
Composition Languages for Black-Box Components

Position Paper

Roel Wuyts
Software Composition Group

Institut für Informatik
Universität Bern, Switzerland

roel.wuyts@iam.unibe.ch

Stéphane Ducasse
Software Composition Group

Institut für Informatik
Universität Bern, Switzerland

ducasse@iam.unibe.ch

ABSTRACT
Supporting reuse of existing pieces of code is one of the main
goals of software engineering. In the name of reuse, module-
based programming languages came to be, only to be sur-
passed by object-oriented technology. With the same mo-
tivation component-based solutions are overtaking object-
oriented solutions. However, the delegation-only focus of
component-based programming risks of resulting in the same
problems that modular-based approaches ran into. To coun-
ter this, we claim that one of the important problems that
should be addressed by component languages is the com-
position of components. More specifically, we see compo-
nent languages where components are black-box abstrac-
tions, and with (one or more) composition languages to glue
them together. As an example we show a functional (Pic-
cola) and a logic (QSoul) composition approach.

1. INTRODUCTION
Years ago, when object-oriented programming was still par-
tially uncharted territory, several questions were floating a-
round to be answered: what is an object ? what is a class ?
How can we compose objects ? How can we compose classes
? What runtime support is needed ? What’s the seman-
tic of polymorphism ? What’s the semantic of a super call
? Several languages existed that implemented solutions for
these -and other- important questions. Some of these were
purely object-oriented (think Simula or Smalltalk), some of
them were additions to procedural languages (think C++).
Some were completely new kinds (think Self), or offered
composition mechanisms such as mixins and mixin based ap-
proaches [3, 13]. The important aspect is that each of these
languages made (implicitly or explicitly) certain choices, and
allowed to test these choices on real code and real problems.
For example, multiple inheritance as introduced by C++
proved to have too much conceptual and was not introduced
in other mainstream object-oriented languages.

Now, in the beginning of the next millennium, analogous
questions pop up in relation to components: what is a com-
ponent ? How to compose components ? What are the ex-
act semantics for certain composition mechanisms ? These
questions are imported to answer, and will eventually give
rise to a new breed of programming languages: component
languages.

In this paper we have a look at the move from module-
based programming languages to object-orientation. Then
we have a quick glance at current component systems and
the composition mechanisms they support. Finally we look
at ’pure’ component languages, and the issues that play a
role in their definition, using the lessons learned during from
the move of module-based languages to object-oriented lan-
guages into account. More specifically we claim that one
of the issues that is crucial for component languages is the
composition mechanism that is offered to compose (or script
or glue) components. We give two examples of composition
languages that could be used in component languages.

2. FROM MODULES TO OBJECTS
Before the advent of the component-oriented paradigm, most
languages had a notion of a module. The goal of a module
was one of packaging: making subsystems independent of
other subsystems. It became thus easier to exchange sub-
systems for one another, whenever their interfaces were com-
patible, and to develop and test parts of the system inde-
pendent of other parts of the system. Most procedural-based
languages (such as ADA, Pascal, Modula-2 or C, to name
just a few) had language support for modules: you could
define procedures as belonging to a module, could export
certain procedures that would then be usable by other mod-
ules that imported these procedures. Such language sup-
port for modularisation increased reuse. Writing libraries of
code (for mathematical functions, file handling, widget sets,
...) was possible because of this language support, and was
widely used.

But, as we all know, this was not the end of the story. One of
the problems faced by the modularisation approach was cus-
tomizability. While modularisation made it possible to chop
an application up in several pieces that you could develop
and test more independently, it was very hard to customize
them. For example, calling a function from a mathemati-
cal library is easy, but it’s very hard to customize when a
slightly different one is needed. The reason is that the only



composition mechanism that is supported is (a form of) del-
egation. Hence, solutions were sought to address such (and
related) problems.

Object-oriented programming came along touting that it
was going to solve this reuse problem. To attain this goal, it
featured new composition mechanisms, such as aggregation
and inheritance. As a result, you could not only call meth-
ods on objects in a procedural manner, but you could also
make subclasses and aggregations. This made it more easy
to reuse (large parts of) existing code without rewriting it.
The most interesting aspect was probably the dynamic as-
pect: the fact that the receiver of a message could change at
runtime. This ’late of binding’ of self makes polymorphism
a very powerful tool to attain better customizability.

When the dust in the object-oriented community more or
less settled, class-based languages were the ones that left
standing, and they are still used in the majority of object-
oriented languages. But, more importantly, people had dis-
covered another advantage of inheritance: it allowed not
only code reuse but also, and more importantly, reuse of de-
sign. Frameworks, with their focus on the Hollywood prin-
ciple, are the pinnacle of this evolution. An object-oriented
framework is defined as a set of classes which embody an
abstract design for solutions to a family of related prob-
lems [7]. It can be seen as a skeleton that implements an
abstract application for some specific domain. Users of the
framework customize by adding subclasses that implement
or change the behaviour of the system. Hence, the overall
design and functionality of the framework is used all over
again, and customizations can be made to target smaller is-
sues. While frameworks are indeed nice to use, they also
face severe problems that hinder their acceptance:

1. writing a framework is very hard. As it implements an
abstract solution to a whole range of similar problems,
the good abstractions have to be implemented. When
it is too abstract, people still have to write too much
code. When it is not abstract enough, people have
to work around the framework to target it to their
issues. Only after several iterations and when applied
in several contexts can it mature enough to be really
useful.

2. understanding a framework is also very hard. The rea-
son is that it is typically a big system that one wants to
customize in a certain place, if possible without need-
ing to browse the whole code in order to know which
methods to override from which classes.

3. it is also very hard to document. While you can doc-
ument its overall design, users are interested in very
detailed information, that changes depending on the
context they want to use it in.

The problem that lies at the core of these issues is that
object-oriented programming is about white-box reuse: you
need to know and understand the code before you can make
a successful subclass. Consider for example the following
well-known example: suppose we want to make a subclass
CountingSet of a given class Set that keeps how many ele-
ments have been added. Set implements two methods: add

for adding one element and addAll for adding all elements
from another set. Then our subclass CountingSet needs to
know how Set implements these operations. If the imple-
mentation of addAll in Set calls its add method, then Count-
ingSet only has to override add to count the additions. If
the implementation of addAll does not use add but immedi-
ately adds all methods, then CountingSet needs to override
both methods.

Several approaches were taken to alleviate these problems
and provide more constrained forms of white-box reuse (such
as specialization interfaces [11] or reuse contracts [12]. The
design pattern movement aimed at providing a better way of
documenting, communicating and reusing solutions to com-
mon design problems [8, 5], like the (active) cookbook ap-
proach before it [10]. Other composition mechanisms were
investigated, such as Aspect-Oriented Programming [9], Sub-
ject Oriented Programming [6], Generative Programming [4]
and multi-dimensional separation of concerns [15]. How-
ever, despite all these important contributions and generally
speaking, object-orientation did not completely live up to its
promise to deliver general reusability.

3. FROM OBJECT TO COMPONENTS
Component software engineering now promises to ’deliver
reusable, of-the shelf software components for incorporation
into large applications’ [14], and hence as the next general
solution for the reuse problem. The basic idea of compo-
nents is that of black-box reuse applied on wrapped binary
components. Black-box reuse is considered better for reuse
because it completely hides the internals of the component,
and to reuse the component people do not need to know
those internals to compose components. So, components
are typically defined as entities that encapsulate some in-
ternal representation with one or more interfaces. Other
components can invoke functionality through these inter-
faces. From the reuse point of view, this provides some
advantages. First of all, this allows binary composition of
components, something where the white-box (source code)
reuse of object-oriented programming has no language sup-
port for. Also, components can be implemented in different
implementation languages (as long as they share a compat-
ible interface and runtime mechanism). Or, in a number of
cases, it becomes easier to support distribution of compo-
nents in an easier and more transparent way.

But, by currently restricting components to black-box reuse
and delegation, component-oriented development risks in
making the same pitfall as module-based approaches. Just
as with modularisation, the composition mechanism sup-
ported is delegation, and customizing part of a component
is very hard. Note that we are not claiming that white-box
reuse is better; time has proved that this is too much at
the other end of the spectrum. But we are claiming that,
in order to make reuse work, language designers will have
to look carefully at composition mechanisms for black-box
components that go beyond simple delegation. We firmly
believe that this should be one of the major conceptual con-
tributions to make by component languages.

4. FROM COMPONENTS TO PURE COM-
PONENT LANGUAGES



Even though at the moment several component systems ex-
ist on top of object-oriented programming languages, we feel
that there is need for pure component languages. These lan-
guages are needed to provide a component developer with
a clean and concise vocabulary and semantics for building
and composing components. We feel that, just as object-
oriented programming languages gave rise to the notion of
’reuse of design’, better component languages will answer
new problems (and raise new questions).

At this moment we do not claim that we have a full so-
lution for a pure component language. However, what we
want to discuss is a fundamental issue to reusability (and
hence component languages): composition mechanisms. We
feel that current component approaches focus too much on
only one possible composition mechanism: ’swappability’,
i.e. the fact that one component can be exchanged with an-
other one. While this is certainly a very important issue, it’s
not the only one. Let’s reconsider our toy example with Set
and CountingSet again. The goal of making the subclass is
to reuse as much of Set as possible, without having to specify
everything anew. In a component language that only sup-
ports ’swappability’ we have to use a delegation approach,
meaning that we might end up implementing a lot of code
that just delegates behaviour from CountingSet to Set. A
possible answer might be another composition mechanism
(a form of black-box inheritance).

So, we feel that composition mechanisms for black-box com-
ponents should be the major focus for pure component lan-
guages. Concretely we propose to have a difference between
the language in which components are implemented, and the
composition languages to compose them. Even more, we
foresee different composition languages depending on where
the components are used. While in object-oriented program-
ming languages the composition mechanisms are fixed by
the language, we feel that there should be more flexibility,
especially at this stage of the component language design.

5. EXAMPLES OF POSSIBLE COMPOSI-
TION LANGUAGES

Since we think composition languages should be the major
focus (and contribution) for component languages, we want
to give some concrete examples. More specifically, we want
to show how a logic or a functional language could be used as
composition languages. These languages are not full compo-
nent languages as such, but they can serve as a test-platform
to experiment with some of the ideas.

5.1 QSoul: a logic approach
The first approach we would like to introduce is to use a logic
programming language to compose components. The funda-
mental motivation for using a logic programming language
is that composition of components has to do with expressing
relations between these components, and logic programming
deals with expressing and solving relations. Thus different
composition mechanisms can be expressed as logic queries
over components, and these queries determine the result of
the overall composition.

More concretely, we think that a hybrid logic language such
as QSoul is a natural candidate. QSoul is a logic program-

ming language that features reflection with its implementa-
tion language [17, 16]. It allows full logic reasoning over
objects and their structural aspects. We have used this
to extract structural information from class hierarchies and
to support round-trip engineering activities. More recently,
QSoul is used as composition language for components for
embedded devices (in the same way as it was used as an Ar-
chitectural Description Language before) [18]. In this setup:

1. components are implemented with objects; they have a
name, lists of properties (key-value pairs), lists of ports
and possibly subcomponents. Since they are objects,
these components can also be wrappers around other
implementations (components in another language or
values from a database, for example);

2. connectors connect the ports of components. These
connectors are also implemented as objects that con-
nect ports;

3. components can have consistency rules; these are logic
rules that express certain constraints on the internals
of the component. They can refer to the properties,
ports and possible subcomponents of a component. An
example of such a rule is that a component that has
a ’schedulable’ property should also have a ’cycletime’
property ;

4. composition rules express the semantics of the connec-
tor, and hence of the component composition. For
example, these logic rules express that a connector
can only connect two parts that are type-compatible,
and what type-compatibility means. We are currently
adding connectors that express inheritance for compo-
nents, and will afterwards look at composite ports;

5. the overall architecture of the system consists of bun-
dles of logic rules that express the consistency rules
and composition rules available in this component lan-
guage.

The nice thing of using a hybrid language such as QSoul
is that it allows to express components and connectors as
objects (data) and the composition mechanism (relations)
in separated languages. It is easy to image a pure com-
ponent language that uses a similar mechanism to separate
the components from the compositions. With respect to
current languages, it allows one to add other composition
mechanisms than the ones provided ’out of the box’. Hence,
’swappability’ of components is currently defined as compo-
nents that have the same interfaces, but can also be defined
type-compatibility of components. Inheritance, on the other
hand, can be defined as well, with precise semantics. We can
also look at adaptors that adapt interfaces of components
to make them compatible. Hence we expect to use QSoul as
an experimental vehicle for looking at several composition
approaches, and using them on concrete examples.

5.2 Piccola: a functional approach
Piccola is an experimental language for composing applica-
tions from software components [2, 1]. Piccola is defined
by a thin layer of syntactic sugar on top of a semantic core



based on Milner’s pi calculus. (Piccola stands for PI Cal-
culus based COmposition LAnguage.). Piccola is designed
to make it easy to define high-level connectors for compos-
ing and coordinating software components written in other
languages. It goes beyond scripting languages because it is
not biased towards one particular scripting paradigm. In-
stead, it allows components to be posed according to diffe-
rent compositional styles. As such, Piccola focuses on pro-
viding mechanisms for building different kinds of composi-
tional abstractions, namely wrappers, adapters, connectors,
coordination abstractions, and generic glue code.

In Piccola, everything is a ”form”, a kind of immutable,
extensible record that is useful for modelling objects, com-
ponents, configurations, communications, default values and
namespaces. Currently scripts exist that define and use dif-
ferent compositional styles such as aggregation, functional
composition, inheritance, mixin composition, stream com-
position, . . . At this moment, Piccola can be used stand-
alone (meaning that components are implemented as Piccola
forms), but forms can also wrap Java or Smalltalk objects.
In that case, Piccola is used as a high-level scripting lan-
guages to compose forms wrapping objects.

6. CONCLUSION
We feel that it is time for pure Component Languages to
support component-oriented programming. However, just
as with the start of object-oriented programming several
years ago, it is currently hard to see all the topics and pos-
sible choices, and several debates and ’language wars’ will
be held the coming years. At the end, a consensus will grow
around what a component language should be. We feel that
this workshop is an excellent discussion forum to address this
topic, and think we can participate to provide some answers
based on our extensive experience in designing and com-
bining languages. More specifically, we feel that one of the
important problems that should be addressed by composi-
tion languages is the aspect of composition of components.
More specifically, we propose component languages where
components are black-box abstractions, and with (one or
more) composition languages to glue them together. As an
example we show a functional (Piccola) and a logic (QSoul)
composition approach.

7. REFERENCES
[1] F. Achermann, M. Lumpe, J.-G. Schneider, and

O. Nierstrasz. Piccola – a small composition language.
In H. Bowman and J. Derrick., editors, Formal
Methods for Distributed Processing, an Object
Oriented Approach. Cambridge University Press.,
2001. to appear.

[2] F. Achermann and O. Nierstrasz. Applications =
Components + Scripts – A Tour of Piccola. In
M. Aksit, editor, Software Architectures and
Component Technology. Kluwer, 2001. to appear.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In
Proceedings OOPSLA/ECOOP’90, ACM SIGPLAN
Notices, pages 303–311, Oct. 1990. Published as
Proceedings OOPSLA/ECOOP’90, ACM SIGPLAN
Notices, volume 25, number 10.

[4] K. Czarnecki and U. Eisenecker. Generative
Programming. Methods, Tools, and Applications.
Addison-Wesley, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addisson-Wesley, 1994.

[6] W. Harrison and H. Ossher. Subject-oriented
programming (A critique of pure objects). In
A. Paepcke, editor, OOPSLA 1993 Conference
Proceedings, volume 28 of ACM SIGPLAN Notices,
pages 411–428. ACM Press, Oct. 1993.

[7] R. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2):22–35,
June 1988.

[8] R. E. Johnson. Documenting frameworks using
patterns. In Proceedings OOPSLA ’92, ACM
SIGPLAN Notices, volume 27-10, pages 63–76, 1992.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of ECOOP’97, pages
220–242. Springer Verlag, 1997. LNCS 1241.

[10] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view-controller user interface paradigm in
smalltalk-80. Technical report, Xerox, Palo Alto, 1988.
IB-D913170.

[11] J. Lamping. Typing the specialization interface. In
Proceedings OOPSLA ’93, ACM SIGPLAN Notices,
pages 201–214. ACM Press, 1993.

[12] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt.
Reuse contracts: Managing the evolution of reusable
assets. In Proceedings OOPSLA ’96, ACM SIGPLAN
Notices, pages 268–285. ACM Press, 1996.

[13] P. Steyaert and W. D. Meuter. A marriage of class-
and object-based inheritance without unwanted
children. In W. Olthoff, editor, Proceedings
ECOOP’95, LNCS 952, pages 127–144, Aarhus,
Denmark, Aug. 1995. Springer-Verlag.

[14] C. A. Szyperski. Component Software.
Addison-Wesley, 1998.

[15] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.
N Degrees of Separation: Multi-dimensional
Separation of Concerns. In Proceedings of ICSE’99,
pages 107–119, Los Angeles CA, USA, 1999.

[16] R. Wuyts. A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design
and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

[17] R. Wuyts and S. Ducasse. Symbiotic reflection
between an object-oriented and a logic programming
language. In Multiparadigm Programming with
Object-Oriented Languages, volume 7, pages 81–96.
John von Neumann Institute for Computing, 2001.

[18] R. Wuyts, S. Ducasse, and G. Arévalo. Applying
experiences with declarative codifications of software
architectures on cod. In 6th Workshop on Component
Oriented Programming (ECOOP’01), 2001.


	Introduction
	From Modules to Objects
	From Object to Components
	From Components to pure Component Languages
	Examples of Possible Composition Languages
	QSoul: a logic approach
	Piccola: a functional approach

	Conclusion
	REFERENCES 

