Query Technologies and Applications for Program Comprehension

In Proceedings of ICPC 2008, pp. 285-288

Mathieu Verbaere Michael W. Godfrey Tudor Girba
Semmle Limited University of Waterloo University of Berne
United Kingdom Canada Switzerland
Abstract For queries to be effective, we need to integrate them

Industrial software systems are large and complex, both
in terms of the software entities and their relationships.
Consequently, understanding how a software system works
requires the ability to pose queries over the design-level en-
tities of the system. Traditionally, this task has been sup-
ported by simple tools (e.g., grep) combined with the pro-
grammer’s intuition and experience. Recently, however,
specialized code query technologies have matured to the
point where they can be used in industrial situations, pro-
viding more intelligent, timely, and efficient responses to de-
veloper queries.

This working session aims to explore the state of the art
in code query technologies, and discover new ways in which
these technologies may be useful in program comprehen-
sion. The session brings together researchers and prac-
titioners. We survey existing techniques and applications,
trying to understand the strengths and weaknesses of the
various approaches, and sketch out new frontiers that hold
promise.

1 Introduction

Understanding source code is vital to many tasks in soft-
ware engineering. Developers need to understand the sys-
tem they work on in order to improve quality, enhance
functionality, and re-engineer for new deployment environ-
ments. Querying tools are designed to help developers com-
prehend the varied and complex relationships within their
codebase. They enable the interactive exploration of a sys-
tem and the definition of custom views.

Recently, the use of code queries has spread to other
tasks, e.g., for detecting architectural flaws, identifying
refactoring opportunities, locating project-specific bugs,
finding crosscutting concerns. Queries may also be used
in a diagnostic role, such as for monitoring development
progress, assessing design quality, tracking unwanted de-
pendencies, and gathering quality metrics on every build.

with the rest of software engineering tools. At the very least,
query results must be presented to the developer. One direc-
tion is to provide visualization techniques that correlate the
results of the queries with the overall structure of the code-
base under study. Another option is to take query results as
input for further queries and analyses.

This short paper is a brief introduction to code queries
and their applications. First, we describe the use of queries
in two major areas of software engineering: quality assur-
ance and reengineering. Then, we highlight the important
role of queries in software visualization, and present differ-
ent code query technologies. Finally, we discuss some chal-
lenges around code queries to foster the initial discussion of
the session.

2 Queries for quality assurance

Software quality can be assessed and improved by com-
puting metrics, finding common bugs, checking style rules
and enforcing coding conventions that are specific to an
APL

A wealth of different metrics have been proposed to de-
tect design flaws [20]. Metrics values are usually presented
in isolation or grouped to measure a particular design as-
pect, but design problems are difficult to spot from a large
set of abnormal values. By allowing metrics results to be
filtered and tuned to the specificities of a system, queries
can help developers and architects pin down the real cause
of design flaws [23].

More and more development teams now run static pro-
gram analyzers on a daily basis to check for common bugs.
When expressed as queries, these checks can easily be tuned
per project to reduce the number of false positives. Perhaps
where the greatest benefit lies, however, is in framework-
specific checks. Indeed, modern systems rely on an ever
growing number of frameworks. Queries allow the expres-
sion of concise, executable rules that client code of an API
must follow [5].



Naturally, quality checks can be performed on different
versions of the same system, to monitor its development.
Queries are helpful for that purpose too. In particular, they
can be used to check that no design inconsistencies are in-
troduced during the evolution of a system [24].

3 Queries for reengineering

Not only can queries detect violations of certain design
principles, but they also play an important role in driving de-
velopment and performing design recovery. The canonical
use of querying for such tasks involves several steps. First,
the source code is run through a fact extractor, which creates
a somewhat higher level model of the source code entities
and their interdependencies than the code itself. Entities are
commonly at the level of files, classes, functions/methods,
global and instance variables, while relationships include
file inclusion, calls, variable set/reference, and instantiation.

Once these models have been created, queries can be
run to infer other relationships, check for design violations,
and create higher level (package, subsystem) entities whose
properties are based on those of their contained elements.
For example, one might wish to know if there are any calls
from subsystem A to B that do not go through module M
(the intended interface for the subsystem). Or one might
assign classes to subsystems and then verify that the sub-
systems form a layered architecture with no calls between
modules that violate the layering.

The Grok query language has been used together with
other tools such as fact extractors, for both reverse engi-
neering of designs from code as well as for ensuring that
architectural rules are enforced by developers [11].

A main concern in reengineering is to bridge the gap
between models and source code. Reflexion models ad-
dress exactly that issue by defining a mapping between the
two [18, 27]. There again, mappings can be declared and
checked with code queries.

4 Queries and visualization

Typically, we need to relate the results of a query to the
context in which they live. Thus, visualization can comple-
ment queries in at least two ways:

e By locating the results in the overall system. For ex-
ample, Seesoft is a tool for visualizing line oriented
software information for several files [9]. Such a vi-
sualization offers a map of the whole system on which
we can highlight the results of queries.

e By providing details about the results so that further
analyses can be more efficient. For example, Code-
Crawler [19] implements the concept of polymetric

views to map metrics and design flaws on source code
visualizations [20].

Other tools have been proposed to deal with the above
issues. Rigi uses a graph metaphor for displaying software
systems [26]. SHriMP provides an interactive environment
in which the engineer can navigate the system [32]. NDe-
pend highlights the results of queries on treemaps [28].

Visualization transforms the system models into graph-
ical models, which are typically graphs. G*° provides a
simple interface for specifying the mapping to visualiza-
tion [10]. Mondrian also offers an engine for scripting such
transformations [25]. These approaches aim at reducing the
cost of building custom visualization, and as such they can
be used for showing the results of custom queries.

5 Query technologies

There are many different approaches to querying source
code. Perhaps the most natural solution is to store the pro-
gram in a database. One of the earliest proposals of this
kind was Linton’s Omega system [21]; queries were formu-
lated in the Ingres query language QUEL. In the same vein,
the C Information Abstraction system [3] showed how to
store the code structure of a system into a database for gen-
erating graphical views, extracting subsystems, and elimi-
nating dead code. These systems have had quite an impact
on industrial practice, as numerous companies now use a
database system as a code repository, e.g. [2, 31]. Another
natural possibility, given the tree structure of source code,
is to employ an XML representation of the source code. In
Sextant [7] for instance, software engineering tasks are ex-
pressed with XQuery. Of course, the clear advantage of
XQuery and SQL is that they are already familiar to most
programmers. Both languages, however, are quite verbose
and less declarative for expressing recursive queries on the
complex graph representation of a program. A typical ex-
ample of such recursive queries is to search, while cleaning
up a piece of legacy software, for methods that are never
called directly or indirectly from main methods.

Logic programming languages are much better suited for
those tasks. The XL C++ Browser [15] was one of the first
to promote Prolog for expressing typical queries over source
code. More recently, logic programming in the tradition of
Prolog has inspired tools like Soul [24], JQuery [13] and
JTransformer [17]. Yet, the learning curve of Prolog is quite
long and complex queries are also often verbose.

In many systems therefore, a deliberate choice was
made to simplify the set of expressible recursive queries.
GraphLog [4] is a query language with just enough power
to express paths queries on graphs. GReQL [6] is another
graph query language, but with a syntax close to SQL. Fur-
ther examples of domain-specific languages for code search



are the program query language PQL [14] or pattern-based
languages as enabled by SCRUPLE [29]. A few other sys-
tems went the neat route of relational algebra, e.g. Grok
[11], CrocoPat [1] and RScript [16]. Perhaps the princi-
pal benefit of those systems is in efficient algorithms for
implementing and optimizing relational operations — for
instance, CrocoPat uses BDDs to compactly represent huge
relations. Those systems, however, are usually not restricted
to declarative queries; most of them embed imperative con-
structs to allow the extraction and manipulation of facts.
Interestingly, there is a language that is purely declara-
tive, rule-based like Prolog, and that can be executed us-
ing relational algebra. That is Datalog, a query language
originally put forward in the context of deductive databases.
Datalog has been proposed at various occasions for analyz-
ing source code, e.g. [4, 30]. It has a simple semantics
and can be executed efficiently on top of a traditional rela-
tional database. This is the technique used in SemmleCode
[31] where queries are written in .QL [5], an object-oriented
query language with a syntax familiar to SQL and OO de-
velopers. For their execution, .QL queries are translated to a
variant of Datalog, optimized and further compiled to SQL.

6 Open questions and challenges

Although code queries have been long and well stud-
ied (our brief survey above is far from being exhaustive),
there still remain open questions and ongoing research chal-
lenges. We state here a few problems which we believe de-
serve clearer answers.

Heterogeneous models It appears now that there is no
silver-bullet model for all applications in program compre-
hension. The finer a model is, the more interesting queries
can be run, but the more complex it is to express such code
queries. One challenge is to come up with a model that
matches the mental representation that people make of a
program. How do we address the fact that such mental rep-
resentation naturally varies with the skills of the program-
mer and with the nature of the tasks? In addition, modern
software systems are now composed from pieces of code
written in a variety of programming languages, ranging
from dynamic languages to statically-typed OO languages
and the embedding of domain-specific constructs. What are
the best ways to support queries that transcend language
barriers?

Pattern-based vs general-purpose languages Typically,
code query languages fall into one of two very different cat-
egories: pattern-based languages for querying code written
in a specific object language and general-purpose languages
for querying any kind of source code artifact. The former

approach enables queries in concrete syntax, which clearly
facilitates the adoption of queries (at least for simple tasks).
On the other hand, general-purpose query languages seem
to scale to more complex problems. What are the best ways
of adding elements of concrete syntax to a general-purpose
query language?

Mixing implementation strategies Here again, certain
implementation strategies are better suited to certain con-
texts and tasks. For instance, using a database is crucial
when querying very large systems, but slightly better perfor-
mance can be achieved on medium-sized projects by fitting
the whole codebase in memory. Another example is when
querying for the transitive closure of a large call graph. The
resulting relation is often too huge to be materialized on
disk in reasonable time, whereas it could be compressed in
a BDD as in [1]. Although query languages like PQL [14]
and .QL [5] were designed so as to separate the language
from its implementation details, there has been little work
so far on mixing different evaluation strategies.

IDE integration The trend is now to integrate querying
tools into IDEs, e.g. [13, 7, 17, 31]. Queries are run in an
interactive setting where the codebase changes frequently.
To illustrate, one may run a query to spot a refactoring op-
portunity, apply the refactoring, run another query, and so
on. Also, lightweight static checks should be performed
after each change, however minor it is. These querying sce-
narios present two challenges. First, the model representing
the codebase has to be synchronized with the source code.
Second, queries need to be rerun quickly and seamlessly,
i.e. incrementally as in [8].

Code queries for other tasks Code queries have been
proposed to navigate and visualize software systems. They
have been used for the flexible definitions of code metrics,
e.g. [23, 5]. They can also express complex custom code
analyses to enforce project-specific design choice and cod-
ing conventions. We believe, however, that we have only
scratched the surface of potential applications. For instance,
code queries have been proposed to discover and document
cross-cutting concerns [22]. It would be interesting to ex-
ploit further code queries as lightweight contract definitions
to enforce documentation.

Querying all development artifacts Queries should not
be limited to source code, but run on all other development
artifacts: bug reports, version histories, documentation. Ex-
citing work on mining software archives has shown how
queries in such a broader context often reveal hidden but
crucial information about the past, present and future of a
project and its development team [12]. Surely, this work



shall benefit from more accurate, more semantic queries
that code querying tools enable.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

D. Beyer. Relational programming with crocopat. In Pro-
ceedings of the 28th international conference on Software
engineering (ICSE), pages 807-810. ACM, 2006.

Cast. Company website at: http://www.castsoftware.
com.

Y. Chen, M. Nishimoto, and C. V. Ramamoorthy. The C
information abstraction system. [EEE Transactions on Soft-
ware Engineering, 16(3):325-334, 1990.

M. Consens, A. Mendelzon, and A. Ryman. Visualizing and
querying software structures. In Proceedings of the 14th
international conference on Software engineering (ICSE),
pages 138-156, 1992.

0. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ek-
man, N. Ongkingco, D. Sereni, and J. Tibble. .QL for source
code analysis. In Source Code Analysis and Manipulation
(SCAM), 2007.

J. Ebert, B. Kullbach, and A. Winter. Querying as an en-
abling technology in software reengineering. In Proceedings
of the Third European Conference on Software Maintenance
and Reengineering (CSMR), page 42. IEEE Computer Soci-
ety, 1999.

M. Eichberg, M. Haupt, M. Mezini, and T. Schéfer. Compre-
hensive software understanding with Sextant. In Proceed-
ings of the 21st IEEE International Conference on Software
Maintenance (ICSM), pages 315-324, 2005.

M. Eichberg, M. Kahl, D. Saha, M. Mezini, and K. Oster-
mann. Automatic incrementalization of prolog based static
analyses. In Proceedings of the 9th International Symposium
on Practical Aspects of Declarative Languages (PADL),
pages 109-123, 2007.

S. G. Eick, J. L. Steffen, and E. E. Sumner. SeeSoft—a tool
for visualizing line oriented software statistics. IEEE Trans-
actions on Software Engineering, 18(11):957-968, Nov.
1992.

J.-M. Favre. Gsee: a generic software exploration environ-
ment. In Proceedings of the 9th International Workshop on
Program Comprehension, pages 233-244. IEEE, May 2001.
P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogian-
nis, H. Mller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564-593, 1997.

A. E. Hassan, A. Mockus, R. C. Holt, and P. M. Johnson.
Guest editor’s introduction: Special issue on mining soft-
ware repositories. IEEE Transactions on Software Engineer-
ing, 31(6):426-428, 2005.

D. Janzen and K. de Volder. Navigating and querying
code without getting lost. In 2nd International Conference
on Aspect-Oriented Software Development (AOSD), pages
178-187, 2003.

S. Jarzabek. Design of flexible static program analyzers
with PQL. [EEE Transactions on Software Engineering,
24(3):197-215, 1998.

[15]

(16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

S. Javey, K. Mitsui, H. Nakamura, T. Ohira, K. Yasuda,
K. Kuse, T. Kamimura, and R. Helm. Architecture of the
XL C++ browser. In Proceedings of the 1992 conference of
the Centre for Advanced Studies on Collaborative research
(CASCON), pages 369-379, 1992.

P. Klint. A tutorial introduction to RScript. Centrum voor
Wiskunde en Informatica, draft, 2005.

G. Kniesel, J. Hannemann, and T. Rho. A comparison of
logic-based infrastructures for concern detection and extrac-
tion. In Proceedings of the 3rd workshop on Linking aspect
technology and evolution (LATE), page 6. ACM, 2007.

R. Koschke and D. Simon. Hierarchical reflexion models. In
Proceedings of the 10th Working Conference on Reverse En-
gineering (WCRE), page 36. IEEE Computer Society, 2003.
M. Lanza and S. Ducasse. CodeCrawler—an extensible
and language independent 2d and 3d software visualization
tool. In Tools for Software Maintenance and Reengineering,
RCOST / Software Technology Series, pages 74—-94. Franco
Angeli, Milano, 2005.

M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

M. A. Linton. Implementing relational views of programs.
In P. B. Henderson, editor, Software Development Environ-
ments (SDE), pages 132-140, 1984.

M. Marin, L. Moonen, and A. van Deursen. SoQueT: Query-
based documentation of crosscutting concerns. In Proceed-
ings of the 29th international conference on Software en-
gineering (ICSE), pages 758-761. IEEE Computer Society,
2007.

R. Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In 20th IEEE International Con-
ference on Software Maintenance (ICSM), pages 350-359.
IEEE Computer Society Press, 2004.

K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving
code and design with intensional views — a case study.
Journal of Computer Languages, Systems and Structures,
32(2):140-156, 2006.

M. Meyer, T. Girba, and M. Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on Software
Visualization (SoftVis), pages 135-144. ACM Press, 2006.
H. A. Miiller and K. Klashinsky. Rigi — a system for
programming-in-the-large. In Proceedings of the 10th inter-
national conference on Software engineering (ICSE), pages
80-86. IEEE Computer Society Press, 1988.

G. Murphy, D. Notkin, and K. Sullivan. Software reflex-
ion models: Bridging the gap between source and high-level
models. In Proceedings of the 3rd ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, pages 18—
28. ACM Press, 1995.

NDepend. Company website at: http://www.ndepend.
com.

S. Paul and A. Prakash. A framework for source code
search using program patterns. IEEE Trans. Softw. Eng.,
20(6):463-475, 1994.

T. W. Reps. Demand interprocedural program analysis using
logic databases. In Workshop on Programming with Logic
Databases (ILPS), pages 163—-196, 1993.

Semmle Limited. Company website at: http://semmle.
com.



[32] M.-A. D. Storey and H. A. Miiller. Manipulating and doc-
umenting software structures using SHriMP Views. In Pro-
ceedings of the International Conference on Software Main-
tenance (ICSM), pages 275-284. IEEE Computer Society
Press, 1995.



