
Symbiotic Reflection between an

Object-Oriented
and a Logic Programming Language

Roel Wuyts, Stéphane Ducasse
{roel.wuyts | ducasse}@iam.unibe.ch

Software Composition Group
Institut für Informatik

Universität Bern, Switzerland

Abstract. Meta-programming is the act of using one system or language
to reason about another one. Reflection describes systems that have ac-
cess to and change a causally connected representation of themselves,
hence leading to self-extensible systems. Up to now, most of the reflective
languages have been implemented in the same paradigm. In this paper,
we propose symbiotic reflection as a way to integrate a meta-program-
ming language with the object-oriented language it reasons about and is
implemented in. New to this approach is that any element of the imple-
mentation language can be reasoned about and acted upon (not only the
self representation), and that both languages are of different paradigms.
Moreover, every language implementer that is faced with the problem of
allowing the base language to access the underlying meta-language has
to solve the problem of enabling entity transfer between both worlds.
We propose a uniform schema, called upping/downing, to this problem
that avoid explicit wrapping or typechecking. We illustrate this with
SOUL (the Smalltalk Open Unification Language), a logic programming
language in symbiotic reflection with the object-oriented programming
language Smalltalk. We show how SOUL does logic reasoning directly
on Smalltalk objects, and how to use this to implement type snooping.
The contributions of this paper are: (1) the definition of symbiotic re-
flection, (2) a schema for enabling entities transfer between multiple
paradigms, (3) examples of symbiotic reflection.

1 Introduction

In todays rapidly evolving world, development environments need to provide
sophisticated tools to inspect, navigate and manipulate software systems. More-
over, developers want design tools that are integrated in their development en-
vironment, and expect functionality to keep the design documentation and the
implementation consistent. Therefore we integrate a logic programming language
called SOUL, in the Smalltalk development environment, and use it as a meta-
programming language capable of:
– aiding in program understanding: as logic queries are used to interrogate and

match abstract syntax trees (AST) of the software system [22];

– help with forward and reverse engineering: we use the logic programming
language to express and extract design information (software architectures,
design patterns, UML class diagrams and programming conventions) [9, 23].

Using a declarative programming language to reason about other programs
is not new. The well known Lint and its derivatives, for example, use regular
expressions as the reasoning engine over source code [6], abstract syntax trees [17]
or derived source code information [14, 13, 15]. Other approaches use logic pro-
gramming languages to do the reasoning [10, 3, 11, 12]. However, new in our
approach is that the logic programming language is fully integrated with the
language we are reasoning about. This integration is based on a new approach
to reflective systems, we call symbiotic reflection. Symbiotic reflection not only
allows one to do pure logic reasoning, but also to:

1. inspect any kind of objects from its implementation language (Smalltalk);
2. write terms that reason about other terms;
3. alter elements of the implementation language.

Hence symbiotic reflection differs from ‘regular’ reflection because it is used
in the context of integrating a meta-programming language with the language it
is reasoning over, and because these two languages can be of different paradigms.
This contrasts with other reflective approaches, that typically use the same lan-
guages (for example, Lisp [18], CLOS [7, 1], Smalltalk [5, 16]).

1.1 Introductory Example: Scaffolding Support

In this section we give a concrete example to show the advantages of symbiotic
reflection between a logic and an object-oriented programming language. There-
fore we use SOUL (Smalltalk Open Unification Language), a logic programming
language that is implemented and integrated with the object-oriented program-
ming language Smalltalk. The example shows how to investigate all messages
send to a certain variable, and then how to generate methods for all these mes-
sages on another class. Hence it implements support for a prototype development
approach (as described by scaffolding patterns) where one starts by implement-
ing a first class, and can then use this implementation to generate the skeleton
implementation of the class cooperating with this class.
Sends. First of all we write a simple logic rule sends that relates three argu-
ments: ?c, ?rec and ?sends. It enumerates in a logic list ?sends all the messages
sent to some receiver ?rec in the context of a class ?c. It uses other rules class
and method to state that the variable ?c should be a class and that ?m should
be a method of that class. Then it uses the sendsTo rule (not shown in the im-
plementation here, as this is only a quick example) to enumerate all the sends
to the receiver ?rec in ?sends1:
1 Some notes on SOUL syntax:

1. the keywords Rule , Fact and Query denotes logical rules facts and queries
2. variables start with a question mark

Rule sends(?c, ?rec, ?sends) if
class(?c),
method(?c, ?m),
sendsTo(?m, ?rec, ?sends).

We then use this rule to query the Smalltalk system. For example, we can
use this rule to find all the messages sent to a variable x in the Smalltalk class
Point :

Query sends([Point], variable(x), ?s

However, besides this use of the sends rule that gives a list of all the messages
sent to x, we can also use it to find in the class SOULVariable (the Smalltalk
class implementing variables in SOUL) all the expressions (variables, message
composition, returns. . .) that invoke the methods unifyWith:, and interprete::

Query sends([SOULVariable], ?r, <unifyWith:, interprete:>)

GenerateEmptyMethod. The second rule is called generateEmptyMethod,
and generates a Smalltalk method in class ?c with a given name ?name (and with
an empty implementation). The rule uses an auxiliary predicate methodSource
that relates the name of a method and a string describing a method with that
name (and default arguments, if necessary), that has an empty method body.
Then we use a symbiosis term represented by [] to compile the method ?source
into the class ?c. The result of the symbiosis term is true or false, depending
whether the compilation succeeds or not:

Rule generateEmptyMethod(?c, ?name) if
emptyMethodSource(?name, ?source),
[(?class compile: ?source) = nil]

The following query creates the method abs to the class TestNumber :

Query generateEmptyMethod([TestNumber], abs)

Generating the interface.
We can then combine our two rules to generate methods for the Smalltalk

class TestNumber for all the methods that are send to the variable x in class
Point :

Query sends([Point], variable(x), ?xSends),
forall(member(?xSend, ?Sends),

generateEmptyMethod([TestNumber], ?xSend))

3. terms between square brackets contain Smalltalk code, which can be constants,
such as strings or symbols, but also complete Smalltalk expressions that reference
logic variables from the outer scope.

4. <> is the list notation

1.2 Example Analysis

This example first of all shows the benefits of using a logic programming language
as a meta-programming language to reason about a base language:

– logic programming languages have implicit pattern matching capabilities
that make them useful when walking an AST to find certain nodes;

– multi-way: clauses in logic programming languages describe relations be-
tween their arguments. These relations can be used in different ways, de-
pending on the arguments passed.

– powerful: it is Turing computable. We used it to express and extract design
information such as design patterns or UML class diagrams from the source
code [22, 23].

More importantly, it also demonstrates the different kinds of reasoning and
reflection available:

1. Introspection. SOUL terms can reason about other SOUL terms (as is shown
in the query where we use SOULVariable).

2. not shown in this example, but later on in the paper, is the implementation
of second-order logic predicates like findall, forall, one, calls, . . . in SOUL
itself. This shows how logic predicates can change the data of the SOUL
interpreter from within SOUL itself;

3. Symbiotic Introspection: we also do logic reasoning directly over Smalltalk
objects, i.e., on the meta-language itself. In the example we use Smalltalk
classes, that are then inspected to get the methods they implement. It is
important to note here that these are the Smalltalk objects themselves that
are used, and not decoupled representations;

4. Symbiotic Intercession: we use the logic programming language to mod-
ify code in the implementation language. Thus, not only can we inspect
Smalltalk objects, we can also change them. For example, the generateEmp-
tyMethod rule adds methods to a class. Because the class that is passed is
the actual Smalltalk class, adding this method immediately updates the base
language.

In symbiotic reflection, as the meta-language implements the base language
and the base language can reason about and act on the meta-language, both the
base language and the meta-language can then act and reason on each other.

In the rest of this paper we describe how to obtain symbiotic reflection be-
tween two languages from different paradigms, and how it is implemented in our
logic programming language SOUL. We end the paper with some examples: a
type snooper and the definition of some second-order logic predicates.

2 Reflective Interpreters

In this section we give an overview of non-reflective interpreters, classic reflective
interpreters and symbiotic reflective interpreters, and their differences. In the

following sections we then discuss the implementation of a symbiotic interpreter
in general, and the particular case of our example language, SOUL.

First of all we want to establish some classic terminology. When implementing
an interpreter, the language implementing the interpreter is the meta-program-
ming language (hereafter called M), and the interpreted language is the base
language (hereafter called B). The meta-programming language interprets the
program that implements the base language. Both the meta-programming lan-
guage and the base language manipulate certain data. The difference between a
non-reflective, a reflective and a symbiotic reflective interpreter lies in the data
they manipulate.

base language

meta language

data

data

base-language data

no explicit representation

Fig. 1. A non-reflective interpreter. The base language can only manipulate base level
information and not meta-level information.

Non reflective interpreter. A non-reflective interpreter is a program writ-
ten in the meta-programming language, that uses its own data and does not
interact with its meta-programming languageas shown in Figure 1. Thus, inter-
preting an expression in a non-reflective interpreter only requires to manipulate
base language entities at the meta-level. As the interpreter is built in the meta-
language, we have arg1, . . . , argn ∈ Bininterpret(arg1, arg2 . . . argn).

Reflective interpreter. Before we look at a reflective interpreter, we define
what is meant by causally connected, and by a reflective system:
Definition: causally connected A computational system is causally connected to
its domain if the computational system is linked with its domain in such way that, if
one of the two changes, this leads to an effect on the other [8].
Definition: reflective system A reflective system is a causally connected meta
system that has as base system itself [8].

base language

meta language

data

data

base-language data

causally
connected

self representation

Fig. 2. A Reflective Interpreter. The base language can access and act on its self-
representation

Definition: Reflection. Reflection is the ability of a program to manipulate as data
something representing the state of the program during its own execution. There are
two aspects of such manipulation: introspection and intercession. Introspection is the
ability for a program to observe and therefore reason about its own state. Intercession
is the ability for a program to modify its own execution state or alter its own inter-
pretation or meaning. Both aspects require a mechanism for encoding execution state
as data; providing such an encoding is called reification. [1]

As shown in Figure 2, a reflective interpreter can access and manipulate two
kinds of data: (1) the base level data and (2) a causally connected representation
of itself, called the self representation [19].

During the interpretation the arguments can be from both levels (but the
meta-entities have to be part of the data implementing the base-language). So
when interpreting an expression:

interpret(arg1, arg2 . . . argn)
the arguments arg1, . . . , argn are

– base language entities treated at the meta-level,
– self-representing meta-entities.

Symbiotic reflective interpreter. A symbiotic reflective interpreter as
shown in figure 3 is a reflective interpreter that, in addition to being able to
manipulate its self-representation can also manipulate the meta-language. As the
meta-language implements the base language and the base language can reason
about and act on the meta-language, both base language and meta-language can
then act and reason on each other.

For example, in the SOUL expression:

method([Array], ?m)

base language

meta language

data

data

base-language data

self representation

causally
connected

meta-data representation

Fig. 3. A Symbiotic Reflective Interpreter. From the base language it is now possible
to access and manipulate the base language self representation and also the meta-level
representation

the interpreter manipulates Array (a Smalltalk entity that has nothing to do
with SOUL’s implementation).

For example, in the SOUL expression:

method([SOULVariable], ?m)

the interpreter manipulates ?m, a variable term (a base language entity) and
SOULVariable (a meta-entity from SOUL’s Smalltalk implementation, part of
the self-representation).
Different meta and base languages. We stress that reflective systems

that are written in the same language are in symbiotic reflection because of
their uniformity. However, distinguishing symbiotic reflection from reflection is
mandatory when different languages are involved where the meta-language can
be modified from the base language. The next section shows how to solve the
problems that arise during the interpretation of the manipulated entities.

3 Symbiotic Reflection between Two Languages

In this section we start presenting the problems that occur when the base lan-
guage has to be able to manipulate its meta-language. Then we show how the
upping/downing schema proposes a uniform solution.

3.1 Problems with Handling Objects from Two Different Worlds

Enabling the reflection between two languages requires that entities of both
languages can be manipulated in each language. When the two languages are

the same, this is not a problem because all the entities share a common data
structure or, in the case of an object-oriented reflective language, a polymorphic
representation. For example, in Smalltalk, instVarAt: reflective method allows
one to access the instance variable of any object because it is defined on the
class Object.

In our case the logic programming language is implemented in the object-
oriented programming language, and represents and acts on the object-oriented
one. The logic engine is able to manipulate objects as terms and the terms
are manipulated as objects. Suppose SOUL would not use the upping/downing
schema we present further on, then lots of (implicit or explicit) type checks would
be needed to check every time whether we are using a logic term or an object.
A concrete example. In the logic programming language we might have a
unify predicate to unify two arguments. This predicate can be called in different
ways, both with objects as with terms:

Query unify(?c, foo(bar)).

Query unify(?c, [Array]).

This predicate has to be implemented somewhere in the object-oriented pro-
gramming language. So, there is some method that implements this logic uni-
fication of two arguments. However, as we see in the logic code, the arguments
can be instances of the classes implementing logic terms (like ?c or foo(bar)) as
well as objects (like Array), that have nothing to do with the implementation of
the logic interpreter.

The problem is that the interfaces of these classes differ. The classes imple-
menting logic interpretation will typically know how to be unified and interpreted
logically, whereas regular objects do not. Possible solutions are:

– All methods in the logic interpretation that come in contact with logic terms
need to do an explicit typechecking and conversion in the case of a dy-
namically typed object-oriented programming language or provide several
methods with different types in the case of a statically typed object-oriented
programming language, or

– implement everything on the root class, so that objects can be used as terms
and vice versa.

Neither solutions are satisfactory. In the first one lots of different type-checks
have to be done throughout the implementation of the logic interpreter. For the
second solution we effectively have to change the implementation language and
implement the complete behaviour for the logic interpretation on the root class.

We would like to stress that such a transfer of entities between languages has
to be addressed in any language where data structures from the meta-program-
ming language can be manipulated from the base language. At the worse the
programmer has to be aware that he is manipulating implementation entities
and has to interpret or wrap them himself.

3.2 The Upping/Downing Schema

A unified and integrated solution is possible. In our case, it enables objects to
be manipulated as logic terms and terms as objects. To explain such a schema
we have to introduce two levels: the up level and the down level.

Down level
(OOP)

Up level
(LP)

logic term

upping
downing

object

Fig. 4. The up-down schema allows the uniform manipulation of entities. In our con-
text, it lets Smalltalk objects be directly accessed in SOUL.

Symbiotic reflection implies that both languages play the base and the meta-
language role. The role depends on the view we have on the overall system.
From a user point of view, the logic programming language representing and
manipulating the object-oriented language acts as a meta language while the
object language acts as a base language. From the interpreter point of view, as
the logic programming language is implemented in the object-oriented one, the
object-oriented one is the meta-language and the logic programming the base.
Hence, it is not clear what we mean by ‘meta level’ or ‘base level’ in this context,
so from now on we consider two conceptual levels as shown in figure 4.
1. the down level is the level of the implementation language of the logic pro-

gramming language (the object-oriented programming language);
2. the up level is the logic programming language level being evaluated by the
down (object-oriented programming language) level.

Enabling the access and manipulation of down level structure (the object-
oriented programming language) from the up level (the logic programming lan-
guage) in a unified way is possible by following the simple transfer rule: upping a
down entity should return an upped entity and downing an upped entity should
return a down entity. Applied to SOUL, this rule reads: upping an object should
return a term and downing a term should return an object.

This is expressed by the following rules where T represents the set of terms
and O the sets of objects, wrappedAsTerm is a function that wraps its argu-
ment into a term and implementationOf is a function that returns the data
representing its argument.

up : O → T

– (1) x ∈ T, up(down(x)) = x
For example in SOUL, up(implementation(?c)) =?c

– (2) x /∈ T, up(x) = wrappedAsTerm(x)
For example in SOUL, up(1) = [1] = wrappedAsTerm(1), where [1] is the
logic representation of a term wrapping the integer 1.

down : O → T

– (3) x ∈ T, down(x) = implementationOf(x)
For example in SOUL, down(?c) = aV ariableT erm, the smalltalk object of
the logic variable ?c.

– (4) x /∈ T, down(up(x)) = x
For example in SOUL, down([1]) = 1, where [1] is the logic representation
of a term wrapping the integer 1.

The transfer rules (1) and (4) are limiting the meta-level to one level. The
transfer rule (2) expresses that upping a plain object results in a wrapper that
encapsulates the object and acts a term (and so can be logically unified and
interpreted). The transfer rule (3) expresses that downing an ex-nihilo logic
term to return the object implementing that term.

The upping/downing schema presented above is analogous to that described
in the PhD dissertation of Steyaert as the core implementation mechanism for
a framework for open designed object-oriented programming languages [21].
The implementation of the object-based object-oriented programming language
Agora uses the up/down mechanism to get reflection with its object-oriented
implementation language (Smalltalk, C++ or Java) [4]. However, in the context
of this paper we use it as the cornerstone to get reflection between two languages
from different paradigms.

3.3 Using the Upping/Downing Schema

We now use the upping/downing schema to implement the interpretation in a
straightforward way without having to typechecking entities.

When we evaluate a logic expression to unify terms, we are clearly reasoning
at the logic level (the up level). Hence we conceptually think in terms of terms
and interpretation, and expect the result to be a logic result (a logic failure or
success, with an updated logic environment containing updated logic bindings).
However, the interpreter is a program in the object-oriented programming lan-
guage (the down level), so somehow this has to be mapped, taking care that
everything is interpreted at the down level.

Generally speaking, to interpret an up-level expression:

– we down all elements taking part in that expression;
– we interpret the expression at the down level, and obtain a certain down-level

result;
– we up this result.

This can be expressed the following way:
Given t a logic term and θ a logic environment,

< t > , θ = {v→ w, . . .} = up
(
down(t).interpreteIn(down(θ))

)

Example 1. Let us look at the interpretation of the following SOUL expression
(See section 1.1):

sends([SOULVariable], variable(name), ?xSends)

This expression consists of a compound term, with three arguments. The
Smalltalk object representing this logic expression is a parse tree that consists
of an instance of class SOULCompoundTerm, that holds on to its arguments.

Interpreting the logic expression in a logic context comes down to sending
interprete: to the parse tree at the Smalltalk level (taking the logic context as
an argument). Therefore we down the parse tree and the logic context before
sending it interprete:. The result of sending interprete: is a Smalltalk object, and
an updated logic context (containing bindings for the variable ?xSends). This is
then upped to get the logic result.
Example 2. Because of the explicit upping and downing, the evaluation works
as well for objects as for terms, contrary to non-reflective systems. Let’s evaluate
the following expression:

[(?class compile: ?source) = nil]

in a logic environment θ where variable ?class is bound to [TestNumber], and
variable ?source is bound to ‘abs “empty method source”‘. This is depicted in
figure 5.

<[(?class compile: ?source) ~= nil]>,
ϑ = { ?class->[TestNumber],

?source->[abs empty method source]}

[:env | ((env at: 1) compile: (env at: 2)) ~= nil]
value: (Array with: TestNumber

with: abs empty method source

true

[true]
Up level

Down level

1

2

3

4

Fig. 5. Interpreting a symbiosis term in a logic environment θ

To interpret this expression (step 1 in the figure) we send interprete: to
the downed parse tree representing this logic expression, with as argument the
downed environment(step 2 in the figure). This results in the following Smalltalk
expression being evaluated:

TestNumber compile: ‘abs “empty method source”‘) = nil

This piece of Smalltalk code compiles a method in the class TestNumber.
The source describes a method called abs, that contains no statements, but just
some comment. The result of sending compile: is nil if something went wrong, or
the compiled method if everything went ok. So, the final result of the complete
expression is the Smalltalk object true if the method was successfully compiled,
and false otherwise (step 3 in the figure). This result is upped to get a result in
SOUL: a success or a failure (step 4).

3.4 The Symbiosis Term

Symbiotic reflection requires one base symbiotic operator that makes the bridge
between the base level and the meta-level. The SOUL language construct en-
abling symbiosis is the symbiosis term that allows one to use Smalltalk code
(parametrized by logic variables) during logic interpretation. The symbiosis term
is a logic term that wraps Smalltalk objects and message sends in the logic pro-
gramming language2. From the users point of view the symbiosis term takes the
form of writing a regular Smalltalk expression that can contain logic variables as
receivers of messages, enclosed within square brackets as shown by the examples
in section 1.1.

4 Symbiotic Reflection Examples

Throughout this paper we described concrete examples written in our symbiotic
reflective language SOUL (Smalltalk Open Unification Language). SOUL is a
logic programming language (analogous to Prolog [2, 20]) that is implemented in,
and lives in symbiosis with, the object-oriented programming language Smalltalk.
Using SOUL tools were built that use logic reasoning directly in the development
environment, while ensuring that they always work on the current version of the
source code [23].

In this section we give examples of the symbiotic reflection. We first look at
the implementation of a type snooper, and then we show some implementations
of second-order predicate.

4.1 The Type-Snooper

In SOUL we implemented a lightweight type-inferencer for instance variables,
that uses the messages send to an instance variable in the context of a class to
determine an interface that possible types must comply to. Then we find all the
classes that understand all these messages to deduce the possible types. This
basic scheme was extended taking programming conventions into account [23].

Using symbiotic reflection we now show how to integrate type snooping with
this lightweight type-inference. Type snooping uses the fact that in the Small-
talk development environment objects exist from the class we want to find types
of instance variables for. Hence, by looking at these instance variables we find
collections of existing types. The following rules use symbiotic reflection to in-
terrogate our Smalltalk development environment for such instances, and to get
their types. Then we extract the types for the instance variables we are inter-
ested in. This is yet another set of possible types, that we can integrate with the
rest of our typing rules.

2 For Prolog users: despite its name, a symbiosis term can be used both as term and
as predication.

Rule objectsForVar(?class, ?var, ?objects) if
class(?class),
instVar(?class, ?var),
instVarIndex(?class, ?var, ?index),
generate(?objects,

[(?class allInstances collect: [:c |
c instVarAt: ?index]) asStream]).

Rule snoopTypeInstVar(?class, ?var, ?types) if
findall(?cl,

and(objectsForVar(?class, ?var, ?o),
objectClass(?cl, ?o)),

?allTypes),
noDups(?allTypes, ?types).

Without symbiotic reflection integrating such support is not possible, be-
cause we can not reason about the elements of our base language. In symbiotic
reflection we have the objects, and can use them as such, so that we can directly
reuse them in the logic interpretation.

4.2 Second-order logic

This example shows how to write second-order logic predicates using the symbio-
sis term. Therefore we reify two concepts that are important during the evalua-
tion of a logic term: the logic repository and the logic environment that holds on
to the bindings. We chose to make these two concepts available in the symbiosis
term, under the form of two hardcoded variables: ?repository and ?bindings. The
?repository variable references the logic repository used when interpreting the
symbiosis term. The ?bindings variable holds the current set of bindings. This
simple addition makes it possible for a symbiosis term to inspect and influence
its interpretation. As an example we give the implementation of three widely
used logic predicates: assert, one and call. The assert predicate adds a new logic
clause to the current repository. The one predicate finds only the first solution
of the term passed as argument. If this first solution is found, the bindings are
updated and the predicate succeeds, otherwise the predicate fails. The call pred-
icate is analogous to the one predicate, but does not keep the results. Hence it
just needs to succeed when the argument term has at least one solution:

Rule assert(?clause) if
[?repository addClause: ?clause].

Rule one(?term) if
[| solution |

solution := (?term resultStream: ?repository) next.
solution isNil

ifTrue: [false]
ifFalse: [?bindings addAll: solution. true]

].

Rule call(?term) if
[(?term resultStream: ?repository) next isNil not]

Speaking in reflection terminology, the two hardcoded variables ?repository
and bindings are a causally connected self-representation. Therefore the sym-
biosis term (and hence SOUL) can reason about and even alter a part of its
implementation.

5 Conclusions

In this paper we presented symbiotic reflection symbiotic reflection as a way
to integrate one language (the up-level language) with another language (the
down-level language) it reasons about and is implemented in. The benefit is
that the up-level language can not only reason about its self-representation (as
is the case with classic reflection), but on the complete down-level language.
Symbiotic reflection was illustrated concretely with the object-oriented program-
ming language SOUL, a logic programming language in symbiotic reflection with
Smalltalk:

– Introspection SOUL terms can do logic reasoning about other SOUL terms;
– Reflection SOUL predicates can change data of the SOUL interpreter from

within SOUL;
– Symbiotic Introspection: SOUL can do logic reasoning about any Smalltalk

object;
– Symbiotic Intercession: SOUL can do logic reasoning to modify code in the

implementation language, and this immediately impacts the implementation
language.

To show the benefits of symbiotic reflection we expressed three non-trivial
concrete examples in SOUL. We wrote logic predicates implementing second-
order logic operations in SOUL, provided prototype development support and
integrated lightweight type-inference with type snooping.

6 Acknowledgments

Thanks to everybody who contributed to this paper: the ex-colleagues from the
Programming Technology Lab (where Roel Wuyts did his phd of which this paper
is a part) and the people of the Software Composition Group. All these people
are thanked for their positive feedback while doing the research and writing this
paper.

References

1. D.G. Bobrow, R.P. Gabriel, and J.L. White. Clos in context – the shape of the
design. In Object-Oriented Programming : the CLOS perspective, pages 29–61. MIT
Press, 1993.

2. W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, Berlin,
1981.

3. Roger F. Crew. Astlog: A language for examining abstract syntax trees. In Pro-
ceedings of the USENIX Conference on Domain-Specific Languages, 1997.

4. Wolfgang De Meuter. Agora: The story of the simplest mop in the world - or - the
scheme of object-orientation. In Prototype-based Programming. Springer Verlag,
1998.

5. Brian Foote and Ralph E. Johnson. Reflective facilities in smalltalk-80. In OOP-
SLA 89 Proceedings, pages 327–335, 1989.

6. S. C. Johnson. Lint, a C program checker. Computing Science TR, 65, December
1977.

7. Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, 1991.

8. Patty Maes. Computational Reflection. PhD thesis, Dept. of Computer Science,
AI-Lab, Vrije Universiteit Brussel, Belgium, 1987.

9. K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codifying software architectures
using virtual software classifications. In Proceedings of TOOLS-Europe 99, pages
33–45, June 1999.

10. Scott Meyers, Carolyn K. Duby, and Steven P. Reiss. Constraining the structure
and style of object-oriented programs. Technical Report CS-93-12, Department of
Computer Science, Brown University, Box 1910, Providence, RI 02912, April 1993.

11. Naftaly H. Minsky. Law-governed regularities in object systems, part 1: An abstract
model. Theory and Practice of Object Systems, 2(4):283–301, 1996.

12. Naftaly H. Minsky and Partha Pratim Pal. Law-governed regularities in object sys-
tems, part 2: A concrete implementation. Theory and Practice of Object Systems,
3(2):87–101, 1997.

13. G. Murphy and D. Notkin. Lightweight source model extraction. In Proceedings of
SIGSOFT’95, Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 116–127. ACM Press, 1995.

14. G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the
gap between source and high-level models. In Proceedings of SIGSOFT’95, Third
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
18–28. ACM Press, 1995.

15. G. C. Murphy. Lightweight Structural Summarization as an Aid to Software Evo-
lution. PhD thesis, University of Washington, 1996.

16. Fred Rivard. Reflective Facilities in Smalltalk. Revue Informatik/Informatique,
revue des organisations suisses d’informatique. Numéro 1 Février 1996, February
1996.

17. D. Roberts, J. Brant, R. Johnson, and B. Opdyke. An automated refactoring tool.
In Proceedings of ICAST ’96, Chicago, IL, April 1996.

18. B. Smith. Reflection and semantics in lisp. In Proceedings of POPL’84, pages 23–3,
1984.

19. Brian C. Smith. Reflection and Semantics in a Procedural Language. PhD thesis,
MIT, 1982.

20. L. Sterling and E. Shapiro. The art of Prolog. The MIT Press, Cambridge, 1988.

21. Patrick Steyaert. Open Design of Object-Oriented Languages, A Foundation for
Specialisable Reflective Language Frameworks. PhD thesis, Vrije Universiteit Brus-
sel, 1994.

22. R. Wuyts. Declarative reasoning about the structure of object-oriented systems. In
Proceedings TOOLS USA’98, IEEE Computer Society Press, pages 112–124, 1998.

23. Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of
Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brus-
sel, 2001.

