removed NAntContrib
from NAnt resulting in a change by−0.4, returning the Gini
coefficients for NAnt to their previous values.

4. Discussion

4.1 The Value of the Gini Coefficient

We discovered in our analysis that Gini coefficients nor-
mally change little between adjacent releases. However,
changes do happen and may result in significant fluctua-
tions in Gini coefficients that warrant a deeper analysis (see

Figure 4 showing selected Gini profiles for 51 consecutive
releases of the Spring framework). But why do we see such
a remarkable stability of Gini coefficients?

Figure 4. Selected Gini profiles in Spring.

Developers accumulate system competence over time.
Proven techniques to solve a given problem prevail, where
untested or weak practices have little chance of survival.
If a team has historically built software in a certain way,
then it will continue to prefer a certain approach over oth-
ers. Moreover, we can expect that most problems in a given
domain are similar, hence the means taken to tackle them



would be similar, too. Tversky and Kahneman coined the
term “decision frame” [27] to refer to this principle in which
decision-makers proactively organize their solutions within
well-established and strong boundaries defined by cultural
environment and personal preferences. These boundaries
manifest themselves also in the software systems.

When developers are making decisions, they weigh the
benefits of using a large number of simple abstractions
against the risk of using only a few, but complex, ones in
their solution design. Our findings indicate that developers
favor the latter. In particular, we learn (see Figure 3) that the
Gini coefficients of most metrics across all investigated sys-
tems assume bounded values that range just between 0.60
and 0.75. These values mark a significant inequality be-
tween the “richest” and the “poorest”. For example, in the
Spring version 2.5.3 approx. 10% of the classes possess
80% of the Fan-Out Count wealth (see Figure 2).

Figure 5. IDC Gini profile for Struts.

Another observation we made is that it is rare to see Gini
coefficients greater than 0.8. For example, we noticed that
in Struts, a Web application framework, the Gini coefficient
for In-Degree Count initially moves beyond this threshold,
only to fall back below it within a few releases (see Fig-
ure 5). This interesting behavior reveals that, in order for
software systems to sustain evolution, responsibilities have
to be distributed across abstractions in such a way that de-
velopers can maintain their cohesion. For each measure we
can clearly identify lower and upper bounds that appear to
define corresponding limits (cp. Table 3).

The existence of both lower and upper bounds for Gini
coefficients in software systems can be viewed as a result
of a trade-off developers use throughout development. De-
cisions how to allocate responsibilities to classes within a
system are a product of the application domain, past expe-
rience, preferences, and cultural pressures within the devel-
opment team. The Gini coefficient is a potential mechanism
for characterizing these trade-offs and perhaps more impor-
tantly, identifying when they change. In the analyzes that
follow we have, somewhat arbitrarily, chosen a difference
of greater than 4% between adjacent releases as being sig-

Metric Minimum Maximum
Load Instruction Count 0.60 0.64
Store Instruction Count 0.63 0.68
Weighted Method Count 0.68 0.72
In-Degree Count 0.62 0.72
Out-Degree Count 0.45 0.49
Number of Methods 0.48 0.56
Public Method Count 0.47 0.56
Number of Attributes 0.57 0.67
Fan-Out Count 0.62 0.66
Type Construction Count 0.66 0.81

Table 3. Gini value ranges in Spring.

nificant. The motivation for this is the Pareto principle [2]
(also known as the 80–20 rule). We found that Gini coef-
ficients changed by more than 4% in less than 20% of the
studied releases.

To illustrate the effectiveness of this threshold, consider
again Figure 4 showing selected Gini coefficients from the
Spring framework. We see a jump of 0.092 in Type Con-
struction Count from the 6th (i.e., version 1.0m4) to the
7th (i.e., version 1.0r1) release. Upon further inspection we
discovered that this change was caused by the removal of
just one, yet very rich, class — ObjectArrayUtils, which
also affected the Gini value for Number of Methods. This
class provided 283 utility methods to map primitive argu-
ments to an object array. These methods contained a total of
1,122 object instantiations. The next biggest class in terms
of type constructions defined just 99 object instantiations.
This concentration of type constructions in ObjectArray-
Utils caused the high values for Type Construction Count
of approx. 0.8 up to the 6th release. A similarly rich class
was never added to the Spring framework again.

We notice another major fluctuation of 0.0347 in Number
of Methods between the 26th (i.e., version 1.2.6) and the
31th (i.e., version 2.0m5) releases. In the 27th release, the
developers of the Spring framework decided to remove a set
of large template classes from the core functionality. After
a period of 6 months (i.e., from version 2.0m5), however,
these classes were brought back causing the Gini value for
Number of Methods to return to its original state. Though an
explanation as to why this was done has not been included
in the release notes, our approach detected this anomaly.

4.2 The Sensibility of the Gini Coefficient

The stability of the Gini coefficient indicates that devel-
opers rarely make modifications to systems that result in a
significant reallocation of functionality within the system.
Moreover, the likelihood for such events to occur is greater
in earlier versions. Managers can, therefore, use this knowl-



System Measure Release Gini Explanation
1.01 0.81PMD Type Construction Count
1.02 0.73

User interface code refactored into multiple smaller
classes.

2.4 0.44Checkstyle In-Degree Count
3.0b1 0.80

Plug-in based architecture introduced.

3.8 0.78Proguard Type Construction Count
4.01 0.90

2,500 line obfuscation instruction mapping class intro-
duced.

1.3 0.75JabRef Weighted Method Count
1.4 0.91

Machine generated parser introduced.

2.1.7 0.51WebWork Fan-Out Count
2.21 0.62

A large utility class and multiple instances of copy-and-
paste code introduced.

2.0a 0.59Xerces2 In-Degree Count
2.0b 0.78

Abstract syntax tree node referencing changed.

1.0.3 0.58JasperReports Public Method Count
1.1.0 0.69

Significant design approach change with introduction of
a set of new base classes.

Table 4. Sample of observed significant changes to Gini coefficients in consecutive releases.

edge to define project-specific triggers both to help detect
substantive shifts in the code base and to ask directed ques-
tions about the reasons for their occurrences. For exam-
ple, in our study we were able to detect a major change in
the Type Construction Count of Proguard, a Java byte code
obfuscator, between release 3.8 and 4.0 (cf. Table 4). A
detailed analysis disclosed that the developers had added a
new, large single auxiliary class to centralize the obfusca-
tion mapping of instructions — a change, so significant, as
to warrant an appropriate notification to both internal and
external team members.

Figure 6. WMC Gini profile for NAnt.

Architects often face a situation in which they have to se-
lect a third-party component. They need to consider the de-
sired functional requirements as well as project-specific and
institutional principles governing local development prac-
tices and styles. In other words, we need to consider risks
arising from mismatches between existing team habits and
newly adapted third-party preferences. Therefore, before a
final decision is made, architects should inspect past or on-
going projects and compare the responsibility distribution
profiles (captured in the respective Gini coefficients). This
method focuses on fitness rather than prescriptive rules to

proactively avert emerging development risks. NAnt pro-
vides a vivid example of what can happen if incompatible
profiles are mixed. The integration of NAntContrib into
the code base of NAnt in version 0.8.3-rc1 (i.e., release
10) caused a serious disruption in the Gini coefficient for
Weighted Method Count as shown in Figure 6 as well as
other measures.

Figure 7. TCC for ProGuard.

The true benefit of the Gini coefficient is its ability to
precisely capture and summarize changes in both the degree
of concentration and the population size. When analyzing
metrics data, crucial aspects to consider are the width of dis-
tribution and its underlying dispersion [17]. Standard aver-
age measures like median are blind for this dimension. A
system that strikingly demonstrates the problem with stan-
dard averages is ProGuard (see Figure 7). The median for
Type Construction Count, for example, stays firm at 1 for
340 weeks of development, suggesting a fairly routine evo-
lution of the code base over a period of 6.5 years. The Gini
coefficient for Type Construction Count, on the other hand,



moves from 0.776 to 0.897 indicating that the arrival of new
classes results in a less equitable concentration of object in-
stantiations. In case of ProGuard, the changes to the sys-
tem occur at the upper end of the Type Construction Count
measure. While the median for Type Construction Count
remains the same, the changing Gini coefficient reflects cor-
rectly the occurrence of a dramatic architectural shift.

4.3 Detecting Machine-generated Code

In our study we noticed that certain systems consis-
tently exhibited Weighted Method Count Gini values above
0.85. An investigation into those unusually high values
revealed the presence of machine-generated code, specif-
ically parsers and expression processors. It turns out that
machine-generated code structures have unique distribution
profiles, whose Gini coefficients move very close to 1 (see
Figure 8 showing the Weighted Method Count Gini profile
for JabRef). Code generators often employ greedy strate-
gies to map a given specification to target code. Therefore,
generated code exhibits a much higher structural and algo-
rithmic density. As noted earlier, human developers rarely
write code in which Gini coefficients for specific measures
go past 0.80. But if they do, their code is very similar that
produced by a corresponding code generator.

Figure 8. WMC Gini profile for JabRef.

In a large J2EE commercial system that we investigated
as a part of our experiments we encountered a number of
different measures, whose Gini coefficients were well above
0.95. Upon closer investigation, we found that this phe-
nomenon was caused by a substantial number of machine-
generated stub-classes that did not contain any functional-
ity.1 In essence, this large number of “poor” classes made
those that actually possessed functionality look unusually
rich. As a simple solution to compensate for this distortion,
we eliminated all 0-valued data points from the underlying
raw measures, a technique, that made the Gini measures re-
turn to their typical ranges.

1No open-source Java system showed similar behavior.

Knowing that Gini coefficients have strong boundaries
can be used as an effective and qualitative detection method
for identifying machine-generated code. Our method of de-
tecting machine-generated code has already been tested in
commercial code audits aimed at assessing viable strategies
for a repositioning of an existing product. The presence of
machine-generated code signals the possible need for addi-
tional expertise in order to maintain or enhance an existing
code base and to meet strategic objectives.

5. Conclusion

Software metrics are known to exhibit erratic and skewed
distributions. As a consequence it can be hard to draw
sensible conclusions when comparing metrics of different
projects, or even of a single project as it evolves over time.
We have proposed to use a higher-order statistic, known as
the Gini coefficient, to exploit this commonly observed phe-
nomenon, and to study software metrics the same way that
economists study the distribution of wealth. We have stud-
ied a large number of open-source software systems and
compared their metric values using the Gini coefficient.

Much to our surprise, developers prefer to organize their
solutions around a fairly limited set of design options as
indicated by our analysis. The Gini coefficient for all met-
rics hover over a very tightly-bounded value space. This
fact gives rise to the speculation that developer decisions
are driven by some form of cognitive preference that makes
developers choose solutions with certain typical profiles. As
a consequence, the perceived practical design options occur
in a narrow and, hence, predictable design space.

What are the reasons for this observed phenomenon? We
do not have a direct answer yet, but it appears that there
exists a comfort range for programmers similar to the ideal
temperature for an organism. This comfort range is domain-
independent (the Gini coefficients across all analyzed sys-
tems fall within a tightly-bounded range) and language-
neutral (Java or C# do not, in any way, limit developers to
choose between design alternatives or forces them to con-
struct software with typical distribution profiles).

Another interesting facet surfaced in all studied systems
are God-like classes that shoulder most of the work. Devel-
opers are not afraid to construct, maintain, and evolve very
complex abstractions. Contrary to common belief develop-
ers can actually manage complexity in real projects, but at
what price? Classical software engineering shies away from
tighly arranged and centralized abstractions. However, we
find that it is well within the developers’s mental capacity to
organize and control the structure of software. Furthermore,
our analysis suggests that there has to exist a certain degree
of inequality, which defines the equilibrium that drives sus-
tainable software evolution.
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