
Applying Experiences with Declarative
Codifications of Software Architectures on COD

Position Paper

Roel Wuyts St́ephane Ducasse Gabriela Arévalo
roel.wuyts@iam.unibe.ch ducasse@iam.unibe.ch arevalo@iam.unibe.ch

Software Composition Group
Institut für Informatik

Universiẗat Bern, Switzerland

Abstract

This position paper presents some preliminary work we made for applying
declaractive component oriented design in the context of embedded devices. We
quickly describes COMES the model we develop and present how logic rules can
be used to describe architectures.

1 Introduction

Software for embedded systems is typically monolithic and platform-dependent. These
systems are hard to maintain, upgrade and customise, and they are almost impossible
to port to other platforms. Component-based software engineering would bring a num-
ber of advantages to the embedded systems world such as fast development times,
the ability to secure investments through re-use of existing components, and the abil-
ity for domain experts to interactively compose sophisticated embedded systems soft-
ware [Szy98].

The goal of the PECOS (PErvasive COmponent Systems) project (Esprit project
XXX) is to find solutions for component oriented development (COD). In this con-
text we are developping Comes a Component Meta-Model for Embedded Systems. In
Comes, components are encapsulations of behavior (implemented in Smalltalk, C++,
C, assembly, FSA, . . .). They have interfaces that consist of properties and ports, and
have consistency rules that express structural integration internal to the component
(for example, to check dependencies between properties). Components are connected
by wiring their ports with connectors and can be wrapped in composite components.
Consistency rules of the composite component can reason about the properties of the
composite, but also on the connectors and the properties of the sub components.

The outline of the paper is the following: first we present our previous work in
which we declaratively codified software architectures (SA) as logic programs, then

1

Figure 1: A software architecture for arule-based system.

we show how such an approach is applicable in the context of component design. We
then present the component model we are developping in the context of embedded
devices and conclude.

1.1 Declarative Software Architectures

Our previous research in Software Architecture (SA) focussed on ways to express a SA
on a high-level of abstraction while providing support to automatically verify whether
source code conforms to the SA [MWD99]. Therefore we codified the SA usingsoft-
ware classificationsand relations between these classifications. Figure 1 shows the
software architecture of a rule-based interpreter [SG96]. The circles aresoftware clas-
sifications. They are connected by connectors that havetypes(such asusesandcreates)
andcardinalities(which we will not explain here as it is not relevant to components).
This software architecture is expressed by logic facts and can be checked against the
source code. In more detail, the model is made up from:

• software classifications: wrap the implementation elements, and can be seen as
bags of source code elements (such as classes and methods). The items in the
classification can be enumerated one by one, but are typically described using
a logic program that reasons about source code. This makes it possible to, for
example, group all classes in a certain hierarchy or participating in a composite
design pattern.

• relationships between software classifications: the goal of the relationships is
to connect classifications with high-level intuitive connectors such ascreates,
accesses, . . . These connectors are actually logic programs that are mapped inter-
nally to more primitive dependencies between source code artefacts or ports [Men00].

• the software architecturesare expressed as logic programs that enumerate spe-
cific software classifications, and the relationships between them.

2

• conformance checkingof SA against the source code is done by a logic program.
It checks whether the relationships hold between the software classifications.
Different conformance checkers can be used of course, to implement different
checks.

• subclassifications.Software classifications can be SA themselves instead of bags
of source code items. As a result, SA can be nested in one another.

• architectural patterns: last but not least we defined architectural patterns, as
a SA that describes a template instead of a concrete enumeration of software
classifications and relationships. The definition is similar to a regular SA, but it
contains logic variables that can be instantiated when the template is instantiated.
Using the patterns we expressed arule based architecture(a domain specific
architecture for rule-based systems) and thepipe-and-filterarchitecture.

As a recapitulation, we connect entities (the software classifications) with connec-
tors to define SA. A logic programming language is used to describe the entities, the
meaning of a connector and the SA. Because of this, we automatically can express
architectural patterns.

1.2 Pecos project

The goal of PECOS is to enable component-based software development of embedded
systems by providing an environment that supports the specification, composition, con-
figuration checking, and deployment of embedded systems built from software com-
ponents. While focusing on architectural issues, it touches upon the whole software
development cycle and addresses the major technological deficiencies of state-of-art
component technology with respect to embedded systems by developing:

• a Component Model for embedded system components addressing behaviour
specification and non-functional properties and constraints

• an interactive Composition Environment for composing embedded applications
from components, validating functional (e.g., interfaces) and non-functional com-
positional constraints (e.g. power-consumption, code size), generating the appli-
cation executable for the embedded device and monitoring their execution.

By providing a coherent approach and methodology for programming of compo-
nent based embedded systems PECOS enables an efficient and competitive embedded
system development.

2 Applying our declarative SA approach on COD

Before we introduce the meta-model that we use to support COD, we first want to
introduce the parts we can reuse from SA, and the ones we cannot. The approach
described in section 1.1 proved successful within its context. We were pleased with the
logic programming approach, as it is very well suited to express relationships between

3

entities (both between source code entities as between software classifications), and
it makes easy to define both concrete and template architectures just by using logic
variables instead of logic constants.

In general, we can draw the following parallels between our approach to software
architectures and the component model we are interested in:

• components can be seen as software classifications. The software classification
bundles a number of implementation concepts in one place (as a result of a logic
query or an explicit enumeration). The rest of the model works with software
classifications (connecting them), and does not see the implementation elements
inside the software classification. A component is nothing more than that: it
provides an interface that can be queried, and allows you to connect it to another
one.

• both models need connectors to specify relationships between components. Com-
ponents need to be composed with other components to build-up a working sys-
tem. The connectors in a composition specify what parts of a component are
connected to what other parts of components. This is the same for software
architectures or for components.

• the connectors are used to check whether relationships between components hold
or not. Connectors serve at least two purposes. First of all they describe what is
connected (as a form of documentation). Second they are used later on to check
whether the connections are possible (like an advanced type system). This holds
for both software architectures (where we checked whether a certain relation
held between software classifications) and component models (to check whether
two components can indeed be composed or not).

• leaf components and composite components can be used transparently, just like
software architectures can be used as software classifications. In our software ar-
chitecture, we could use software architectures as software classifications, thereby
composing software architectures. A same concept is useful in the component-
oriented programing, where it allows one to build components from leaf compo-
nents or other compositions transparently.

• we would also like to have concepts such as templates and styles in the context of
COD. Our software architecture was described as a logic predicate enumerating
its components and their connections. An architectural template was the same as
a software architecture, but used logic variables for the components or connec-
tors that needed to be filled in later. We want to have the same mechanism in our
component model, as it is a straightforward mechanism to get component tem-
plates that prescribe compositions of components that can be instantiated later
on.

There are of course also differences between the context of software architectures
and components, for which we have to take care in our model:

4

1. in our software architecture model, the interface of a software classification was
part of the model. While it could be extended, this did not occur frequently. In
component-oriented programming, however, we need a good concept of interface
because there is a possibility that it will change more often.

2. a component has more properties than a software classification. A software clas-
sification is basically nothing but a bag of elements. Connectors in our software
architecture model used a very narrow interface to interrogate the elements in the
bag, which is more a white-box approach. However, the components are black-
box, meaning that all the information usable by connectors has to be available
from the interface.

The next section describes the Comes model (Component Meta-Model for Em-
bedded Systems) we developed. It includes the major features from the architectural
model, but makes changes to accomodate specific component issues as outlined above.

3 COMES: Component Meta-Model for Embedded Sys-
tems

This section describes the core of our component model that supports the definition
and composition of components for embedded devices. We present the meta-model
developed following a prototyping approach and using the experience from SA. We
first give an overview of the complete model, and then we discuss all the main parts in
more detail and with some examples.

3.1 COMES Overview

COMES meta-model is simple and composed by the following entities:

Component is the main entity in this model. It basically holds properties (to describe
information like non-functional properties) and can be combined with other com-
ponents. We distinguish betweenleaf components(that have no subcomponents)
andcomposite components(that are like leaf components but also contain some
connected subcomponents).

Property is the entity which lets us characterize the components. Its features are a tag
and a value. The characteristics and the constraints of a component is given by
a set of these pairs. The tag is the identifier of the property. Thus, we are not
constrained to a fixed set of properties, and new ones can be defined according
to new requirements.

Port is the place where components can be connected to other components (through
connectors).

Consistency rule. Certain dependencies exist between the properties of a component.
We call the act of checking if a component is valid regarding its properties:
checking the consistency of a component.

5

AO Function

version
documentation
active

active->scheduler

in

in-signal

out

out-signal

Figure 2: A simple COMES component displayed, with three properties (comment,
version, active), two ports (in andout), and a consistency rule (active->scheduler).

Connector is a link between ports, and is used to connect components when building
a composite component.

3.2 Leaf Components and their constituents

In this section we introduceproperties, ports, consistency rulesand leaf components.
We use theAO Function component, shown graphically in Figure 2, as an example to
make the concepts more concrete.

Property. A property is a key/value pair. The key contains the name of the property,
while the value holds the actual contents of the property. Properties are used to
model all kinds of static information (such as the version of the component or
comment) or values of non-functional properties (to specify the memory needed
for the component etc.).

For example, the AO Function component shown in Figure 2 has three properties
(the values are not shown in the figure). Theversionproperty has a value of1.0,
the commentholds a string with some textual explanation andactive is set to
false, since this component does not run in its own thread.

Port. A port is a quadruple consisting of aname, a type (like eventor signal), an
input/output (i/o) specificationandarguments.

The AO Function component has two ports: an out-port and an in-port of type
signal. As another example, suppose that we have a component A that needs to
be scheduled by ascheduler componentS, and that S wants to have the possibility
to send an initialization request to A. Then we can give A a portinitialize, of type
event, with an i/o specification ofin and without arguments. Likewise, S should
have an out-portinitialize of typeeventwithout any arguments. These ports can
then be connected by a connector (as is explained later on).

Consistency rule. A consistency rule is used to check structural consistency of a com-
ponent, and is expressed as a first-order logic expression over the properties of
a component. It is mostly used to describe dependencies between properties (a
certain property has to exist whenever there is some other property).

6

Block Container
version
documentation

in-event
initialize

AO Function

version
documentation
cycletime

active->scheduler

in-event

initialize

Transducer

version
documentation
scheduler
active

active->scheduler
in

in-signal

pos_value

in-signal

in-event
initialize

out

out-signal

feedback

out-signal

out

position

init-ao init-transducer

Figure 3: A composite componentBlock Containerthat holds on to two subcomponents
(AO FunctionandTransducer).

In the example of the AO Function, we show one rule that is calledactive-
>scheduler. This rule expresses that if the component has anactiveproperty
with value true, that than this component needs to have a cycletime property.
In COMES this is expressed as a logic query (expressed in the reflective logic
language SOUL) that is evaluated in the context of the component.

ifthen(componentProperty(?c, active([true])),
componentProperty(?c, scheduler([true])))

Leaf Component. a leaf component consists of aname, a set of properties, a set of
ports and aset of consistency rules. Hence it is basically a building block that
can be connected to other building blocks while holding on to some local infor-
mation. Leaf components are described in Smalltalk or logically (as we see later
on when we see an example of a logic description).

3.3 Composite Components

In this section we see how components are composed intocomposite components. We
introduce a composite component calledBlock Containerthat has its own properties
and rules, and holds on to two subcomponents (theAO Functioncomponent that we
introduced in the previous section and theTransducercomponent. This composite
component is shown in Figure 3.

Connector. A connector connects ports, and consists of aname, a set ofout-ports, a
set ofin-portsand atype. A connector is oriented (from the out ports to the in-
ports). We distinguish two kinds of connectors, that differ in the i/o specification
of the ports they connect:

7

• passing connectorsconnect out-ports to in-ports. All the ports have to be
of the same type (signalor event), all out-ports have an i/o specification of
out, and all in-ports have an i/o specification ofin. They are typically used
to model data flow between components. For example, Figure 3 shows two
passing connectors between signals: thepositionandout connectors.

• interface connectorsconnect ports of the same i/o specification and type.
They are typically used to ‘publish’ ports of subcomponents as ports of the
composite component. The Block Container component for example has
the init-ao andinit-transducerconnectors.

Composite component.A composite component is a leaf component that also holds
on to a set of child components and a set of connectors. Whether the components
are well-connected is expressed by consistency rules.

3.4 Checking a model

In this section we discuss how a model is checked once it is modeled. We also give
some more examples of consistency rules.

Once an embedded system is modeled with Comes, the composition of the used
components needs to be checked. This comes down to performing two kinds of checks:

1. checking the internal consistency of components

2. checking the structural integrity of the composition

When both these checks are done and succeed, the model can be used to generate
template code. This falls outside the scope of this paper.

Checking the internal consistency of components is done by firing the consistency
rules that are defined on components. Whenever one of such rules fails, this means
that some internal property of the component is not followed. For example, in the AO
Function component, there is one consistency rule used (active->scheduler). There-
fore, when the system is checked this rule will be fired. When it is violated (meaning
that the AO Function component has a propertyactiveset to true but no propertysched-
uler or a propertyschedulerthat is false), the user will be notified.

Theactive->schedulerrule is but a simple example. We also use consistency rules
to express relations between non-functional requirements that are modeled in the prop-
erties. For example, when all components have a propertyramsizewith a value that
indicates the amount of ram they need, we can fit any composite component with a
consistency rule that calculates the combined ramsize, and makes sure it does not pass
a certain value set in theramsize-maxproperty of the composite component:

subcomponents(?c, ?subList),
findall(?ramValue,

and(member(?subC, ?subList),
componentProperty(?subC, ramsize(?ramValue))),

?ramValueList),
sum(?ramValueList, ?calculatedSize),

8

?

version
documentation
active

in-event

initialize

Scheduler
version
documentation

out-event

initialize

Scheduled Components

Figure 4: A template component defining a scheduler component and another compo-
nent that needs to be scheduled.

componentProperty(?c, ramsize-max(?maxSize)),
smallerThan(?calculatedSize, ?maxSize).

Checking the structural integrity of the composition means that we have to check
that the right connectors are used to connect the right kind of ports. This is also spec-
ified as a logic rule, that implements the behavior for passing or interface connectors.
These rules can of course be changed, meaning that what it means to connect compo-
nents is changed.

3.5 Template Components and Styles

To facilitate building components, we would like to have template components, that
contain predefined properties, ports, subcomponents or connectors. For example, we
would like every component to have at least theversionanddocumentationproperties.
For this we use template components. Template components are components that have
‘holes’ in them that need to be filled when they are instantiated. Like in our approach to
describe software architectures, we want to specify them as logic constructs containing
logic variables that can be filled in at instantiation time. The result of this instantiation
is then a component.

For example, consider the following template displayed in figure 4. It defines a
template for a composite componentScheduled Componentsthat consists of two sub-
components: aSchedulerand an unnamed component. The scheduler component is
completely fixed: it contains no variables to be filled in. The component it schedules,
however, is mostly unspecified. We only require it to have at least an in-event called
initialize, and some properties. In its logic form, this template component is described
as follows (note that we do not discuss the implementation of the used logic predicates,
as this would lead us too far):

compositeComponentNamed(?c, ‘Scheduled Components’),
subcomponents(?c,<?scheduler, ?t>),
componentNamed(?scheduler, ‘Scheduler’),

9

Block Container
version
documentation
active

in-event

initialize

Scheduler
version
documentation

out-event

initialize

AO Function

version
documentation

in-event

initialize

Transducer

version
documentation

in

in-signal

pos_value

in-signal

in-event
initialize

out

out-signal

feedback

out-signal

Scheduled Components

Figure 5: The template component instantiated with the Block Container component.

componentProperty(?t, property(version, 1.0)),
componentProperty(?t, property(documentation, ‘demo’)),
componentProperty(?t, property(active, false)),
componentort(?t, port(initialize, event, in,<>))

Then we can instantiate this template component by filling in the component to
be scheduled with our Block Container component. This results in the component
as shown in figure 5. Note that is also shows that a composite component (the Block
Container) can be used in the place of another component (the component that is sched-
uled).

3.6 The Comes Tools

We have implemented this model in the object-oriented programming language Smalltalk.
It contains a GUI interface to compose components with ‘drag and drop’ (although the
connections are not shown graphically). At the moment of writing we do not yet have
a GUI facilitate for template components; these have to written directly in the logic
language. However, this will be adressed in the future.

The logic programming language we use is called SOUL (the Smalltalk Open Uni-
fication Language) [Wuy98, Wuy01]. SOUL is actually a reflective logic programming
language. It allows us to directly reason over Smalltalk objects, this combination com-
bines the best of both worlds: polymorphism and inheritance to express components
and logic programming to express rules and relations between these components. In
the future we hope to take more advantage of this by complementing the current static
checks on properties etc. with dynamic checks.

10

4 Conclusion

We presented COMES a simple component model that we are developing in the context
of the PECOS IST Project. The contributions of this paper are:

• Introduction of the Comes model for components for embedded systems. Spe-
cial about this model is that it uses a logic programming language to describe
component consistency rules and the meaning of connectors.

• the behavior of connectors is a form of extended type-checking, that can take
properties of components into account. These properties describe static or non-
functional information, that can thus be used for checking and connecting.

• the Comes implementation uses a logic programming language that reasons di-
rectly over components that are Smalltalk objects. This provides a best-of-both-
worlds approach: Smalltalk is very good in wrapping things in components and
the logic programming language is very good in expressing rules over and re-
lations between components. In a pure Smaltalk approach, expressing the rules
and relations would become harder and in a pure Prolog approach wrapping of
components would be harder.

While explored in the context of COD, we feel that these contributions are also
applicable on general COD. We relate to the workshop theme as we are building a
meta-model for components in a specific context (embedded systems). Components
are black-box encapsulations of some behavior (implemented in C++ or Java), and
have an interface. They are connected by connectors. We try to apply our exerience in
SA in the context of COD. However, these issues are also applicable to general COD.

References

[Men00] K. Mens. Automating Architectural Conformance Checking by means of
Logic Meta Programming. PhD thesis, Vrije Universiteit Brussel, 2000.

[MWD99] Kim Mens, Roel Wuyts, and Theo D’Hondt. Declaratively codifying soft-
ware architectures using virtual software classifications. InProceedings of
TOOLS-Europe 99, pages 33–45, June 1999.

[SG96] M. Shaw and D. Garlan.Software Architecture — Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[Szy98] Clemens A. Szyperski.Component Software. Addison-Wesley, 1998.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure object-oriented sys-
tems. InProceedings of the TOOLS USA ’98 Conference, pages 112–124.
IEEE Computer Society Press, 1998.

[Wuy01] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, 2001.

11

	Introduction
	Declarative Software Architectures
	Pecos project

	Applying our declarative SA approach on COD
	COMES: Component Meta-Model for Embedded Systems
	COMES Overview
	Leaf Components and their constituents
	Composite Components
	Checking a model
	Template Components and Styles
	The Comes Tools

	Conclusion

