
Runtime Class Updates using Modification Models

Toon Verwaest Niko Schwarz Erwann Wernli
Software Composition Group, University of Bern, Switzerland

http://scg.unibe.ch/

ABSTRACT
Dynamic updates in object-oriented languages require high-
level changes to be translated to low-level changes. For ex-
ample, removing an unused instance variable from a class
may shift the indices of other instance variables. The shift
needs to be translated to a change of the bytecodes access-
ing these instance variables. Current languages do not offer
a bridge between the two levels of abstraction. We outline
such a model, and demonstrate its usefulness by discussing
a prototype implementation in Pharo Smalltalk. In addition
to simplifying the implementation of dynamic updates, our
model enables easy experiments in modifying the language
semantics.

1. INTRODUCTION
Dynamically updating software, e.g., for developing and de-
bugging the system without restarting it, has long been com-
mon practice in dynamic object-oriented languages such as
JavaScript, Ruby, Smalltalk, etc. Despite their popularity
and long history, dynamic software updates remain chal-
lenging. Changes such as removing and adding an instance
variable can be challenging because it is unclear what should
happen to the instances of the changed class. Changing the
ordering of instance variables can be challenging, because
while the semantics are clear, a possibly large number of
methods is affected. In both cases, a high-level, structural
change entails a number of changes on a much lower level.

From the point of view of a programmer of an object-oriented
programming language, objects are instances of classes. Those
classes are subclasses of other classes and so on. From the
point of view of a language implementor, objects are merely
strips of raw memory with a known structure. This distinc-
tion is fine so long as developers stay within their own camp.
However, one cannot always stay on one’s side of the fence.
For example, compilers implemented in the language they

compile1, require knowledge of the looks of those raw strips
of memory, despite being written in a language that ab-
stracts away from those details.

We propose abstractions that bridge from the high-level
structure to the low-level details. We reify both the high and
low level abstractions in the programming language. Then,
we show how these abstractions can ease previously messy
tasks, such as dealing with structural changes, and imple-
menting appropriate responses to those changes. As a case
study we discuss how layout objects simplify dealing with
structural changes to classes in Pharo Smalltalk.

At the high level, we propose abstractions that reify the
structure of objects and their modifications. We propose ex-
plicit layout objects that capture the semantics of a strip
of raw memory of an object, and explicit slot objects that
capture the semantics of fields. Modifications to the layout
are captured in a class modification model and refined into
two field modification models, a method modification model
and an instance modification model.

Our abstractions can be used as a foundation to support
more elaborate forms of run-time changes. We sketch how it
would facilitate scoping changes to support side-by-side de-
ployment of multiple versions of an application—as Change-
boxes allow [4]. We sketch how our model can facilitate the
implementation of different approaches to dynamic software
updating.

This paper is structured as follows: in Section 2 we explain
the necessity of higher-level abstractions for lower-level de-
tails, describe the modification model and the rationale be-
hind its design; in Section 3 we show how the modification
model is used to dynamically update the system and we dis-
cuss alternative update strategies that would be simplified
if implemented on top of our model; in Section 4 we discuss
the relevant literature and we conclude in Section 5.

2. MODIFICATION MODEL
In this section, we show how our model captures the struc-
ture of instances as well as changes to their structure. That
includes cascading changes. For example, when an instance
variable is added to a class, this may change the index of
fields in subclasses, requiring the modification of many meth-
ods that access the instance variable.

1This is common case, as Abel and Sussman assert [1, Sec-
tion 4.1].

1

http://scg.unibe.ch/


2.1 Object structure
The structure of objects is represented using two main ab-
stractions, layouts and slots. We use them to construct a
modification model that simplifies dealing with structural
changes caused by changes to their classes.

Layouts. Layouts mediate between the instance formats
used by the VM and the high-level language tools. Since
in class-based languages the format of an object is dictated
by its class, the layout metaobject is stored as a class vari-
able. To avoid runtime performance overhead the instance
format required by the VM is provided by the metaobjects
but cached directly in the class.

VMs often support a multitude of instance formats. We call
the layouts that correspond to these instance formats prim-
itive layouts, other layouts are custom layouts. Since our
prototype runs on Smalltalk, we have primitive layouts for
integer, byte, word, pointer, variable pointer, weak pointer
and compiled method. Metaclasses in Smalltalk are required
to have instance variables (at least for the superclass link
and the methodDictionary) so they correspond to pointer
layouts. Primitive layouts are the ones that are already pro-
vided by the language. Custom layouts can be specified by
the user, and then immediately become part of the language.

Slots. Slots are links between instance variables and the
tokens that refer to them in the source code. As such, slots
know the field index of an instance variable. Slots are stored
in the layout of the class that declares them. Layouts holding
slots point to the layout of the superclass since they inherit
the slots of the superclass. This makes the layout reference
graph parallel to the class hierarchy.

We modified the compiler so that it delegates the handling
of instance variable accesses to the slots that generate the
low-level code for instance variable access. By letting the slot
object interact with the compiler we gain the following. (1)
The slots are in charge of the semantics of a instance vari-
able access. (2) We avoid performance overhead at runtime,
because we inline the access code at compile time. There-
fore, the resulting code, compiled using slots, is exactly as
fast as the code compiled without slots.

Layouts and slots are the mediators between the low-level
VM details and the high-level concepts in programming lan-
guages and other tools that need to interact with the VM.
By separating the reified view of the structure of instances
from the VM-level view, the language is no longer restricted
to using the primitive layouts and slots directly supported
by the VM. Custom layouts can be constructed having mod-
ified object layouts and access semantics and thus enrich the
semantics of the language without modifying the VM. They
also allow us to easily find which high-level constructs are
related to low-level instance formats and field accesses. Now
that we have these abstractions, we rely on them throughout
the rest of the paper without going back to the VM-level.

Class modification

Class modification 
propagation

*

1 origin

propagations

*

1

Slot

additions
removals

modifications
copies

Layout

computes refined into

AddedField

ModifiedField

RemovedField

UnmodifiedField

1
parent

*

*

1

Slot

Figure 1: Main classes in the modification model and
how they relate to the other abstractions

2.2 Modification model
Modification models capture changes to layouts and simplify
the propagation of these changes to other impacted elements
of the system. Figure 1 shows the main classes of the mod-
ification model and how they relate to layouts and slots.
Following the previously argued necessity to split between
high-level and low-level details, our model is comprised of
class modifications (high-level) that can be refined into field
modifications (low-level).

Class modification. A class modification captures the struc-
tural changes to a class at the slot level. A class modification
is computed out of two versions of a class layout and contains
separate lists of slots that have been added, removed, modi-
fied, and left untouched. Modifications to a class can impact
its subclasses. As a consequence, a class modification can
have so-called class modification propagations, which model
changes performed to subclasses. Class modification prop-
agations are themselves regular class modifications, and as
such may have their own class modification propagations.
Thus, recursively, every subclass can have its own class mod-
ification propagation.

Low-level modifications. Modifications to a high-level class
have an impact on the related low-level structures. There are
two modification models that transform the high-level model
into concrete low-level modifications models, the method mod-
ification model and the instance modification model. Both
models list for every field, whether it was added, removed,
or shifted to a new position.

The instance modification model maps new positions onto
old ones to initialize new instances from old ones.

The method modification model maps old positions to new
ones to change accesses to field positions. In case the user has
not provided custom slots or layouts, the system-provided
slots act as follows. (1) If a field was shifted, all accesses
to those fields are modified accordingly. (2) If a field was
removed, all accesses to that field are replaced by a special
native code sequence that the compiler does not otherwise
create, to mark an illegal field access. If it is executed, it

2



displays an error message to the user.

3. SOFTWARE UPDATE
The specified modifications are carried out by informing the
rest of the system of the change, and by applying the trans-
formations in the instance and method modification model.
In our approach, the responsibility to carry out the modi-
fications lies with two main components: the class builder
and the class installer.

Class Builder. The class builder is responsible for the struc-
tural part of modifying a class or creating a new class. It
relies on the installer to fetch the old version of the class.
It then uses the class modification model to compute the
method modification and instance modification models. It
then validates if these changes are semantically sound.

Class Installer. Once the class builder has correctly built
and validated a modification model, the class installer is
responsible for transactionally installing the change into the
system. The class installer is the interface between the class
building process and the rest of the live system.2 It knows
which subsystems to notify of changes, how to migrate live
instances, and how to update existing methods. This allows
different installers to implement different strategies to deal
with the update of impacted method code, and with the
migration of the instances of the impacted classes.

Let us describe how we reimplemented the default Pharo
class installer using our model. We then sketch how more
elaborate strategies could be implemented to support other
forms of dynamic updates.

3.1 Pharo Class Installer
When a class is structurally changed in Pharo, the Pharo
class installer migrates all instances and updates the meth-
ods of the class and its subclasses to reflect the structural
change. It does not, however, update any running threads
that might be affected by the change. This installer is greatly
simplified by relying on our model since almost all the be-
havior is already captured by our generic class builder and
class installer.

This specific installer first updates all methods of the old
versions of the classes to adapt to the new versions of the
classes. It relies on a method field updater to apply the
changes using the method modification model. The method
field updater decompiles3 the bytecodes of the methods to
a slightly higher-level IR (intermediate representation), up-
dates the field accesses and compiles the IR back to byte-
code. This saves a complete trip through all the phases of
the compilation process, including parsing.

2Note that our model does not include a mechanism for
migrating already running threads to the new version of the
classes. This is the responsibility of more complex dynamic
software update mechanisms that rely on our model—which
are yet to be implemented.
3We built the decompiler for this paper, and made it avail-
able as part of the OPAL compiler package. http://www.
squeaksource.com/OpalCompiler.html

engine
aCarV1

engine
aCarV2

anEngineV1 anEngineV2

Figure 2: The state in the two versions of the object
is synchronized in a way to provide the illusion that
only one object exists.

During this process the field accesses occurring in the IR are
linked back to the field modification models. These modifi-
cation models know which slots are related to the particular
field. There may be at most one slot of each the old version
and the new version. This allows the slots to coordinate the
updating of field accesses.

The installer then migrates live instances by creating new
instances of the new versions of the modified classes from
the existing instances. The installer implements instance mi-
gration by relying on instance modification models. After
migrating the instances, it migrates the old versions of the
classes to the new versions. Both instance migration and
class migration happen in one single stop-the-world transac-
tion.

3.2 Other installation strategies
Let us outline how, once our design is in place, other instal-
lation strategies can be installed in order to conduct exper-
iments with modifying the semantics of the language.

Side-by-side deployment. Simultaneously running several
versions of a module, service, or application in the same
host is usually a complicated matter since programming
languages lack dedicated mechanisms to scope changes [12]
(even though they occasionally offer ways to muddle through,
as is the case with the Java class loader [8]). ChangeBoxes
[4], an approach that supports side by side deployment of
applications in Smalltalk with first-class changes, required
invasive changes in the system to intercept changes to classes
and scope their visibility. In our model, the installer would
be a natural fit for most of the adaptations. Rather than
discarding the old class after a change, it could be modi-
fied to let different versions co-exist, and migrate the object
instances accordingly.

Passive partitioning. Passive partitioning is an update strat-
egy that lets existing threads run to termination with the
old version of the system, while new threads use the newly
updated code and data structures [9]. In previous work,
we have explored such an approach using an experimental
Smalltalk research platform for which we adapted the inter-
preter [6]. The challenge when old and new code co-exists,
is to make sure that accesses to shared objects whose struc-
ture has changed is safe—we want for instance to prevent

3

http://www.squeaksource.com/OpalCompiler.html
http://www.squeaksource.com/OpalCompiler.html


that an old version of a method attempts to access a field
that has been removed or shifted. To do so, the system keeps
the old and new versions of the shared objects and synchro-
nizes them when necessary. Two (or more) instances need to
then transparently behave as one. This is similar to known
problems that arise when using transparent wrappers and
proxies [15]. In passive partitioning, unlike in generic prox-
ies or wrappers, each object instance is local to exactly one
thread. The state can be synchronized transparently upon
field writes so as to keep the two representations consistent
and restore the illusion of a single object. Figure 2 depicts
such a situation where objects aCarV1 and aCarV2 are con-
ceptually one single object. The same holds for anEngineV1

and anEngineV2. When anEngineV2 is written into the field
engine of aCarV2, the system synchronizes the other repre-
sentation accordingly and writes anEngineV1 into the field
engine of aCarV1. More complex synchronizations that ad-
dress evolutions such as refactoring can also be supported.
The design proposed in this paper would make an imple-
mentation of this approach in vanilla Smalltalk easy, as it
exposes the necessary hooks in a convenient way: (1) slots
could be extended to “weave” the necessary synchronization
code during compilation4 (2) the instance migration can be
adapted to not discard the old version of an object after it
has been migrated, but let the two versions co-exist. This
is the strategy for side-by-side deployment pushed one step
further: multiple software versions are not fully isolated any
longer, and can also share objects.

3.3 Discussion
The original Pharo class builder takes a naive approach to
updating bytecodes to a changed class structure: it recom-
piles all methods of the class. We replaced the original Pharo
class builder by our own class builder. Our class builder
makes use of the method modification model. This allowed
us to experiment with language changes, and let us estimate
the increase in code size that using method modification
models entails.

The overall code size of our replacement of the class builder,
including all models, is 2109 lines of code. Out of this, 1194
lines of code form the new class builder5. The size of the
original Pharo class builder6 is 1092 lines of code. Thus, the
amount of code increased by a factor of 1.9, for the whole
model, and for the mere class building, by a factor of 1.1.

The increase in complexity is compensated by a significant
gain in flexibility. It also buys a significant performance gain
in recompiling classes. The process of 10 times adding and
immediately removing again an instance variable to a class
with 14 subclasses was sped up from 31.2 to 4.6 seconds7,

4This step possibly requires adaptions of the run-time stacks
as method size might increase after the synchronization has
been woven in. Since stacks are first-class entities in Small-
talk, this can be done easily.
5In build 229 of our system on Squeaksource, http://www.
squeaksource.com/PlayOut.html
6As ships in version 1.2.1 final of Pharo Smalltalk, http:
//www.pharo-project.org/.
7All measurements were performed on a 2011 MacBook
pro at 2.3 GHz. We used the Cog virtual machine, build
VM.r2378. The transformed class is RBProgramNode, as
contained in Pharo 1.2.1 final.

leading to a speedup by factor 6.8. On a class with no sub-
classes, nor any installed methods, the same procedure took
1.2 seconds on both the default Pharo class builder and in
our system. We conclude that our implementation combines
higher flexibility and a clearer design with performance that
is at worst as fast, and at times 6.8 times faster than the
naive implementation.

4. RELATED WORK
Techniques to dynamically update production systems have
been the subject of intensive research [19, 7, 9]. The empha-
sis in this case is on ensuring program correctness before and
after the roll-out of the update, which requires well-timed
migration of data [18]. Works in the field of dynamic updates
focus on what constraints the migration should comply to
and low-level implementation details, and not on the design
of consistent and extensible language mechanisms to bet-
ter support changes at run-time [12]. The problem of evolv-
ing object instances (sometimes called long-lived objects, or
persistent objects) has been studied in the object-oriented
database community [2, 14].

Change oriented development [17, 11, 5] aims at tracking and
enabling changes in software with fine-grained change mod-
els. The goal of these models is to provide better insights
in the nature of software development and provide better
user experiences in IDEs. Our goal is different and we aim
at supporting dynamic evolution with a modification model
that abstracts low-level details and provides higher-level ab-
stractions that can be extended. Penn et al. [14] provide a
classification of all possible software changes. Our prototype
supports all changes they list.

Dynamic software update is a cross-disciplinary research
topic that covers software-engineering, programming lan-
guage design, and operating systems [9, 13, 19, 18, 7, 3,
10]. The challenge to provide developers with a simple pro-
gramming model that is practical—safe, efficient, and that
allows developers to easily specify the necessary custom mi-
gration logic—is still open. Reflection has traditionally been
used to provide means for run-time adaptations [16]. It is
however orthogonal to safety, and it is then also a challenge
to extend the reflective architecture so as to support safe
dynamic updates.

5. CONCLUSIONS
Higher-level abstractions over VM level details are advanta-
geous to language experiments, and overall system design.
These abstractions should (1) abstract away from low-level
details at the level of the virtual machines, and (2) capture
changes to classes in a fine-grained manner. We proposed
object layouts and slots as explicit higher-level abstractions
to be used instead of implicit knowledge in the codebase.
We proposed a modification model that captures changes to
layouts and slots. We demonstrated the benefits of our de-
sign with a concrete implementation in Pharo Smalltalk. We
show how at a moderate increase in code size (by factor 1.9),
we gained flexibility for language experiments and sped up
class reshaping by a factor of up to 6.8. We have sketched
how one could build a dynamic update system on top of
our model that could implement passive partitioning—old
threads run old code, new threads run new code—of the

4

http://www.squeaksource.com/PlayOut.html
http://www.squeaksource.com/PlayOut.html
http://www.pharo-project.org/
http://www.pharo-project.org/


impacted entities; such an update scheme is safer than the
regular update mechanism.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Synchronizing
Models and Code” (SNF Project No. 200020-131827, Oct.
2010 - Sept. 2012).

6. REFERENCES
[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure

and interpretation of computer programs. MIT
electrical engineering and computer science series.
McGraw-Hill, 1991.

[2] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and
S. Richman. Lazy modular upgrades in persistent
object stores. SIGPLAN Not., 38(11):403–417, 2003.

[3] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew.
Polus: A powerful live updating system. In ICSE ’07:
Proceedings of the 29th international conference on
Software Engineering, pages 271–281, Washington,
DC, USA, 2007. IEEE Computer Society.

[4] M. Denker, T. Gı̂rba, A. Lienhard, O. Nierstrasz,
L. Renggli, and P. Zumkehr. Encapsulating and
exploiting change with Changeboxes. In Proceedings of
the 2007 International Conference on Dynamic
Languages (ICDL 2007), pages 25–49. ACM Digital
Library, 2007.

[5] P. Ebraert, J. Vallejos, P. Costanza, E. Van Paesschen,
and T. D’Hondt. Change-oriented software
engineering. In Proceedings of the 2007 international
conference on Dynamic languages: in conjunction with
the 15th International Smalltalk Joint Conference
2007, ICDL ’07, pages 3–24, New York, NY, USA,
2007. ACM.

[6] D. Gurtner. Safe dynamic software updates in
multi-threaded systems with ActiveContext. Master’s
thesis, University of Bern, Apr. 2011.

[7] M. Hicks and S. Nettles. Dynamic software updating.
ACM Transactions on Programming Languages and
Systems, 27(6):1049–1096, nov 2005.

[8] S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. In Proceedings of OOPSLA ’98,
ACM SIGPLAN Notices, pages 36–44, 1998.

[9] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F.
Barnes. Runtime support for type-safe dynamic Java
classes. In Proceedings of the 14th European
Conference on Object-Oriented Programming, pages
337–361. Springer-Verlag, 2000.

[10] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for c. In
Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’06, pages 72–83, New York, NY, USA, 2006.
ACM.

[11] O. Nierstrasz. Putting change at the center of the
software process. In I. Crnkovic, J. Stafford,
H. Schmidt, and K. Wallnau, editors, International
Symposium on Component-Based Software
Engineering (CBSE) 2004, volume 3054 of LNCS,
pages 1–4. Springer-Verlag, 2004. Extended abstract of
an invited talk.

[12] O. Nierstrasz, A. Bergel, M. Denker, S. Ducasse,
M. Gaelli, and R. Wuyts. On the revival of dynamic
languages. In T. Gschwind and U. Aßmann, editors,
Proceedings of Software Composition 2005, volume
3628, pages 1–13. LNCS 3628, 2005. Invited paper.

[13] A. Orso, A. Rao, and M. Harrold. A Technique for
Dynamic Updating of Java Software. Software
Maintenance, IEEE International Conference on,
0:0649+, 2002.

[14] D. J. Penney and J. Stein. Class modification in the
gemstone object-oriented DBMS. In Proceedings
OOPSLA ’87, ACM SIGPLAN Notices, volume 22,
pages 111–117, Dec. 1987.

[15] P. Pratikakis, J. Spacco, and M. Hicks. Transparent
proxies for java futures. In OOPSLA ’04: Proceedings
of the 19th annual ACM SIGPLAN Conference on
Object-oriented programming, systems, languages, and
applications, pages 206–223, New York, NY, USA,
2004. ACM Press.

[16] F. Rivard. Smalltalk: a reflective language. In
Proceedings of REFLECTION ’96, pages 21–38, Apr.
1996.

[17] R. Robbes. Of Change and Software. PhD thesis,
University of Lugano, Dec. 2008.

[18] M. E. Segal and O. Frieder. On-the-fly program
modification: Systems for dynamic updating. IEEE
Softw., 10(2):53–65, 1993.

[19] S. Subramanian, M. Hicks, and K. S. McKinley.
Dynamic software updates: a vm-centric approach. In
Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’09, pages 1–12, New York, NY, USA, 2009.
ACM.

5


	1 Introduction
	2 Modification Model
	2.1 Object structure
	2.2 Modification model

	3 Software Update
	3.1 Pharo Class Installer
	3.2 Other installation strategies
	3.3 Discussion

	4 Related Work
	5 Conclusions
	6 References

