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Abstract

When developing software systems, the relation between design and implementation is typ-
ically left unspecified. As a result design or implementation can be modified independently of
each other, and a modification of either one does not leave any trace in the other. The practi-
cal result of this is a number of well-known problems such as drift and erosion, documentation
maintenance problems or round-trip engineering trouble. To solve these problems we propose
to make the relation between design and implementation explicit by expressing design as a
logic meta-program over implementation. This is the cornerstone for building a complete syn-
chronisation framework that allows one to synchronise changes to design and implementation.
We have implemented such synchronisation framework, and applied it successfully on two case
studies.

1 Introduction

One of the main problems in software engineering we see is that the relation between design and
implementation is typically left implicit, and almost never explicitly gets recorded. The result
is a number of well-known problems, such as design and implementation drifting apart during
development, or the documentation quickly getting out of sync with respect to the implementation.
In this paper we tackle this problem with a solution based on the following cornerstones:

1. express design as a logic meta-program over implementation: hence the relation is made
explicit in a full-fledged programming language;

2. use the logic meta-programming language as the synchronisation engine and to define actions.
Because the mapping is expressed as a logic meta-program, we can run logic programs that
compare design and implementation and implement actions when differences are found (such
as adding or removing items in either design or implementation);

3. integrate in the development environment to receive notifications of changes: when the devel-
opment environment is able to notify the synchronisation engine whenever changes are made
to design or implementation, the synchronisation engine can guide design or development
(by indicating design violations, or updating the design as needed, etc.)

We implemented this solution as a framework (the synchronisation framework), that allows
to synchronise changes between design and implementation. Its general structure is shown in
Figure 1. The main participants are the ones found in the conceptual solution outlined above:
the Declarative Framework that relates design and implementation, a logic meta-programming
language that is used as synchronisation engine and the design and implementation monitors that
integrate the synchronisation engine in the development environment.
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Figure 1: The general setup of the synchronisation framework, showing the main con-
stituents: the logic meta-programming language SOUL, the declarative framework and the
design and implementation monitors.

In the rest of the paper we discuss this framework in more detail. In Section 2 we describe
the problem in more detail. Section 3 discusses the advantages of expressing design as a logic
meta-program of implementation. In Section 4 we then introduce the logic meta-programming
language we implemented and that we use to relate design and implementation. In Section 5 we
show the Declarative Framework, a library of logic rules that implement relations between existing
design techniques (UML class diagrams and design patterns). In Section 6 we then introduce
the synchronisation framework, and show the kinds of synchronisation it supports. Section 7
describes the experiments we did on two separate case studies (the HotDraw framework and a
real-world application) to show the viability of the approach in general and of our implementation
in particular. Based on the results from the experiments, Section 8 discusses our solution. Section 9
concludes the paper.

2 The Gap Between Design and Implementation

In traditional software engineering literature, implementation is typically viewed as a concretiza-
tion of design [Bud94, GR95, Som96]. This implies a very general, unidirectional mapping from
design to implementation. General forward engineering techniques do not even bother with mak-
ing this mapping between design and implementation explicit. This implicitness leads to serious
problems when developing object-oriented systems, as shown by the following well-known prob-
lems:

Drift and erosion. Drift occurs where implementation and design evolve in different directions
because they are not explicitly related. Erosion is the process where the initial design is
breached more and more in the implementation, because the design becomes less and less
relevant as the implementation changes to accommodate new requirements [PW92]. This
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term describes the problem very well: over time the artefacts from the original phases erode
more and more under the constant pressure of the ever changing implementation.

Documentation problems. Severe problems occur when one documents a system and has to
keep this documentation up-to-date. Documentation of a system is not only needed when
maintaining a system, but also when reusing (part of) it or when adding new requirements.
For all these activities, documentation is needed so that the system can be fully understood
before making changes to it.

Supporting iterative development. Iterative development is targeted more towards the devel-
opment of a system built for new domains and with changing user requirements. The strong
point of iterative development is that it integrates top-down development (typically done in
the design phase) with bottom-up development (typically encountered when implementing
the design). In each pass, the implementation learns from the design, and the design learns
from information gathered in the implementation phase. This integration of top-down and
bottom-up development makes iterative development much more reactive towards changing
requirements and reuse. However, this flexibility comes at a cost: synchronisation. Properly
supporting iterative development is impossible if the design phase and the implementation
phase (through which is continuously cycled) have to be synchronised manually. This is not
a shortcoming of incremental development alone; it just shows how crucial it is to be able
to synchronise design and implementation.

The fundamental problem underlying the problems sketched above is that the is relation be-
tween the design and the implementation is not explicitly recorded. Because design and imple-
mentation are unrelated, they can be modified independently of each other, and a modification
of either one does not leave any trace in the other. As a result, synchronising such two loosely
coupled entities is at best difficult and ad-hoc, and most of the time impossible. This discrep-
ancy results in a practical development process where analysis and design are used for the initial
implementation, but evolution is applied to the implementation alone [DDVMW00].

3 Design as a Logic Meta-Program over Implementation

In this paper we relate design and implementation in such a way that we support the synchronisa-
tion of changes to design and implementation. Before we look at our solution, however, we want
to stress that in our view design defines a complete range of abstractions from implementation.
This spectrum of abstractions ranges from more local and detailed design (such as programming
styles [Jon87, LH89, Bec97]) to high-level abstractions that provide global views of the implemen-
tation (as in high-level design or software architectures [PW92, GS93, BJ94, BMR+96, SG96]).
Hence the relation between design and implementation will not be as straightforward as what is
assumed in existing tools (like for example TogetherJ or Rational Rose for Java).

The cornerstone of our solution is that design is expressed as a logic meta-program over imple-
mentation. Expressing design as a logic meta-program over implementation has several advantages:

1. the relation between design and implementation is made explicit, since the design is expressed
in terms of the implementation;

2. we benefit from the open character of a logic programming language, which allows us to
build a system where rules can easily be added to implement specific behaviour, and where
logic repositories are used to group and nest rules;

3. the inherent declarative nature of logic programming is very well suited to express design
notations, since these are typically also declarative in nature;

4. since all design notations we support are expressed in the same medium (as logic meta-pro-
grams), they can be expressed in terms of each other. For example, the structure of design
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patterns [GHJV94] can be described using UML class diagrams [RJB99], taking best practice
patterns [Bec97] or other programming conventions into account. And finally

5. logic programs express relations between their variables, in a mathematical sense. This prop-
erty is also referred to as the multi-way property of logic programming languages. Concretely
this means that the same logic program can be used in many different ways depending on
the information that is passed to it.

4 SOUL

We have seen why we would like to express design as a logic meta-program over implementa-
tion. In this section we look at the programming language that allows us to do this, called the
Smalltalk Open Unification Language (SOUL). SOUL is a logic programming language (analogous
to Prolog [CM81, SS88]) that is implemented in, and lives in symbiosis with, the object-oriented
programming language Smalltalk. SOUL allows users to perform logic queries over Smalltalk
source code, without the need of representing this source code explicitly in the logic repository.
This is accomplished by incorporating a special term called the smalltalk term, and a special
predicate called the generate predicate. Next two sections describe these additions.

4.1 The Smalltalk Term

The SOUL language construct that enables symbiosis is the smalltalk term that allows us to
use Smalltalk objects as logic constants. So where Prolog uses symbols and numbers as constants,
SOUL uses any Smalltalk object. Take for example the following query:

Query foo([Array])

The argument of foo (the term with the square brackets) is a smalltalk term. Between the
square brackets we find the description of the term, in this example Array. Array is an object,
namely the object that represents the class Array.

What we have not discussed yet is how the reified objects can be specified or, in other words,
what can occur between the square brackets. The smalltalk term allows any Smalltalk expression
(like the very simple expression Array that evaluates to the object Array). Moreover, these
expressions allow logic variables as receivers of messages. We illustrate this with a query that binds
a logic variable ?c to a smalltalk term [Array], and then uses a smalltalk term containing a
piece of code that evaluates to a boolean. This piece of code sends the message selectors to
the binding of ?c, which returns a collection object that contains all the names of methods. This
collection object is then sent the message isEmpty that returns the object true when the collection
is empty and false otherwise:

Query equals(?c, [Array]),
[?c selectors isEmpty]

Interpreting this query will succeed if the class Array has methods, and will fail otherwise.
Note that for this query to succeed, we did not need to write any logic fact expressing information
about Array : this was all done by using the Smalltalk system.

4.2 The Generate Predicate

The smalltalk term wraps Smalltalk expressions, and allows us to evaluate Smalltalk expressions
during logic interpretation, wrapping the resulting object. This wrapping was illustrated in the
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Figure 2: The declarative framework

previous section, where the query had one result, a wrapped Smalltalk collection containing the
selectors of class Array. However, sometimes we want to get separate logic results for each selector.
Such functionality is offered by the generate predicate, which generates a set of solutions (described
by a smalltalk term) for a variable. The first argument of the generate predicate specifies a logic
variable to bind the results to. The second argument is a smalltalk term that describes a stream
of solutions. Each of these solutions is bound, one by one, to the first argument. As an example, we
implement a simpleSelector rule that expresses the relation between classes and selectors (names
of methods) of that class. It first expresses that the ?c is a class, and then uses the generate
predicate to ask this class for its selectors and bind these to the ?selector argument. Asking the
class for its selectors is done by the smalltalk term, that sends the message selectors to the class
bound to ?c, and then sends asStream to return a stream of solutions:

Rule simpleSelector(?c, ?selector) if
class(?c),
generate(?selector, [?c selectors asStream])

When the generate predicate is evaluated, it results in n solutions for the variable ?selectors,
where n is the number of elements in the stream. For example, the query to ask the selectors of
class Array now yields 15 results. Each result is a binding for the variable selector, containing the
name of a method of Array.

5 The Declarative Framework

The declarative framework is a layered rulebase of rules expressing design as a logic meta-program
over implementation. It is depicted in Figure 2. Rules in one layer have access to all the rules
from lower layers. Each layer contains groups of rules with similar or related functionality:

• The logic layer : this layer contains the rules that add core logic-programming functionality,
such as list handling, arithmetic, program control, repository handling and SOUL meta-
programming.

• The representational layer : this layer reifies the base-language’s concepts, such as classes,
methods, instance variables and inheritance.
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• The basic layer : this layer adds a lot of auxiliary rules that facilitate reasoning about imple-
mentation. Since the representational layer only provides the most primitive information,
this layer is necessary to interact at a reasonable level of abstraction with the logic meta-
programming language.

• The design layer : this layer groups all rules that express particular design notations. In the
next chapter we describe some design notations that we have expressed in our experiments,
namely programming conventions, design patterns and UML class diagrams.

We now look at the layers in more detail, and give SOUL examples to demonstrate the expres-
siveness of the language. Since this paper focuses on synchronising design and implementation we
omit a detailed description of the logic layer.

5.1 The Representational Layer

The representation layer is responsible for reifying the concepts of the base language that we want
to reason about in the rest of the declarative framework. We reify four concepts from the base
language: class, method, instance variable and inheritance. All the other rules in the declarative
framework use these concepts to reason about the implementation. In this section we show what
the rules for reifying classes and methods look like in SOUL. Since the rules for instance variables
and inheritance are similar, we do not explicitly show these.

5.1.1 The Class Rule

We start with the implementation of the class rule. This rule allows us to check if its argument is
a class, or to generate all classes. Note that the smalltalk term uses the class SOULExplicitMLI
as a facade to facilitate and centralise the calls to the Smalltalk system1.

Rule class(?c) if
generate(?c, [SOULExplicitMLI current allClasses]),

This rule uses the generate predicate to generate all classes in the system. One by one it binds
these values as the result of the ?c variable. For example we can then perform a query asking for
all the classes in the system:

Query class(?c)

However, it also solves the following query that asks whether the argument Array is a class:

Query class([Array])

Note that we actually pass an Array class here (and not some description), using the fact that
classes are first-class objects in Smalltalk and that we can represent and use these objects using
smalltalk terms.

1The implementation of the facade SOULExplicitMLI actually uses a singleton design pattern [GHJV94], which
explains the current message that is sent to the SOULExplicitMLI class to retrieve the actual facade instance used.
This instance is then asked for all the classes in Smalltalk using the allClasses message.

6



5.1.2 The Method Rule

Analogous to the class rule, we define a method rule that allows us to represent methods of
classes in a logic form. We represent a Smalltalk method as a functor with five arguments:
the class, its name, the names of the arguments, the names of the temporary variables and the
statements. The mapping we use to represent Smalltalk programs in the declarative framework is
fairly straightforward, and follows the Smalltalk parse tree structure. We do not show the actual
mapping in detail, as this falls outside the scope of this paper. Interested readers can find the
details in [Wuy01].

Rule method(?c, ?m) if
class(?c),
generate(?method, [SOULExplicitMLI current allMethods]),
equals(?m, ?method).

Once this rule is added (together with the class rule defined above), we can reason about
classes and methods in the object-oriented system. This allows us to perform queries such as
asking whether a specific method is indeed a method of some class, finding all the methods of a
class, and so on. This will become clear in examples of the other layers.

5.2 The Basic Layer

The logic layer and the representational layer provide all the basic mechanisms to reason about
Smalltalk code. However, the level of abstraction is not very high, and for almost every query
we should have to write lots of logic code. Therefore we factored out a lot of functionality and
created the basic layer. This layer adds a lot of auxiliary rules that facilitate the reasoning about
implementation, and raises the level of abstraction significantly. Describing the implementation
of all of these rules falls outside the scope of the paper (there are currently over 140 rules in this
layer). Therefore we summarize the rules in groups, and then give some examples on how to use
them.

• Parse tree traversal : a lot of rules have to traverse the parse tree of a method to search for
certain variables or message sends. This group implements parse tree traversal, and some
commonly used traversals (looking for receivers or messages sent, for example).

• Typing : Smalltalk is dynamically typed. Therefore we added some rules that analyse the
source code in order to infer possible types for variables.

• Flattening : the basic rules representing classes and methods are incremental, meaning that
the information about a class reflects only what that class implements and not what it
inherits. The rules in this group allow us to reason about classes in their flattened versions.

• Code generation: since smalltalk rules can contain any Smalltalk code, this code can use the
standard Smalltalk meta facilities to generate or remove code. The rules in this group use
this feature to generate code from logic descriptions of methods or from quoted strings.

• Auxiliary : there are also a number of auxiliary methods (such as rootClass, hierarchy, un-
derstands, abstractClass) that implement various frequently used rules.

To see what can be done with the rules in this layer, we start by writing a rule varInterface
that describes the interface for an instance variable as all messages sent to this instance variable.
It uses a findall to collect all sends to the variable in a list. The sends to the variable are found
by the isSendTo rule, one of the parse tree traversal rules. The interface is this set of methods,
but without any duplicates:
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Rule varInterface(?class, ?var, ?interface) if
instvar(?class, ?var),
findall( ?varSend,

isSendTo(?class, , ?var, ?varSend),
?varSendsList),

noDups(?varSendsList, ?interface).

Using the varInterface rule we can then write a rule interfaceDifferences to find all sends to
an instance variable that are not understood by some class. This allows us to check whether
some class we see as a possible type for the instance variable could indeed be used as such. The
implementation simply gets the interface of the instance variable (using the varInterface rule),
and extracts all selectors from it that are not understood by the type (that has to be a class):

Rule interfaceDifferences(?class, ?var, ?varType, ?missingSelectors) if
class(?varType),
varInterface(?class, ?var, ?interface),
findall( ?missingSelector,

and( member(?newSelector, ?interface),
not(understands(?varType, ?missingSelector))),

?missingSelectors).

For example, using this rule we can check whether Number is a possible class for the instance
variable x of class Point :

Query interfaceDifferences([Point], [#x], [Number], ?missing)

As could be expected, the query succeeds and returns as only possible value for the ?missing
variable the empty list. This means that Number is a possible class for the instance variable x, at
least by looking at the messages sent to x.

The interfaceDifferences rule can only be used in a more constructive way than to report on
the missing methods. We can for example also use it to generate skeleton methods for every
method that interfaceDifferences reports as missing. This situation arises when implementing a
core class before its auxiliary classes. Then one ends up with a class which implementation is
nearly finished, and then has to implement all the cooperating classes. The interfaces of these
cooperating classes, however, are already defined by the core class. Using the interfacceDifferences
rule we can support this scenario by extracting all the needed methods and generating template
methods on the cooperating classes. The following rule implements such support. Note that the
notYetImplementedSource gives the template source code for a given selector).

Rule adjustClass(?class, ?var, ?type) if
interfaceDifferences(?class, ?var, ?type, ?missingSelectors),
forall(member(?sel, ?missingSelectors),

and( notYetImplementedSource(?sel, ?code),
generateMethod(?type, ?code))).

5.3 The Design Layer

The top layer, that builds on all the other ones, is the design layer. It contains rules that express
programming conventions, design pattern structures and UML class diagrams in terms of the
implementation. The following sections give examples from the design pattern and the UML
rules.
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Figure 3: Visitor Design Pattern Structure

5.3.1 Design Pattern Structures

We expressed structures as described by design patterns [GHJV94]. In general, a design pattern
is detectable if its template solution is both distinctive and unambiguous [Bro96]. The design
pattern structures we have expressed in this layer are the Composite Pattern, Visitor, Abstract
Factory, Factory Method, Singleton and Bridge. In this section we give the implementation of the
visitor design pattern structure.

The general idea of the Visitor design pattern is to separate the structure of elements from
the operations that can be applied on these elements. This separation makes it easier to add new
operations, because the classes of the object structure do not have to be changed. The typical
example of the Visitor pattern is to separate parse trees from the operations that are typically
performed on these parse trees (such as generating code, pretty printing or optimizations). The
general structure of the Visitor pattern is depicted in Figure 3.

The rule describing the structure of the Visitor pattern is fairly straightforward. It expresses
first of all that the visitor is a class, and that it implements the visit methods (that have the name
visitSelector). In the same way, element is a class too, and implements methods called accept with
a body acceptBody. The arguments passed to this method are given by acceptArgs. The body is
responsible for calling the passed visitor v with the actual visit operation visitSelector and passing
along the arguments visitArgs. One of the arguments has to be the receiver (denoted by self in
Smalltalk), and the passed visitor v actually has to be an argument of the accept method:

Rule visitor(?visitor, ?element, ?accept, ?visitSelector) if
class(?visitor),
classImplements(?visitor, ?visitSelector),
class(?element),
classImplementsMethodNamed(?element, ?accept, ?acceptBody),
methodArguments(?acceptBody, ?acceptArgs),
methodStatements( ?acceptBody,

<return(send(?v, ?visitSelector, ?visitArgs))>),
member(variable([#self]), ?visitArgs),
member(?v, ?acceptArgs).

5.4 UML Class Diagrams

The UML class diagram rules express the basic concepts of UML class diagrams [BRJ97, RJB99]:
classifiers (with operations and attributes) and the generalization and association relationships.
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In this case we take the most complicated one, namely mapUMLAssociation. This rule is
used to map UML associations against the source code. Because Smalltalk is dynamically typed,
extracting and checking collaborations between classes is hard. However, we can use the typing
rules to extract possible associations. The core of mapping the UML association relation to the
implementation is the associationRelation rule, that types the instance variables of the left class
(using the instvarTypes and stripHierarchyClasses rules) and uses that information to see if there
is an association with the right class. This is done by taking the instance variables of the left
class and, for each of them, determining their type. If the type is not a Smalltalk collection, then
the multiplicity is set to 1. If the type is found to be some Smalltalk collection class, then the
multiplicity is set to many, and the type of the elements contained in the collection is determined
(with the collectionElementType rule). For each possible type we then construct a role functor
with the extracted information (type and multiplicity). Since the ?allRoles then contains possible
nested lists, we flatten the results before returning them:

Rule associationRelation(?leftClass, ?instvar, ?leftRoles) if
instVarTypes(?leftClass, ?instvar, ?typeList),
stripHierarchyClasses(?typeList, ?possibleTypes),
findall( ?roles,

and(member(?possibleType, ?possibleTypes),
or( and(containerType(?possibleType),

collectionElementType(?leftClass, ?instvar, ?types),
stripHierarchyClasses(?types, ?strippedTypes),
findall( role(?instvar, multiplicity([#many]), type(?possibleType, ?type)),

member(?type, ?strippedTypes),
?roles)),

and(not(containerType(?possibleType)),
equals(?roles, <role(?instvar, multiplicity([1]), type(?possibleType))>)))),

?allRoles),
flatten(?allRoles, ?leftRoles).

6 The Synchronisation Framework

We now have discussed the key part of the synchronisation framework (namely that design is
expressed as a logic meta-program of implementation). We have also discussed the declarative
framework, shown examples on what the relation between design and implementation looks like
and how it can be used. This forms the core of the synchronisation framework as depicted in
Figure 1 in Section 1. The integration with the development environment is done with two
monitors, that notify us of changes in respectively design and implementation. Hence any change
to design or implementation can be intercepted, and the synchronisation can start.

We already indicated that the synchronisation framework supports a whole spectrum of syn-
chronisation. This spectrum can be characterized by different axes [Wuy01], of which we will now
see the two most important ones: trigger time and direction of synchronisation (discussing the
other axes falls outside the scope of this paper). We then introduce some of the applications that
were built using the synchronisation framework.

6.1 Direction of Synchronisation

Although there are two partners to be synchronised (design and implementation), synchronisation
does not necessarily works in both directions. When only one partner can be derived from the
other, we have a unidirectional synchronisation. With a bidirectional approach, design can be
derived from implementation and vice versa. This classification has a strong impact on the results
that can be expected from the synchronisation: a unidirectional system can only be used to
generate one of the two participants from the other, or to do a limited conformance check. A
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bidirectional system can be used both for conformance checking and for generating one participant
from the other and vice versa.

The synchronisation framework we propose supports both unidirectional and bidirectional
synchronisation:

• When both design and implementation are given, we can run queries to check for differences
between both. Suppose for example that we have an implementation and that we have
documentation stating that is implemented according to a visitor design pattern. Then we
can use the visitor rule we described in Section 5.3.1 to find the differences between design
and implementation.

• When only the design is given, we can generate implementation skeletons. Of course, these
skeletons will then need to be completed manually. How much can be generated depends on
the design mapping rules.

• When only the design is given, we can extract the design from the implementation. Suppose
for example that we have an implementation for which we have no design information. Then
we can for example run a query to check whether there is a visitor design pattern in this
implementation.

The most interesting feature of our approach is that the same mappings can be used for both
directions. This is possible because we express design as a logic meta-program of implementation.
The logic programming language takes care of the rest.

6.2 Trigger Time

The synchronisation can be triggered directly after every single change, or delayed, after several
changes were made. Because the monitors can intercept changes to design or implementation, we
can support both models. When the monitors intercept every change directly, we can invoke the
synchronisation engine to do for example a conformance check. The results of this check can then
be used to for example notify the developer that a certain implementation change was not allowed
or that a certain design change is not consistent with the implementation. When the notifiers are
only set to react on certain changes, or not at all, we have support for delayed synchronisation.
For example, the synchronisation can be invoked manually after any number of changes.

6.3 Applications using the Framework

On top of the Synchronisation Framework we have built some applications to show the possibilities
of the framework:

Find Tool. This tool is an application that allows you to find classes and methods according
to certain criteria that can be selected from drop-down boxes (such as is used in search
facilities offered in graphical operating systems). Using this application, it is easy to look for
all classes that belong to a certain hierarchy, that implement a method which name begins
with an ’a’ and that implement at least one abstract method.

Style Checker. This application acts as a monitor for the quality of methods in the system.
Therefore it fires user-definable queries whenever a method is changed in the system. These
queries express criteria methods should comply to. Failures to adhere to these criteria results
in a warning being written to the log application. The entries in the log application can
then be double-clicked to open a browser on the method that causes the warning. Entries
in the to-do log are overridden when the same method is changed (and thus always contain
the results of the latest version of the method), or can be removed manually. The developer
is thus not hindered: violations only result in logs to be reviewed afterwards.
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UML Tool. A third tool we implemented is a UML Tool that allows one to extract, view and
manipulate UML Class Diagrams from Smalltalk code. Moreover, it can also generate code
skeletons, given a diagram. We could then go one step further and have used the notification
system to act on changes in system or design. For example, we can then make a UML tool
that enforces that every change in a design diagram should comply to the implementation.
For example, when an operation is added to a classifier, the implementation can be checked
to make sure that the class corresponding to the classifier indeed implements such method.
If not, this can be logged or template code might be generated.

7 Experimental Validation

The previous sections introduced the Synchronisation Framework, and showed how it supports
synchronisation. In this section we now describe some experiments we did in order to validate
whether this framework is indeed capable of synchronising changes between design and implemen-
tation in practice. We conducted two series of experiments:

HotDraw. We performed experiments on the well-known HotDraw framework. We were inter-
ested in showing the different possibilities of the synchronisation framework, and in the
practical applicability of the implementation of the framework.

Real-World Case. We also used the synchronisation framework on a large-scale industrial ap-
plication to assess the usability and scalability in that context.

Because of space constraints we can only give an overview of the experiments we performed,
but more detailed information can be found in [Wuy01].

7.1 The HotDraw Experiments

Through an extensive case study of the HotDraw framework, we showed how the synchronisation
framework can be used to:

• extract design (class diagrams, design pattern structures) from the implementation;

• generate implementation from the design;

• do a conformance check between design and implementation, showing discrepancies between
both;

• guide implementation by checking implementation changes against design information, and
possibly reacting on these changes by generating code.

We also showed how we can use the synchronisation framework to make some undocumented
and hard to find relations between the DrawingEditor, Figure and Tool classes explicit. These
relations are hardcoded in a number of methods on these three classes, and use several naming
conventions and low-level dependencies. Using SOUL we made these conventions explicit and
used them to guide development. This shows the practical usability of synchronisation, even for
a mature and refined framework that formed the basis for several design patterns.

7.2 The MediaGeniX Experiments

The real-world tests were performed at MediaGeniX, a company that develops tailor-made broad-
cast management systems for television stations. For our tests we worked on the Media Manage-
ment module of Whats’On, that handles everything that has to do with the actual management
of the media used for broadcasting, such as tapes. This module has recently been rewritten,
and consists of 441 classes. Since the Media Management module is one of the newer parts of
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Whats’On, it is one of the first to use the MediaGeniX Application Framework (MAF). The MAF
is MediaGeniX’ framework for building applications. We performed two sets of experiments. The
first was to synchronise the existing UML diagrams from the Media Management module with the
implementation. The second was to make explicit the rules that MAF applications should comply
with, and to check existing applications for conformance with these rules.

The MediaGeniX experiments shows that the synchronisation framework can be used in a prac-
tical setting to synchronise design and implementation. In a limited period of time we successfully
applied the synchronisation framework to express and synchronise design information with an
implementation. More specifically, we did a conformance check of existing UML diagrams with
the released implementation. We found some discrepancies between the two, most notable some
classes and relations in the UML diagram that did not exist in the implementation. Also, we were
able to complement the UML diagrams with information we extracted, most notably role names
for associations. We also checked the evolution of the implementation with respect to this UML
diagram. Besides these experiments with UML diagrams, we also made a set of programming
conventions explicit, and used this to find violations against these programming conventions in
the implementation. The results of these checks where a number of clear errors in some parts of
the implementation that do not follow the programming conventions.

Overall, the experiments on HotDraw and Whats’On showed that the rules in the declara-
tive framework, although lightweight, can be used to successfully express the design used in a
particular context and that the synchronisation framework successfully synchronises design and
implementation.

8 Discussion

In this section we discuss some of the results that came up during the experiments.

Power of LP. The reasoning power of SOUL is necessary to express several design relations. For
example, rules for expressing design patterns or UML class diagrams need the full power of-
fered by a logic programming language. ONe of the reasons is transitive closures of methods
sends need to be taken into account to express certain programming conventions. This is
hard to express in approaches that do not support recursion (such as SmallLint [RBJO96], a
regular-expression based tool). However, to express some of the other programming conven-
tions, no recursion is necessary and hence less powerful but faster reasoning engines could
be used (such as SmallLint).

Extensible rule system. The declarative framework is the key mechanism in being able to
adapt quickly to different implementations. For example, being able to complement the
general rules with two MediaGeniX -specific rules meant we could reuse the declarative
framework. Actually, two features are necessary: a composition mechanism of repositories,
and a mechanism that clauses can easily use and override other clauses.

Performance. Not performance but extensibility was our main concern when implementing
SOUL. However, based on the experiments we feel that we can safely say that even us-
ing the current, non optimized implementation of SOUL, querying the source code using a
logic meta-programming language is feasible. While larger queries (with complicated map-
pings to the source code, such as in our paper expressing software architectures [MWD99]),
queries might take longer than an hour, most queries take on the order of minutes (on regular
desktop machines). This is too slow to be truly interactive, but the speed of commercial
Prolog implementations makes these kinds of queries possible.

Scalability. The key point in making the approach efficient on large systems is reduction of
scope. This can be done by making use of the programming conventions, and by pre-filtering
irrelevant information using a coarse grained (but efficient and inexpensive) approach, and
then finecombing these results with the more expensive full logic programming approach;
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9 Conclusion

The problem addressed by this paper is that the relation between design and implementation
should be made explicit so that changes to design and implementation can be synchronised. As
solution we introduce the synchronisation framework, that is based on the following three core
concepts:

1. make the relation between design and implementation explicit by expressing design as a logic
meta-program of implementation;

2. integrate the logic-meta programming language in the environment to capture changes of
design and implementation;

3. use the logic meta-programming language to find differences between design and implemen-
tation, and define actions.

To show that this solution is not only a conceptual solution, but can also be used in practice,
we have implemented the synchronisation framework. Therefore we first of all implemented a logic
meta-programming language that exploits its symbiosis with the base language to reason directly
over the implementation of the base programs. Then we wrote logic meta-programs to express
design in terms of implementation, and layered these programs in the declarative framework.
Everything was then further integrated with the development environment by adding design and
implementation monitors.

To show its usability and scalability in practice, the synchronisation framework was applied to
two different case studies. This experimentally shown on a smaller case study (the HotDraw draw-
ing editor framework) that the synchronisation framework indeed supports all different character-
izations of synchronisation. On the same case study, we also found that, even for the well-known
and well-documented framework HotDraw is, there is need for synchronisation of design and imple-
mentation and the synchronisation framework can do so. Besides the experiments on HotDraw we
also did experiments on a large industrial framework. Here we did conformance checks of UML di-
agrams against the implementation (complementing the diagrams with extracted information and
detecting differences between the UML diagrams and the implementation). We also expressed
programming conventions and found several violations in the implementation that needed to be
fixed. These experiments strengthened our claim that the synchronisation framework is usable in
practice, and showed that it is scalable.
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